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S1. Proof of Theorem 3.1

The basic steps to prove theorem 3.1 are contained in
two lemmas.

Lemma S1.1. Let f(x) = log Γ(x)+log(x)−x log(x).
Then f(x) is a concave function of x > 0.

Proof. We prove concavity by showing f ′′(x) < 0 for
all x > 0. Taking derivatives, we find:

f ′′(x) = Ψ′(x)− 1

x2
− 1

x
, (S1)

where Ψ(x) denotes the digamma function and Ψ′(x)
its derivative. A useful identity for this deriva-
tive (Abramowitz & Stegun, 1964) is the infinite series
representation:

Ψ′(x) =

∞∑
k=0

1

(x+ k)2
. (S2)

The lemma follows by substituting this series repre-
sentation into eq. (S1). In particular, we have:

f ′′(x) = − 1

x
+

∞∑
k=1

1

(x+ k)2

< − 1

x
+

1

x(x+ 1)
+

1

(x+ 1)(x+ 2)
+ · · ·

= − 1

x
+

[
1

x
− 1

x+ 1

]
+

[
1

x+ 1
− 1

x+ 2

]
+ · · ·

= 0

This completes the proof, but we gain more intuition
by plotting f(x) as shown in Fig. S1. Note that
log Γ(x), which contains only the first term in f(x), is a
convex function of x. Thus it is the other terms in f(x)
that flip the sign of its second derivative. Essentially,
the concavity of f(x) is established by adding log x at
small x and by subtracting x log x at large x.
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Figure S1. Plots of the convex function log Γ(x) and the
concave function log Γ(x) + log x− x log x for x > 0.

Lemma S1.2. Let x be a nonnegative random variable
with bounded E[log(1/x)] <∞. Then:

E[log Γ(x)] ≤ log Γ(E[x]) + log E[x]− E[log x]

+ E[x log x]− E[x]log E[x]. (S3)

Proof. Let f(x) denote a concave function on
x > 0. From Jensen’s inequality, we have that
E[f(x)] ≤ f(E[x]). The result follows by setting
f(x) = log Γ(x) + log x− x log x as in Lemma S1.1.

Note that a naive application of Jensen’s inequality to
the left hand side of eq.(S3) yields the lower bound
E[log Γ(x)] ≥ log Γ(E[x]). Thus it is the additional
terms on the right hand side of eq. (S3) that establish
the upper bound. The direction of this inequality is
crucial in the context of variational inference, where
the upper bound in eq. (S3) is needed to maintain an
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overall lower bound on the log-likelihood. Equipped
with this lemma, we can now prove our main result.

Proof of Theorem 3.1. Let θ ∼ Dirichlet(ν), and also
let α > 0. Setting x = αθi in eq. (S3) gives:

E[log Γ(αθi)] ≤ log Γ(αE[θi)]) + log E[θi]− E[log θi]

+ αE[θilog θi]− αE[θi]log E[θi]. (S4)

All the expected values on the right hand side of this
inequality can be computed analytically for Dirichlet
random variables. In particular, let ν0 =

∑
i νi. Then:

E[θi] =
νi
ν0
, (S5)

E[log θi] = Ψ(νi)−Ψ(ν0), (S6)

E[θi log θi] = E[θi]

(
E[log θi] +

1

νi
− 1

ν0

)
. (S7)

The theorem follows from substituting these statistics
into eq. (S4).

How tight is the bound in Lemma S1.2? The question
is important because we use this inequality in conjunc-
tion with the variational approximation in eq. (3) to
generate a lower bound on the log-likelihood. Here we
make two useful observations.

First, we note that the bound in Lemma S1.2 is
exquisitely tuned to the shape of the function log Γ(x)
and the location of the expected value E[x]. To see
this, we provide an alternate derivation of the result
in eq. (S3). We begin by appealing to the concavity of
f(x), established in Lemma S1.1; from this we obtain
the upper bound

f(x) ≤ f(x0) + f ′(x0)(x− x0), (S8)

which holds for all values x0 > 0. Now we recall the
definition of f(x) in Lemma S1.1 to obtain an upper
bound on log Γ(x). Specifically we have:

log Γ(x) = f(x)− log x+ x log x, (S9)

≤ f(x0) + f ′(x0)(x−x0)− log x+ x log x. (S10)

Figure S2 illustrates this upper bound on log Γ(x) for
different values of x0; note especially its tightness in
the vicinity of x0. The upper bound on E[log Γ(x)] in
eq. (S3) is based on choosing the best approximation
from this family of upper bounds; it is easy to show
that this occurs at x0 = E[x]. Thus we obtain the
bound in Lemma S1.2 by taking expectations of both
sides of eq. (S10) and setting x0 = E[x].

Second, we note that the upper bound in eq. (S3) re-
duces to an equality in the limit of vanishing variance.
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Figure S2. Tightness of the upper bound on log Γ(x) in
eq. (S10) for different values of x0.

In particular, this is the limit in which E[log x] →
log E[x] and also E[x log x] → E[x] log E[x]. In this
limit, the last four terms on the right hand side of
eq. (S3) vanish, and we recover the result E[log Γ(x)] =
log Γ(E[x]). In general, we expect factorized approx-
imations such as eq. (3) to work well in the regime
where the true posterior is peaked around its mean
value. In this regime, we also expect the bound in
eq. (S3) to be tight. Put another way, if it is sufficiently
accurate to proceed with the factorized approximation
in eq. (3), then we do not expect to incur much addi-
tional loss from the inequality in Lemma S1.2.

S2. Parallel Implementation of tiLDA

Here we briefly describe our scheme for parallelizing
the recursive procedures in Algorithm 1. In practice,
we obtain a significant speedup from this parallel im-
plementation of tiLDA. This parallelization was nec-
essary, for example, to obtain the results in section 4.

