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Abstract

High-dimensional discriminant analysis is
of fundamental importance in multivariate
statistics. Existing theoretical results sharply
characterize different procedures, providing
sharp convergence results for the classifica-
tion risk, as well as the ℓ2 convergence results
to the discriminative rule. However, sharp
theoretical results for the problem of vari-
able selection have not been established, even
though model interpretation is of importance
in many scientific domains. In this paper, we
bridge this gap by providing sharp sufficient
conditions for consistent variable selection
using the ROAD estimator (Fan et al., 2010).
Our results provide novel theoretical insights
for the ROAD estimator. Sufficient condi-
tions are complemented by the necessary in-
formation theoretic limits on variable selec-
tion in high-dimensional discriminant analy-
sis. This complementary result also estab-
lishes optimality of the ROAD estimator for
a certain family of problems.

1. Introduction

High-dimensional discriminant analysis plays an im-
portant role in multivariate statistics and machine
learning. In a typical setting, a binary discriminant
analysis problem can be formulated as follows: we ob-
serve a set of training data {(xi, yi), i = 1, . . . , n} in-
dependently drawn from a joint distribution of (X, Y ),
where X ∈ R

p and Y ∈ {1, 2}. Discriminant analysis
aims at classifying the value of Y given a new data
point x. Let p1(x) and p2(x) be the density functions
of X |Y = 1 and X |Y = 2, and the prior probabilities

Proceedings of the 30 th International Conference on Ma-
chine Learning, Atlanta, Georgia, USA, 2013. JMLR:
W&CP volume 28. Copyright 2013 by the author(s).

π1 = P(Y = 1), π2 = P(Y = 2). It is well known
that the Bayes rule classifies a new data point x to the
second class if and only if

log p2(x)− log p1(x) + log(π2/π1) > 0. (1.1)

One of the most commonly used settings is the condi-
tional Gaussian model, where

X|Y = 1 ∼ N (µ1,Σ) and X|Y = 2 ∼ N (µ2,Σ).
(1.2)

Let µd = µ2−µ1 and µa = (µ1+µ2)/2. The optimal
classifier classifies a point to class 2 if and only if

(x− µa)
′
Σ

−1µd + log(π2/π1) > 0.

For the above Gaussian discriminant analysis,
Bickel & Levina (2004) show that the classical low di-
mensional normal-based linear discriminant analysis
(LDA) is asymptotically equivalent to random guess-
ing when the dimension p increases at a rate compa-
rable to the sample size n. To handle this problem,
we generally assume the discriminant direction β =
Σ

−1µd is sparse. In particular, it is assumed that β =
(β′

T ,0
′)′ for some set1 T ⊆ [p]. A number of papers as-

sume Σ = I, including the nearest shrunken centroids
(Tibshirani et al., 2002; Wang & Zhu, 2007) and fea-
ture annealed independence rules (Fan & Fan, 2008).
More recently, numerous alternative approaches have
been proposed by taking more complex covariance
matrix structures into consideration (Fan et al., 2010;
Shao et al., 2011; Cai & Liu, 2011; Mai et al., 2012).

One particularly interesting proposal is the ROAD
estimator (Regularized Optimal Affine Discriminant)
due to Fan et al. (2010). Let S and µ̂d be empirical
estimators of Σ and µd. The ROAD estimator is ob-
tained by minimizing v

′
Sv with v

′µ̂d restricted to be
a constant value, i.e.

min
v

1

2
v
′
Sv + λ||v||1 subject to v

′µ̂d = 1. (1.3)

1We use [p] to denote the set {1, . . . , p}.
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Here λ is a regularization parameter, when λ = 0, the
ROAD estimator reduces to be the classical Fisher’s
discriminant rule. Later, Cai & Liu (2011) proposed
a different version of the sparse LDA, which tries to
make v close to the Bayes rule’s linear term Σ

−1µd in
the ℓ∞ norm, i.e.,

min
v

{ ||v||1, subject to ||Sv − µ̂d||∞ ≤ λ}. (1.4)

Equation (1.4) turns out to be a linear program-
ming rule highly related to the Dantzig selector
(Candes & Tao, 2007; Yuan, 2010; Cai et al., 2011).
More recently, Mai et al. (2012) proposed a version of
the sparse LDA based on an ℓ1-norm penalized least
square formulation.

