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6. Supplementary Material

We now give a detailed account for the theorems stated
in section 4.

6.1. Preliminaries I

In what follows we use the following notation: For an
n× n matrix A, vec(A) ∈ Rn2

is the result of stacking
its columns vertically into a single long vector. Thus,
its Frobenius matrix norm is ‖A‖F = ‖vec(A)‖2.

Recall the definition of gψ:

gψ ≡
2G

1− ψ .

One can easily verify that for 2G ≥ 1, we have 1 +
ψgψ ≤ g2ψ. Also recall that assumption (2b) states

that the distributions in Fθn are bounded by L, which
is defined by:

max
i∈[n]

sup
y∈R

fθi(y) ≤ L <∞.

The following concentration result from Kontorovich &
Weiss (2012, Theorem 1) is our main tool in proving
the error bounds given here.

Lemma 1. Let Y = Y0, . . . , YT−1 ∈ YT be the out-
put of a Hidden Markov chain with transition matrix
A and output distributions Fθn. Assume that A is ge-
ometrically ergodic with constants G,ψ as in (1). Let
F : (Y0, . . . , YT−1) 7→ R be any function that is l-
Lipschitz with respect to the Hamming metric on YT .
Then, for all ε > 0,

P (|F (Y )−EF | > εT ) ≤ 2 exp

(
−T (1− ψ)2ε2

2l2G2

)
. (31)

We will also need the following Lemma (proved in
(Kontorovich & Weiss, 2012) for the discrete output
case but easily generalize to continuous outputs) for
bounding the variance of our estimators.

Lemma 2. Let f(y) : R→ R+ be a function of the
observables of an n states geometrically ergodic HMM
with constants (G,ψ) and∫

Y
f(y)dy ≤ 1.

Assume the HMM is started with the stationary distri-
bution π. Then

Var

[
1

T

T−1∑
t=0

f(Yt)

]
≤ Var[f(Y )]

T
+
ψgψE[f(Y )]

T
.

Similarly, let g(y, y′) : R × R → R+ be a function of
consecutive observations (y, y′) such that∫∫

Y
g(y, y′)dydy′ ≤ 1.

Then

Var

[
1

T

T−1∑
t=1

g(Yt, Yt+1)

]
≤ Var[g(Y, Y ′)]

T − 1
+

(1 + ψgψ)E[g(Y, Y ′)]

T − 1
.

6.2. Accuracy of ρ̂, σ̂, ξ̂ and η̂

Since our estimators π̂ and Â are constructed in terms
of ρ̂ and σ̂ in the discrete case, and ξ̂ and η̂ in the con-
tinuous case, let us first examine the accuracy of the
later. The following results shows that geometric er-
godicity is sufficient to ensure their rapid convergence
to the true values.

Lemma 3. Discrete case. Let (yt)
T
t=1 be an observed

sequence from a discrete output HMM whose initial
state X0 follows the stationary distribution π. Let ρ
be given by (3) and σ by (4) with their empirical esti-
mates given in (5). Then

E[‖ρ̂− ρ‖2] ≤
√

1 + ψgψ
T

(32)

E[‖σ̂ − σ‖2] ≤
√

2 + ψgψ
T − 1

(33)

Furthermore, for any ε > 0 ,

P (‖ρ̂− ρ‖2 >
√

1+ψgψ
T + ε) ≤ 2 exp

(
− 2Tε2

g2ψ

)
(34)

and

P

(
‖σ̂ − σ‖2 >

√
2 + ψgψ
T − 1

+ ε

)
≤ (35)

2 exp

(
−2(T − 1)ε2

g2ψ

)
.

Finally, we have for any fixed v ∈ Rm with ‖v‖2 = 1,

P (|〈ρ̂,v〉 − 〈ρ,v〉| > ε) ≤ 2 exp

(
−2Tε2

g2ψ

)
. (36)

Proof. First note that w.r.t the Hamming metric,
T ||ρ̂ − ρ||2 and |〈ρ̂,v〉 − 〈ρ,v〉| are 1-Lipschitz and
T ||σ̂ − σ||2 is 2-Lipschitz. Thus the claims in (34,
35, 36) all follows directly from Lemma 1 where for
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(34, 35) we also take into account (32) and (33) re-
spectively. In order to prove (32) note that

E[‖ρ̂− ρ‖22] =
∑
k∈[n]

E(ρ̂k − ρk)2 =
∑
k∈[n]

V ar(ρ̂k).

