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Proof of Theorem 1

To prove the theorem, we use the convergence results
in (Bottou, 1998) and show that the required assump-
tions to ensure convergence holds for the proposed al-
gorithm. For simplicity, these assumptions are listed
here:

1. The cost function E(w(`)) is three-times di↵er-
entiable with continuous derivatives. It is also
bounded from below.

2. The usual conditions on the learning rates are ful-
filled, i.e.

P
↵
t

= 1 and
P

↵2

t

< 1.

3. The second moment of the update term should not
grow more than linearly with size of the weight
vector. In other words,

E(w(`))  a+ bkw(`)k2
2

for some constants a and b.

4. When the norm of the weight vector w(`) is larger
than a certain horizon D, the opposite of the gra-
dient �rE(w(`)) points towards the origin. Or in
other words:

inf kw(`)k
2

> Dw ·rE(w(`)) > 0

5. When the norm of the weight vector is
smaller than a second horizon F , with F >
D, then the norm of the update term�
2y(`)(t)x(`)(t) + ��(w(`)(t))

�
is bounded regard-

less of x(`)(t), where x(`)(t) is the subpattern of
pattern x(t) 2 X corresponding to cluster `. This
is usually a mild requirement, where for all pat-
terns x(t) in the dataset X we should have,

sup
kw(`)k2F

k
⇣
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⌘
k
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Also recall that A
x

= x(`)(x(`))>, and A = E{A
x

|x 2
X} represent the correlation among patterns in the
training set X , so E(w(`)) =

P
x2X |x(`) · w(`)|2 =

(w(`))>Aw(`)/C.

To start, assumption 1 holds trivially as the cost
function is three-times di↵erentiable, with continuous
derivatives. Furthermore, E(w(`)) � 0. Assumption
2 holds because of our choice of the step size ↵

t

, as
mentioned in the lemma description.

Assumption 3 ensures that the vector w(`) could not
escape by becoming larger and larger. Due to the con-
straint kw(`)k

2

= 1, this assumption holds as well.

Assumption 4 holds as well because:
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 4kw(`)k2
2

⇣2 + �2kw(`)k2
2

+ 4�⌥kw(`)k2
2

= kw(`)k2
2

(4⇣2 + 4�⌥+ �2)

Finally, assumption 5 holds because:

k2A
x
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2
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x
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Therefore, 9F > D such that as long as kw(`)k2
2

< F :

sup
kw(`)k2

2<E

k2A
x

w(`)+��(w(`))k2
2

 (2⇣+�)2F = constant

(10)

Since all necessary assumptions hold for the learning
algorithm 1, it converges to a local minimum where
rE(ŵ(`)) = 0.

Next, we prove the desired result, i.e. the fact that
in the local minimum, the resulting weight vector is
orthogonal to the patterns, i.e. Aw(`) = 0. Since
rE(ŵ(`)) = 2Aŵ(`) + ��(ŵ(`)) = 0, we have:

ŵ(`)·rE(ŵ(`)) = 2(ŵ(`))>Aŵ(`)+�ŵ(`) ·�(ŵ(`)) (11)

The first term is always greater than or equal to zero.

Now as for the second term, we have that |�(w(`)

i

)| 
|w(`)

i

| and sign(w(`)

i

) = sign(�(w(`)

i

)), where w
(`)

i

is
the ith entry of w(`). Therefore, 0  ŵ(`) · �(ŵ(`)) 
kŵ(`)k2

2

. Therefore, both terms on the right hand side
of (??) are greater than or equal to zero. And since
the left hand side is known to be equal to zero, we
conclude that (ŵ(`))TAŵ(`) = 0 and �(ŵ(`)) = 0. The
former means (ŵ(`))>Aŵ(`) =

P
x2X (ŵ(`) · x(`))2 = 0.

Therefore, we must have ŵ(`) · x = 0, for all x 2 X .
Which simply means the vector w⇤ is orthogonal to all
the patterns in the training set.

Although in problem (2) we have the constraint
kw(`)k

2

= 1 to make sure that the algorithm does not
converge to the trivial solution w(`) = 0, due to ap-
proximations we made when developing the optimiza-
tion algorithm, we should make sure to choose the pa-
rameters such that the all-zero solution is still avoided.

To this end, denote w
0
(`)(t) = w(`)(t) �

↵
t
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⌘
and consider the
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following inequalities:
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Now in order to have kw(`)(t+1)k2
2
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0
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,
it is therefore su�cient to have 2↵
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. On the other hand, we have:
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As a result, in order to have kw(`)(t + 1)k2
2

>
0, it is su�cient to have 2↵

t

�k�(w(`)(t))k
2


kw(`)(t)k

2

. Finally, since we have |�(w(`)(t))| 
|w(`)(t)| (entry-wise), we know that k�(w(`)(t))k

2
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. Therefore, having 2↵
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� < 1 
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ensures kw(`)(t)k
2

> 0.

Proof of Theorem 2

In the case of a single error, we are sure that the cor-
rupted node will always be updated towards the cor-
rect direction. For simplicity, let’s assume the first pat-
tern neuron of cluster ` is the noisy one. Furthermore,
let z = {1, . . . , 0} be the noise vector. Denoting the

ith column of the weight matrix by W
(`)

i

, we will have

y(`) = sign(W (`)

1

). Then in algorithm 2 g
1

= 1 > '.
This means that the noisy node gets updated towards
the correct direction.