To avoid the curse of dimensionality, an ℓ1 penalty
is added in all three methods to encourage a sparsity
pattern of v, and hence nice theoretical properties can
be obtained under certain regularity conditions. How-
ever, unlike the high dimensional regression settings
where sharp theoretical results exist for prediction, es-
timation, and variable selection consistency, all exist-
ing theories for high discriminant analysis are either on
estimation consistency or risk consistency, but not on
variable selection consistency. The main reason is that
analyzing the variable selection consistency of a high
dimensional Gaussian discriminant analysis procedure
requires us to sharply characterize the sampling dis-
tribution and tail behavior of the scaled discriminant

direction
S

−1

TT
µ̂d,T

µ̂′

d,T
S

−1

TT
µ̂d,T

, which requires more careful the-

oretical analysis and new proof technique. Mai et al.
(2012) provide a variable selection consistency result
for their procedure, however, as we will show later, the
scaling they obtained is not optimal.

In the current paper, we bridge the theoretical
gap in understanding of variable selection in high-
dimensional discriminant analysis. We provide a sharp
analysis of the variable selection performance of the
ROAD estimator. The proof technique is based on the
characterization of the Karush-Kuhn-Tucker (KKT)
conditions for the constrained optimization problem.
Unlike the ℓ1-norm penalized least squares regression,
which directly estimates the regression coefficients,
the ROAD estimator is related to the scaled quan-

tity
Σ

−1

TT
µd,T

µ′

d,T
Σ

−1

TT
µd,T

, rather than the Bayes rule’s direc-

tionΣ
−1
TTµd,T , due to the equality constraint in the op-

timization problem. To sharply characterize the vari-
able selection consistency, we carefully analyze the tail
behavior of this scaled quantity by exploiting sophis-
ticated multivariate analysis results. Sufficient con-
ditions for the variable selection consistency of the
ROAD estimator are complemented with information

theoretic limitations on recovery of the feature set T .
In particular, we provide lower bounds on the sample
size and the signal level needed to recover the set of
relevant variables T by any procedure. Some of the
main results of this paper are summarized below.

Let T = {j : βj 6= 0} and N = [p]\T . Denote s = |T |.
We show that if the sample size

n > C ·

(
max
a∈N

Σa|T

)
Λ−1
min(ΣTT )s log(p− s), (1.5)

where C is a universal constant, Σa|T = Σaa −

ΣaTΣ
−1
TTΣTa, and Λmin(Σ) denotes the minimum

eigvenvalue of Σ, then the estimated vector β̂ has
the same sparsity pattern as the true β, thus the
ROAD is variable selection consistent (or sparsis-
tent). This result suggests that the discriminant
analysis has a similar theoretical scaling as the re-
gression setting. To show Eq. (1.5), we need the
assumptions that minj∈T |βj | is not too small and
||ΣNTΣ

−1
TT sign(βT )||∞ ≤ 1 − α with α ∈ (0, 1).

The latter assumption is the irrepresentable condi-
tion, which takes a similar form as for the ℓ1-norm
penalized least squares problem. Our analysis of in-
formation theoretic limitations reveals that if n <
C1β

−2
min log(p− s), where βmin is the magnitude of the

smallest non-zero component of β, then no proce-
dure can reliably recover the set T . In particular,
for the case where Σ

−1µd has bounded ℓ2 norm and
βmin ≍ s−1/2, we establish that the ROAD estimator
is optimal for the purpose of variable selection. An
illustrative simulation demonstrates sharpness of our
results.