One naive manner of parallelization would simply be to
allocate the inference for different top-level categories
to different threads of execution. This approach, how-
ever, has two obvious limitations. First, inference in
different categories may require different amounts of
time; if the goal is to minimize idle CPU cycles, then
we must more intelligently distribute the overall work-
load across different threads. Second, the number of
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parallel threads at our disposal may greatly exceed
the number of top-level categories. (For example, the
BlackHatWorld corpus has only three top-level cate-
gories.) In this case, the naive approach to paralleliza-
tion hardly makes the best use of available resources.
In the following, we describe a parallel implementation
of tiLDA that overcomes both these limitations.

Our parallel implementation is based on two key ideas.
The first is to partition the algorithm into three types
of tasks—START, DOCUMENT, and REPEAT—
which we explain below. The second is to maintain a
queue of these tasks and create multiple threads that
execute tasks from this queue.

A START task is associated with every internal node
in the corpus hierarchy. The task begins by initializ-
ing the node’s parameters αt and νt. After this ini-
tialization, the task then enqueues a new START task
for each subcategory of the node and a DOCUMENT
task for each document of the node. In Algorithm 1,
the START task corresponds to lines 5–10.

A DOCUMENT task is associated with each document
in the corpus. This task is responsible for optimizing
the variational parameters νd and ρdn for documents
given their observed words and (currently inferred) pa-
rameters of their parents. In Algorithm 1, the DOC-
UMENT task corresponds to the procedure called in
line 10.

A REPEAT task is issued at each internal node in
the corpus whenever all the tasks for the node’s chil-
dren complete. The REPEAT task is responsible for
maximizing the lower bound on the log-likelihood L ′

with respect to the node’s parameters. We mark the
node as complete if the lower bound does not improve
over its value from the previous REPEAT task at the
node. Otherwise, we enqueue START and DOCU-
MENT tasks again for the node’s children. The RE-
PEAT task corresponds to executing lines 11–13 and
then lines 6–10.

The overall algorithm begins with a START task at the
root node and ends in a REPEAT task at the root node
when the lower bound L ′ can no longer be improved.

S3. Background on Corpora

The Freelancer corpus collects seven years of job post-
ings from Freelancer.com, one of the largest crowd-
sourcing sites on the Internet. The postings can be
grouped by advertiser to form the three-level hierar-
chy shown in Fig. 1. In this hierarchy, tiLDA models
the advertisers as second-level interior nodes and the
job postings as third-level leaf nodes.

The BlackHatWorld corpus collects over two years of
postings from the “BlackHatWorld” Internet forum.
This data set was collected as part of a larger ef-
fort (Motoyama et al., 2011) to examine the social
networks that develop in underground forums among
distrustful parties. The BlackHatWorld forum evolved
to discuss abusive forms of Internet marketing, such as
bulk emailing (spam). The discussions are organized
into the multi-level hierarchy shown in Fig. 2. We treat
the threads in these subforums as documents for topic
modeling. (We do not consider individual posts within
threads as documents because they are quite short.)

We preprocessed these two corpora in the same way,
removing stopwords from a standard list (Lewis et al.,
2004), discarding infrequent words that appeared in
fewer than 6 documents, and stemming the words that
remain. In both data sets, we also pruned “barren”
branches of the hierarchy: specifically, in the Free-
lancer corpus, we pruned advertisers with fewer than
20 job postings, and in the BlackHatWorld corpus, we
pruned subforums with fewer than 60 threads.

S4. Additional Results

The multi-level tiLDA models can also be used to an-
alyze hierarchical corpora in ways that go beyond the
discovery of global topics. Recall that each tiLDA
model yields topic proportions θt and a concentration
parameter αt for each category of the corpus. We can
analyze these proportions and parameters for further
insights into hierarchical corpora. In general, they pro-
vide a wealth of information beyond what can be dis-
cerned from (say) ordinary LDA.

Consider for example the Freelancer corpus. In this
corpus, the categories of tiLDA represent advertisers,
and the topic proportions of these categories can be
used to profile the types of jobs that advertisers are
trying to crowdsource. Summing these topic propor-
tions over the corpus gives an estimate of the number
of advertisers for each job type. Table S1 shows the
results of this estimate: it appears that nearly one-
third of advertisers on Freelancer.com are commission-
ing abuse-related jobs, and of these jobs, the majority
appear to involve some form of SEO.

We gain further insights by analyzing the concentra-
tion parameters of individual advertisers. For exam-
ple, the advertiser with the maximum concentration
parameter (αt = 4065.00) on Freelancer.com commis-
sioned 34 projects, among which 32 have nearly the
exact same description. We also observe that adver-
tisers with lower concentration parameters tend to be
involved in a wider variety of projects.
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Table S1. Estimated ratio of number of buyers in job types
on the Freelancer data set.

Type Ratio Type Ratio
SEO 18.47% Affiliate Program 3.21%
Captcha Solving 2.68% Account Creation 1.42%
Bulk Emailing 1.85% OSN Linking 2.12%
Ad Posting 2.50% Benign Jobs 67.74%

On the BlackHatWorld corpus, the topic proportions
and concentration parameters of categories generally
reflect the titles of their associated subforums. For ex-
ample, the highest topic proportion (0.48) for “Email
Marketing” belongs to the subforum on ‘Email Mar-
keting and Opt-In Lists,’ and the highest topic pro-
portion (0.59) for “Blogging” belongs to the ‘Blog-
ging’ subforum. The highest concentration parameter
(29.62) belongs to the ‘Money, and Mo Money’ subfo-
rum. This is not surprising as this subforum itself has

only four subforums as children, all of which are nar-
rowly focused on specific revenue streams; see Fig. 2.
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