Therefore, the only source of error would be a cor-
rect node gets updated mistakenly. Let P

x

i

denote
the probability that a correct pattern neuron x

i

gets
updated. This happens if |g

x

i

| > '. For ' = 1, this

is equivalent to having W
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· sign(z
1

W
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k
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Note thatW (`)

i

·sign(W (`)

1

) < kW (`)

i

k
0

in cases that the
neighborhood of x

i

is di↵erent from the neighborhood
of x

1

among the constraint nodes. More specifically,
in the case that N (x

i

) \ N (x
1

) 6= N (x
i

), there are

non-zero entries in W
(`)

i

while W
(`)

1

is zero and vice-
versa. Therefore, letting P 0

x

i

being the probability of
N (x

i

) \N (x
1

) 6= N (x
i

), we note that

P
x

i

 P 0
x

i

Therefore, to get an upper bound on P
x

i

, we bound
P 0
x

i

.

Let ⇤(l)

i

be the fraction of pattern neurons with degree

i in cluster l, d(l)
avg

=
P

i

i⇤(l)

i

be the average degree of

pattern neurons and finally d
(l)

min

be the minimum de-
gree of pattern neurons in cluster l. Then, we know

that a noisy pattern neuron is connected to d
(l)

avg

con-
straint neurons on average. Therefore, the probabil-
ity of x

i

and x
1

share exactly the same neighborhood
would be:
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Taking the average over the pattern neurons, we have

P 0
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where C
t

is the set of correct nodes at iteration t and
⇤(l)(x) =

P
i

⇤(l)

i

xi.

Therefore, the probability of correcting one noisy in-
put, P

c

= 1� P
e

� 1� P 0
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Proof of Theorem 3

The proof is similar to Theorem 3.50 in (?). Each
cluster node receives an error message from its neigh-
boring pattern nodes with probability z. Now consider
a given noisy pattern neuron which is connected to a
given cluster v(`). Let ⇡(`)(t) be the probability that

the cluster node v(`) with degree ed
`

sends an error
message during iteration t of Algorithm 3. This event
happens if the cluster node v(`) receives at least one
error message from its other neighbors among pattern
neurons along its input edges, i.e. if it is connected to
more than one noisy pattern neuron. Therefore,

⇡(`)(t) = 1� (1� z(t))
e
d

`

�1 (16)

As a result, if ⇡(t) shows the average probability that
a cluster node sends a message declaring the violation
of at least one of its constraint neurons, we will have,

⇡(t) = Ee
d

`

{⇡(`)(t)} =
X

i

e⇢
i

(1�(1�z(t))
e
d

`

�1) = 1�e⇢(1�z(t))

(17)
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Now consider a given pattern neuron x
i

with degree d
i

.
This node will remain noisy in iteration t+ 1 of Algo-
rithm 3 if it was noisy in the first place and in iteration
t+1 all of its neighbors among constraint neurons send
a violation message. Therefore, the probability of this
node being noisy will be z(0)⇡(t)di . As a result, noting
that z(0) = p

e

, the average probability that a pattern
neurons remains noisy will be

z(t+1) = p
e

·
X

i

e�
i

⇡(t)i = p
e

·e�(⇡(t)) = p
e

·e�(1�e⇢(1�z(t)))

(18)

Therefore, the decoding operation will be successful if
z(t + 1) < z(t), 8t. As a result, we must look for the

maximum p
e

such that we will have p
e

·e�(1�e⇢(1�z)) <
z for z 2 [0, p

e

].

Proof of Theorem 4

The proof is based on construction: we construct a
data set X with the required properties such that it
can be memorized by the proposed neural network.

To start, consider a matrix G 2 Rk⇥n with rank k
and k = rn, with 0 < r < 1. Let the entries of G
be non-negative integers, between 0 and � � 1, with
� � 2.

We start constructing the patterns in the data set as
follows: consider a random vector u 2 Rk with integer-
valued-entries between 0 and � � 1, where � � 2. We
set the pattern x 2 X to be x = u ·G, if all the entries
of x are between 0 and S � 1. Obviously, since both
u and G have only non-negative entries, all entries in
x are non-negative. Therefore, it is the S � 1 upper
bound that we have to worry about.

The jth entry in x is equal to x
j

= u · g
j

, where g
j

is the jth column of G. Suppose g
j

has d
j

non-zero
elements. Then, we have:

x
j

= u · g
j

 d
j

(� � 1)(� � 1)

Therefore, denoting d⇤ = max
j

d
j

, we could choose �,
� and d⇤ such that

S � 1 � d⇤(� � 1)(� � 1) (19)

to ensure all entries of x are less than S.

As a result, since there are �k vectors u with integer
entries between 0 and � � 1, we will have �k = �rn

patterns forming X . Which means C = �rn, which
would be an exponential number in n if � � 2.

As an example, if G is selected to be a sparse 200⇥400
matrix with 0/1 entries (i.e. � = 2) and d⇤ = 10, and

u is also chosen to be a vector with 0/1 elements (i.e.
� = 2), then it is su�cient to have S � 11, i.e. the
maximum firing rate of neurons should be 11 to have
a pattern retrieval capacity of C = 2rn.

Remark 1 Note that the inequality (??) was obtained
for the worst-case scenario and in fact is very loose.
Therefore, even if it does not hold, we will still be able
to memorize a very large number of patterns since a
big portion of the generated vectors x will have entries
less than S. These vectors correspond to the message
vectors u that are ”sparse” as well, i.e. do not have all
entries greater than zero. The number of such vectors
is a polynomial in n, the degree of which depends on
the number of non-zero entries in u.