The rest of this paper is organized as follows. In the
next section, we introduce the notation. In Section 3,
we characterize the solution to the population version
of the ROAD estimator and outline the proof tech-
nique to be used to characterize the solution to the
problem in Eq. (1.3). In Section 4, we derive sufficient
conditions for the ROAD estimator to be sparsistent.
An information theoretic lower bound is given in Sec-
tion 5. Numerical simulations are provided in Sec-
tion 6. We conclude the paper with some discussions
in Section 7.

2. Notation

In this paper we denote [n] to be the set {1, . . . , n}. For
any index set T ⊆ [p], we denote βT to be the subvec-
tor containing the components of the vector β indexed
by the set T , and XT denotes the submatrix contain-
ing the columns of X indexed by T . Similarly ATT de-
notes a submatrix ofA with rows and columns indexed
by T . For a vector a ∈ R

n, we denote supp(a) = {j :
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aj 6= 0} the support set, ||a||q, q ∈ [1,∞), the ℓq-norm
defined as ||a||q = (

∑
i∈[n] |ai|

q)1/q with the usual ex-

tensions for q ∈ {0,∞}, that is, ||a||0 = |supp(a)|
and ||a||∞ = maxi∈[n] |ai|. For a symmetric matrix
A ∈ R

p×p we denote Λmin(A) and Λmax(A) the small-
est and largest eigenvalues, respectively. We also use
the weighted norm ||a||2

A
= a

′
Aa for a symmetric ma-

trix A. For two sequences {an} and {bn}, we use
an = O(bn) to denote that an < Cbn for some finite
positive constant C. We also denote an = O(bn) to be
bn & an. If an = O(bn) and bn = O(an), we denote
it to be an ≍ bn. The notation an = o(bn) is used to
denote that anb

−1
n → 0.

3. ROAD: Population Version

In this section, we characterize the solution to the
population version of the optimization problem in
Eq. (1.3). That is, we characterize the solution ŵ to
the optimization problem

min
w

1

2
w

′
Σw + λ||w||1 subject to w

′µd = 1.

(3.1)
In particular, we derive conditions under which the
vector ŵ recovers the sparsity pattern of β. Recall
that T = supp(β) and N = [p]\T . We have the fol-
lowing result. We have the following result.

Theorem 1. Under the assumption that

1 + λ||βT ||1
||βT ||2ΣTT

min
a∈T

|βa| > λ||Σ−1
TT sign(βT )||∞ (3.2)

and that there exists a constant α ∈ (0, 1] such that

||ΣNTΣ
−1
TT sign(βT )||∞ ≤ 1− α, (3.3)

we have ŵ = (ŵ′
T ,0

′) is the solution to the problem in

Eq. (3.1), where

ŵT =
1 + λ||βT ||1
||βT ||2ΣTT

βT − λΣ−1
TT sign(βT ). (3.4)

Furthermore, we have sign(ŵT ) = sign(βT ).

Theorem 1 provides two conditions under which the so-
lution to Eq. (3.1) recovers the support of β. Eq. (3.2)
is a condition on the smallest component of βT , as well
as a condition on the tuning parameter λ. Define βmin

as
βmin = min

a∈T
|βa|. (3.5)

Let λ = λ0||βT ||
−2
ΣTT

for some λ0. Then from Eq. (3.2)
we observe that ŵT recovers the support as long
as βmin ≥ λ0||Σ

−1
TT sign(βT )||∞. The second con-

dition, given in Eq. (3.3), is related to the irrep-
resentable condition commonly used in the analysis

of Lasso (Zou, 2006; Meinshausen & Bühlmann, 2006;
Zhao & Yu, 2007; Wainwright, 2009). Theorem 1 pro-
vides an explicit form for the solution ŵ. It is clear
that the ROAD optimization procedure estimates the
scaled discriminant direction ||βT ||

−2
ΣTT

β. The estima-
tor ŵ is biased when λ 6= 0, but nevertheless it can
recover the set T of non-zero components of β.