So by taking in Lemma 2, f(y) = 1y=k, we have
E[1y=k] = ρk and V ar(1y=k) = ρk(1− ρk) ≤ ρk.
Since

∑m
k=1 ρk = 1 we get the desired bound.

The bound in (33) is obtained similarly by taking
g(y, y′) = 1y=k1y′=k′ in Lemma 2 with the fact that∑
kk′ σkk′ = 1.

Lemma 4. Continuous case. Let (Yt)
T
t=1 be an ob-

served sequence from a continuous observations HMM
whose initial state X0 follows the stationary distribu-
tion π. Let ξ be given by (13) , η by (18) and ξ̂ and
η̂ be their empirical estimates, given by (14) and (19)
respectively. Then for any ε > 0 ,

P
(∥∥∥ξ̂ − ξ

∥∥∥
2
> ε
)
≤ 2n exp

(
− 2Tε2

g2ψnL
2

)
, (37)

and

P (‖η̂ − η‖2 > ε) ≤ (38)

2n2 exp

(
−2(T − 1)ε2

g2ψn
2

)
.

Proof. Note that Eξ̂k = ξk and T ξ̂k is L-Lipschitz for
all k ∈ [n]. Thus by Lemma 1 and the union bound
we have

P
(∥∥∥ξ̂ − ξ

∥∥∥
∞
> ε′

)
≤ 2n exp

(
−2Tε′2

g2ψL
2

)
. (39)

Since∥∥∥ξ̂ − ξ
∥∥∥2
2

=
∑
k∈[n]

(ξ̂k − ξk)2 ≤ n
∥∥∥ξ̂ − ξ

∥∥∥2
∞
,

we have

P
(∥∥∥ξ̂ − ξ

∥∥∥
2
> ε
)
≤ P

(√
n
∥∥∥ξ̂ − ξ

∥∥∥
∞
> ε
)
.

putting ε′ = ε/
√
n in (39), the claim in (37) follows.

The proof of (38) follows the same paradigm as the
proof for (39). Indeed E[η̂kk′ ] = ηkk′ and T ˆηkk′ is
1-Lipschitz so by Lemma 1 and the union bound we
have

P (‖η̂ − η‖∞ > ε′) ≤ 2n2 exp

(
−2Tε′2

g2ψL
2

)
. (40)

Since

‖η̂ − η‖22 =
∑

k,k′∈[n]×[n]

(η̂kk′ − ηkk′)2 ≤ n2 ‖η̂ − η‖2∞ ,

we have

P (‖η̂ − η‖2 > ε) ≤ P (n ‖η̂ − η‖∞ > ε) .

putting ε′ = ε/n in (40), the claim in (38) follows.

6.3. Proof of theorem 1 - Strong consistency

We now prove the strong consistency of our estimators
stated in Theorem 1.

Proof. For the discrete case, by Lemma 3, the expecta-
tion E[‖ρ̂− ρ‖2] goes to zero as T →∞. Furthermore,
using the Borel-Cantelli lemma, ‖ρ̂− ρ‖2 converge to
its expectation a.s. concluding that ρ̂ converges a.s.
to ρ. The same argument goes for σ̂, ξ̂, η̂ and σ, ξ, η
respectively.

Now, the function f : Rm → Rn given by f(x) =
(Bᵀ diag(1/x)B)−11 is continuous on Rm+ . Moreover,
f(ρ) = π since the optimization problem (7) has a
unique minimizer x∗ for all ρ̂, which in particular is
given by x∗ = π when ρ̂ = ρ. Since ρ ∈ Rm+ by
assumption, the argument above shows that almost
surely, ρ̂ ∈ Rm+ for all sufficiently large T . There-
fore, limT→∞ f(ρ̂) = f(ρ) = π almost surely, and the
asymptotic strong consistency of π̂ is established.