Theorem 1 is proven by analyzing the Karush-Kuhn-
Tucker (KKT) conditions for the optimization problem
in Eq. (3.1). The KKT conditions are given as

Σŵ + λẑ+ γ̂µd = 0 (3.6)

ŵ
′µd = 1, (3.7)

where γ̂ is the Lagrange multiplier for the constraint
and ẑ ∈ ∂||ŵ||1 is an element of the subdifferen-
tial. In what follows, we will construct a vector
ŵ = (ŵ′

T ,0
′)′ that satisfies the KKT conditions and

sign(ŵT ) = sign(βT ).

The following lemma characterizes the vector β and
will be useful in analysis that follows.

Lemma 2. Under the model in Eq. (1.2) with β =
Σ

−1µd = (β′
T ,0

′)′, we have that

µd,N = ΣNTΣ
−1
TTµd,T (3.8)

and

βT = Σ
−1
TTµd,T . (3.9)

The solution ŵ to Eq. (3.1) is constructed by consider-
ing an oracle optimization problem, where the solution
is forced to be non-zero only on the set T , and then
showing that it also satisfies the KKT conditions for
the full problem. The following lemma characterizes
the solution to the oracle optimization problem.

Lemma 3. Let

w̃T = argmin
wT : w′

T
µd,T=1

{
1

2
w

′
TΣTTwT + λwT sign(βT )

}

(3.10)
be the oracle optimization problem. Then

w̃T =
1 + λ||βT ||1
||βT ||2ΣTT

βT − λΣ−1
TT sign(βT ). (3.11)

The next lemma shows that the vector (w̃′
T ,0

′)′ is the
solution to the unconstrained optimization problem
under the assumptions of Theorem 1.

Lemma 4. Assume that conditions of Theorem 1 are

satisfied. Then ŵ = (w̃′
T ,0

′) is the solution to the

problem in Eq. (3.1), where w̃T is defined in Eq. (3.10).
Furthermore, we have sign(ŵ) = sign(β).
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Theorem 1 follows directly from Lemma 3 and
Lemma 4. In the next section, we will establish suf-
ficient conditions for the ROAD procedure to recover
the non-zero components of β when the population
quantities in Eq. (3.1) are replaced by their empirical
estimates. The proof construction is going to follow
the same line of reasoning, however, proving analo-
gous results to Lemma 3 and Lemma 4 in the sample
version of the problem is much more challenging.

4. Sparsistency Analysis of ROAD

In this section, we characterize the solution v̂ to the
optimization problem given in Eq. (1.3), which is a
sample version of the optimization problem given in
Eq. (3.1). We will derive conditions under which v̂ =
(v̂′

T ,0
′)′ and sign(v̂T ) = sign(βT ).

We observe n independent and identically distributed
(iid) data points {xi, yi} from the model in Eq. (1.2)
with equal class probabilities, that is, with out loss of
generality π1 = π2 = 1

2 . Denote n1 = |{i : yi = 1}|
and n2 = n− n1. Let X1 ∈ R

n1×p be the matrix with
rows containing data points for which the label is one
and similarly define X2 ∈ R

n2×p. Let

H1 = In1
−n−1

1 1n1
1
′
n1

and H2 = In2
−n−1

2 1n2
1
′
n2

be the centering matrices, where In is the n×n identity
matrix and 1n is the n× 1 vector with all components
equal to 1. We define the following quantities

µ̂1 = n−1
1

∑

i:yi=1

xi = n−1
1 X

′
11n1

,

µ̂2 = n−1
2

∑

i:yi=2

xi = n−1
2 X

′
21n2

,

µ̂d = µ̂2 − µ̂1, µ̂a = (µ̂1 + µ̂2)/2,

S1 = (n1 − 1)−1
X

′
1H1X1, S2 = (n2 − 1)−1

X
′
2H2X2,

S = (n− 2)−1((n1 − 1)S1 + (n2 − 1)S2).

The matrix S ∼ Wp

(
(n− 2)−1

Σ, n− 2
)

is
the pooled sample covariance matrix, where
Wp

(
(n− 2)−1

Σ, n− 2
)

denotes the Wishart dis-
tribution with n − 2 degrees of freedom and the
scaling matrix (n − 2)−1

Σ (see Theorem 3.4.2 in
Mardia et al., 1980). It is a standard result (see The-
orem 3.1.2 in Muirhead, 1982) that S is independent
of µ̂i ∼ N (µi, n

−1
i Σ), (i = 1, 2).

The following theorem is the main result that charac-
terizes the variable selection consistency of the ROAD
estimator.

Theorem 5. We assume that condition in Eq. (3.3)
holds. Let the penalty parameter be λ = λ0||βT ||

−2
ΣTT

,

with

λ0 = C0

√(
max
a∈N

Σa|T

)(
1 ∨ ||βT ||2ΣTT

) log(p− s)

n

(4.1)
where C0 is a sufficiently large constant indepen-

dent of the problem parameters and Σa|T = Σaa −

ΣaTΣ
−1
TTΣTa. Moreover, we assume that

βmin ≥ Kλ0

(
Λ−1
min(ΣTT ) + ||Σ−1

TT sign(βT )||∞
)
(4.2)

for some sufficiently large constant K independent of

the problem parameters. If the sample size

n > C1

(
max
a∈N

Σa|T

)
Λ−1
min(ΣTT )s log(p− s), (4.3)

where C1 is a constant independent of the problem pa-

rameters, then v̂ = (v̂′
T ,0

′), with

v̂T =
1 + λµ̂′

d,TS
−1
TT sign(βT )

µ̂′
d,TS

−1
TT µ̂d,T

S
−1
TT µ̂d,T−λS−1

TT sign(βT ).

is the unique solution to the optimization problem in

Eq. (1.3) with probability at least 1−O(log−1(n)).

Theorem 5 characterizes the solution v̂ obtained by
solving the ROAD optimization problem in Eq. (1.3).
It is a sample version of Theorem 1 given in the pre-
vious section. Again, we require a lower bound on
βmin in order to distinguish relevant components from
the irrelevant ones and an irrepresentable condition to
hold. Theorem 5 provides a lower bound on the sam-
ple size n that is sufficient for the ROAD procedure to
identify the set T with high probability. The sample
size scales as n ≍ s log(p− s) assuming that there ex-
ists a constant c such that 0 < c ≤ Λmin(ΣTT ). This
scaling is of the same order as for the Lasso procedure,
where n > 2s log(p − s) is needed for recovery of the
relevant variables when Σ = I.

Mai et al. (2012) analyze an ℓ1-norm penalized least
squares approach for solving the discriminant analysis
problem. They require the sample size n to satisfy

lim
n→∞

s2 log p

n
= 0,

which is suboptimal compared to our results. At this
point, it is not clear how their analysis can be im-
proved, but we conjecture some results developed in
our current paper could be useful.

The proof of Theorem 5 is outlined in the next section.

4.1. Proof of Theorem 5

The proof of Theorem 5 parallels the proof of Theo-
rem 1. We construct the solution v̂ to the optimiza-
tion problem in Eq. (1.3) that recovers the sparsity
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pattern of the vector βT . To achieve that, we proceed
in two steps. In the first step, we consider an oracle
optimization problem (defined in Lemma 6), which is
minimized at ṽT . In the second step, we show that the
vector (ṽ′

T ,0
′)′ satisfies the KKT conditions for the

original optimization problem given in Eq. (1.3), thus
showing that v̂ = (ṽ′

T ,0
′)′ is the global minimizer.