To prove the asymptotic strong consistency of Â in the
discrete case, recall that the minimizer of the quadratic
program xᵀKx − hᵀx subject to Gx ≤ g, Dx = d, is
continuous under small perturbations of K,h,G,D, d
(Dantzig et al., 1967). In particular, if π̂ is sufficiently
close to π then Â is close to A. Since π̂ → π and
σ̂ → σ almost surely, we also have Â

a.s.−→A.

For the continuous observations case, note that π̂ and
Â are also solutions of quadratic programs. Also note
that ξ̂ → ξ and η̂ → η almost surely. Thus we have
that Â

a.s.−→A and π̂
a.s.−→π as above.

6.4. Proof of Theorem 2: Bounding the error
for π̂ in the discrete observations case

Proof. Lemma 3 and the fact that ‖ρ̂−ρ‖∞ ≤ ‖ρ̂−ρ‖2
implies that ‖ρ̂ − ρ‖∞ = OP (1/

√
T ). Hence we make

a change of variables,

ρ̂ = ρ +
1√
T
ζ. (41)

To establish the (eventual) positivity of the entries of
π̂, we consider the solution x∗ of (8) with λ = 0, e.g.
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without the normalization
∑
xi = 1, and write it as

x∗ = π + δ. Our goal is to understand the relation
between δ and ζ.

Observe that δ satisfies the system of linear equations∑
j

(∑
k

BkjBki

ρk

(
1 + 1√

T

ζk
ρk

))(πj + δj) = 1.

We need T sufficiently large so that, with high prob-
ability, maxk

1√
T

ζk
ρk
� 1, or equivalently, |ρ̂k − ρk| �

ρk.

By taking T & 4gψ/a
2
1 we have

E[‖ρ̂− ρ‖∞] ≤ a1/2.

So choosing ε = min ρk/2 ≥ a1/2 in (34), this condi-
tion is satisfied for T & g2ψ/a

2
1. Then, approximating

1/(1 + ε) = 1− ε+O(ε2) gives

∑
j

[∑
k

BkjBki
ρk

(
1− 1√

T

ζk
ρk

)]
(πj + δj)

= 1 +OP

(
1

T

)
.

Note that since Bπ = ρ, the leading order correction
for δ is simply

δ =
1√
T

(B̃ᵀB̃)−1B̃ᵀ

(
ζ

ρ

)
+OP

(
1

T

)
,

where the matrix B̃ = diag(1/
√
ρ)B.

Let {ui} and {vi} be the right and left singular vec-
tors of B̃ with non-zero singular values σi(B̃), where
σ1 ≤ σ2 . . . ≤ σn; thus, B̃ui = σivi. The fact that
B̃ also has n non-zero singular values follows from its
definition combined with our Assumption 2d that B
has rank n. Then

B̃
ᵀ

B̃ =
∑
i

σ2
i uiu

ᵀ

i (42)

and hence,

δ =
1√
T

∑
i

1

σi
〈 ζ
ρ
,vi〉ui +OP

(
1

T

)
(43)

For the solution x to have strictly positive coordinates
we need that |δj | < πj for each of j = 1, . . . , n. With-
out loss of generality, assume that π1 = minj πj and
analyze the worst-case setting. This occurs when the
singular vector u1 with smallest singular value coin-
cides with the standard basis vector e1. Then,

|δ1| ≤
1√
T

1

σ1(B̃) minj ρj
|〈ζ,v1〉|+OP

(
1

T

)
. (44)

It follows from (36) that |δ1| will be dominated by
minπj ≥ a0 provided that

T &
gψ

a0a1σ1(B̃)
. (45)

In the unlikely event that (i) the vector π is uniform
(πj = 1/n for all j), (ii) the matrix B̃ has n identi-
cal singular values, we need the equation analogous to
(44) to hold for all n coordinates. By a union bound
argument, an additional factor of log n in the number
of samples suffices to ensure, with high probability, the
non-negativity of the solution x.

Next we proceed to bound ‖π̂ − π‖22. To this end, we
write

x∗ − π = δ =
∑
i

1

σi(B̃)
〈 ρ̂− ρ

ρ
,vi〉ui +OP

(
1

T

)
.