The following lemma characterizes the solution to the
constrained optimization problem, which is analogous
to the population version of the constrained optimiza-
tion problem given in Eq. (3.10).

Lemma 6. Let

ṽT = argmin
vT : v′

T
µ̂d,T=1

{
1

2
v
′
TSTTvT + λvT sign(βT )

}

(4.4)
be the oracle optimization problem. Then

ṽT =
1 + λµ̂′

d,TS
−1
TT sign(βT )

µ̂′
d,TS

−1
TT µ̂d,T

S
−1
TT µ̂d,T−λS−1

TT sign(βT ).

(4.5)

Lemma 6 provides an explicit form for the solution of
the oracle optimization problem. Note that the solu-
tion is unique, since the objective is strongly convex
due to the quadratic term as STT is positive definite
with probability 1. The next result shows that, un-
der the conditions of Theorem 5, the vector (ṽ′

T ,0
′)′

is the solution to the ROAD optimization problem in
Eq. (1.3).

Lemma 7. Let the penalty parameter be λ =
λ0||βT ||

−2
ΣTT

, with

λ0 = C0

√(
max
a∈N

Σa|T

)(
1 ∨ ||βT ||2ΣTT

) log(p− s)

n

(4.6)
where C0 is a sufficiently large constant indepen-

dent of the problem parameters and Σa|T = Σaa −

ΣaTΣ
−1
TTΣTa. Assume that sign(ṽT ) = sign(βT ) and

λ||βT ||1 < C1, for some constant C1. If the sample

size

n > C2

(
max
a∈N

Σa|T

)
Λ−1
min(ΣTT )s log(p− s), (4.7)

where C2 is a constant independent of the problem pa-

rameters, then v̂ = (ṽ′
T ,0

′) is the solution to the opti-

mization problem in Eq. (1.3) with probability at least

1−O(log−1(n)).

Finally, we need to show that sign(ṽT ) = sign(βT ).

Lemma 8. Under the assumptions of Theorem 5, ṽT

defined in Eq. (4.5) recovers the sign pattern of the

vector βT with probability at least 1−O(log−1(n)).

Under the assumption on βmin in Eq. (4.2), conditions
of Lemma 7 are satisfied and sign(ṽT ) = sign(βT ).
This completes the proof of Theorem 5.

5. Lower bound

In this section, we are interested in results of comple-
mentary nature to those derived in Theorem 5. The-
orem 5 provides sufficient conditions for a particular
procedure to recover the support set T of non-zero ele-
ments of β. Here we discuss necessary conditions that
must be satisfied for any method to succeed in reliable
estimation of the support set.

Let Ψ be an estimator of T . We consider the maximum
risk, corresponding to 0/1 loss, given as

R(Ψ,Θ) = sup
θ∈Θ

Pθ[Ψ({xi, yi}i∈[n]) 6= T (θ)]

where θ = (µ1,µ2,Σ) denotes the problem parame-
ters, Pθ denotes the joint law of {xi, yi}i∈[n] assum-

ing π1 = π2 = 1
2 , T (θ) = supp(β) (recall that

β = Σ
−1(µ2 − µ1)), and Θ is a family of parame-

ters. Let M(s,Z) be the class of all subsets of the set
Z of cardinality s. We consider

Θ = Θ(Σ, τ, s)

=
⋃

ω∈M(s,[p])



θ = (µ1,µ2,Σ) :

β = Σ
−1(µ2 − µ1),

|βa| ≥ τ if a ∈ ω,
βa = 0 if a 6∈ ω



 .

(5.1)
The minimax risk is defined as the smallest risk over
all possible estimators. The main result of this section
provides a lower bound on the minimax risk

inf
Ψ

R(Ψ,Θ(Σ, τmin, s)),

where τmin > 0 determines the signal strength. Before
stating the result, we introduce two quantities that will
be used to state Theorem 9. We define

ϕclose(Σ)

= min
T∈M(s,[p])

min
u∈T

1

p− s

∑

v∈[p]\T

(Σuu +Σvv − 2Σuv)

(5.2)
and

ϕfar(Σ)

= min
T∈M(s,[p])

1(
p−s
s

)
∑

T ′∈M(s,[p]\T )

1
′
ΣT∪T ′,T∪T ′1.

(5.3)
The first quantity will be used to measure the difficulty
of distinguishing two close support sets T1 and T2 that
differ in only one position, while the second quantity
measures the effect of a huge number of support sets
that are far from the support set T .
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Theorem 9. Let

τmin = 2max



√

log
(
p−s
s

)

nϕfar(Σ)
,

√
log(p− s+ 1)

nϕclose(Σ)


 .

(5.4)
If τ < τmin, there exists some constant C > 0, such

that

inf
Ψ

sup
θ∈Θ(Σ,τ,s)

Pθ[Ψ({xi, yi}i∈[n]) 6= T (θ)] ≥ C > 0.

The result can be interpreted in words in the follow-
ing way: whatever the estimation procedure, when
τ < τmin there exists some distribution indexed by
θ ∈ Θ(Σ, τ, s) such that the probability of incorrectly
identifying the set T (θ) is bounded away from zero.

Remarks:

1. Expressions ϕclose(Σ) and ϕfar(Σ) simplify
greatly for the case when Σ = I. In particular,
we have ϕclose(I) = 2 and ϕfar(I) = 2s.

2. As a consequence of Theorem 9 and Theorem 5,
we observe that the ROAD estimator is able to re-
cover the set T using the optimal number of sam-
ples (up to an absolute constant) over the class of
problems

Θ(Σ, τmin, s) ∩ {θ : ||βT ||
2
ΣTT

≤ M}

where M is a fixed constant and Λ−1
min(ΣTT ) is

bounded.

6. Simulation Results

In this section, we conduct a few illustrative simula-
tions that show finite sample performance of our re-
sults. Theorem 5 describes the sample size needed to
recover the set of relevant variables. We consider the
following three scalings for the size of the set T :

1. fractional power sparsity, where s(p) = ⌈2p0.45⌉

2. sublinear sparsity, where s(p) = ⌈0.4p/ log(0.4p)⌉,
and

3. linear sparsity, where s(p) = ⌈0.4p⌉.

For all three scaling regimes, we set the sample size as

n = θs log(p)

where θ is the control parameter varied in the inter-
val [0.1, 4.5] and investigate how well can the ROAD
procedure recover the support set T . We set P[Y =

1] = P[Y = 2] = 1
2 , X|Y = 1 ∼ N (µ,Σ) and without

loss of generality X|Y = 2 ∼ N (0,Σ). We specify
the vector µ by choosing the set T of size |T | = s(p)
randomly, and for each a ∈ T setting µa equal to +1
or −1 with equal probability, and µa = 0 for all com-
ponents a 6∈ T . We specify the covariance matrix Σ

as

Σ =

(
ΣTT 0

0 Ip−s

)

so that β = Σ
−1µ = (β′

T ,0
′)′. We consider three

cases for the block component ΣTT :

1. identity matrix, where ΣTT = Is,

2. Toeplitz matrix, where ΣTT = [Σab]a,b∈T and
Σab = ρ|a−b| with ρ = 0.1, and

3. equal correlation matrix, where Σab = ρ when
a 6= b and Σaa = 1.

Finally, we set the penalty parameter λ as

λ = 5||βT ||
−2
ΣTT

√
(
1 ∨ ||βT ||2ΣTT

) log(p− s)

n

for all cases. For this choice of λ, Theorem 5 predicts
that the set T will be recovered correctly. For each
setting, we report the Hamming distance between the
estimated set T̂ and the true set T ,

h(T̂ , T ) = |(T̂\T ) ∪ (T\T̂ )|,

averaged over 200 independent simulation runs.

Figure 1 plots the Hamming distance against the con-
trol parameter θ, or the rescaled number of samples.
Here the Hamming distance between T̂ and T is cal-
culated by averaging 200 independent simulation runs.
There are three subplots corresponding to different
sparsity regimes (fractional power, sublinear and lin-
ear sparsity), each of them containing three curves for
different problem sizes p ∈ {100, 200, 300}. Note that
when the control parameter reaches θ = 3 almost all
the elements of the set T are recovered, without false
positives, while when θ < 3 the recovery is very poor.
Figure 2 and Figure 3 show similar behavior for two
other cases, with ΣTT being a Toeplitz matrix with
parameter ρ = 0.1 and the equal correlation matrix
with ρ = 0.1.

7. Discussion

In this paper, we address the problem of variable se-
lection in high-dimensional discriminant analysis prob-
lem. The problem of reliable variable selection is im-
portant in many scientific areas where simple models
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Figure 1. Plots of rescaled sample size n/(s log(p)) versus the Hamming distance between T̂ and T for identity covariance
matrix Σ = Ip (averaged over 200 simulation runs). Each subfigure shows three curves, corresponding to the problem sizes
p ∈ {100, 200, 300}. The first subplot corresponds to the fractional power sparsity regime, s = 2p0.45, the second subplot
corresponds to the sublinear sparsity regime s = 0.4p/ log(0.4p), and the third subplot corresponds to the linear sparsity
regime s = 0.4p. For each scaling regime and problem size, we observe an empirical threshold behavior at n = 3s log(p)
(vertical line), showing that the result of Theorem 5 is sharp even in the finite sample studies and predicts the correct
scaling for the sample size required to recover the set T .
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Figure 2. Plots of rescaled sample size n/(s log(p)) versus the Hamming distance between T̂ and T for Toeplitz covariance
matrix ΣTT with ρ = 0.1 (averaged over 200 simulation runs). Each subfigure shows three curves, corresponding to the
problem sizes p ∈ {100, 200, 300}. The first subplot corresponds to the fractional power sparsity regime, s = 2p0.45, the
second subplot corresponds to the sublinear sparsity regime s = 0.4p/ log(0.4p), and the third subplot corresponds to the
linear sparsity regime s = 0.4p. For each scaling regime and problem size, we observe an empirical threshold behavior at
n = 3s log(p) (vertical line), showing that the result of Theorem 5 is sharp even in the finite sample studies and predicts
the correct scaling for the sample size required to recover the set T .
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Figure 3. Plots of rescaled sample size n/(s log(p)) versus the Hamming distance between T̂ and T for equal correlation
matrix ΣTT with ρ = 0.1 (averaged over 200 simulation runs). Each subfigure shows three curves, corresponding to the
problem sizes p ∈ {100, 200, 300}. The first subplot corresponds to the fractional power sparsity regime, s = 2p0.45, the
second subplot corresponds to the sublinear sparsity regime s = 0.4p/ log(0.4p), and the third subplot corresponds to the
linear sparsity regime s = 0.4p. For each scaling regime and problem size, we observe an empirical threshold behavior at
n = 3s log(p) (vertical line), showing that the result of Theorem 5 is sharp even in the finite sample studies and predicts
the correct scaling for the sample size required to recover the set T .

are needed to provide insights into complex systems.
Existing research has focused primarily on establish-
ing results for prediction consistency, ignoring feature
selection. We bridge this gap, by analyzing variable
selection properties of the ROAD procedure and es-
tablishing sufficient conditions required for successful
recovery of the set of relevant variables. This analy-
sis is complemented by analyzing the information the-
oretic limits, which provide necessary conditions for
variable selection in discriminant analysis. From these
results, we are able to identify the class of problems for
which the computationally tractable procedure ROAD
is optimal.
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