Since both the {ui} and the {vi} are orthonormal,

‖δ‖22 =
∑
i

1

σ2
i (B̃)

〈 ρ̂− ρ

ρ
,vi〉2

≤ 1

σ2
1(B̃)(min ρk)2

∑
i

〈ρ̂− ρ,vi〉2

≤ ‖ρ̂− ρ‖22
σ2
1(B̃)a21

.

Bounding ‖ρ̂− ρ‖22 via Lemma 3 and noting that

‖π̂ − π‖2 =
∥∥∥ x∗

‖x∗‖1
− π

∥∥∥
2
≤ 2 ‖x∗ − π‖2 = 2 ‖δ‖2 ,

the result in (22) follows.

6.5. Preliminaries II

The remaining estimators (π̂ for the continuous obser-
vations case, and Â for both the discrete and contin-
uous observations cases) are obtained as solutions for
quadratic programs. Let us take for example the QP
for calculating π̂ with continuous observations HMM,
given in (23). For this case, the QP is equivalent to

π̂ = argmin
x

1

2
x

ᵀ

K
ᵀ

Kx− xᵀ

K
ᵀ

ξ̂

subject to x ≥ 0 and
∑
i xi = 1.

Note that if ξ̂ was equal to its true values ξ, the solu-
tion of the above QP would simply be the true π. In
reality, we only have the estimate ξ̂. In order to ana-
lyze the error ‖π̂ − π‖2, we will need to consider how
the solutions of such a quadratic program are affected
by errors in ξ.
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More generally, we are concerned with two QPs

minQ(x) = min
1

2
x

ᵀ

Mx− xᵀ

h, (46)

min Q̂(x) = min
1

2
x

ᵀ

M̂x− xᵀ

ĥ, (47)

both subject to Gx ≤ g, Dx = d. We assume that the
solution to the first QP is the “true” value while the
solution to the second is our estimate. So bounding
the estimate error is equivalent to bounding the error
between the solutions obtained by the above two QPs,
where M̂ and ĥ are perturbed versions of M and h.

Given that, note that only the objective function has
been perturbed, while the linear constraints remained
unaffected. We may thus apply the following classical
result on the solution stability of definite quadratic
programs.

Theorem 7. (Daniel, 1973) Let λ = λmin(M) be the
smallest eigenvalue of M , and let ε = max{‖M̂ −
M‖2, ‖ĥ − h‖2}. Let x and x̂ be the minimizers of
Eqs.(46) and (47), respectively. Then, for ε < λ,

‖x− x̂‖2 ≤
ε

λ− ε (1 + ‖x‖2).

In the following we will obtain bounds on ε and λ for
the different estimators and invoke the above theorem.

6.6. Proof of Theorem 3: Bounding the error
for π̂ in the continuous observations case

Proof. Note that in the notation given in Theorem 7,
we have h = ξ

ᵀ
K and ĥ = ξ̂

ᵀ
K. Since we assumed

that the output density parameters are known exactly
we have no error in M = K

ᵀ
K.

It is immediate that

λmin(K
ᵀ

K) = σ2
1(K),

and

ε ≤
∥∥∥ξ̂ − ξ

∥∥∥
2
‖K‖2 ≤ nL

∥∥∥ξ̂ − ξ
∥∥∥
2
.

From Lemma 4 we have

∥∥∥ξ̂ − ξ
∥∥∥
2
.P

√
(n lnn)g2ψL

2

T
,

while by Theorem 7 we have

‖π̂ − π‖2 .
ε

λmin(KᵀK)
(1 + ‖π‖2).

Since ‖π‖2 ≤ 1, the claim follows.

As a side remark we note that the form of (24) is some-
what counter-intuitive, as it suggests a worse behavior
for larger L. Intuitively, however, larger L corresponds
to a more peaked — and hence lower-variance — den-
sity, which ought to imply sharper estimates. Note
however that as numerical simulations suggest we typ-
ically have

σ2
1(F̃ )L2

σ2
1(K̃)

= O(1).

Thus, whenever σ2
1(F̃ ) is well behaved so is the es-

timate in (24) and the bound is reasonable after all.
Finally note that F is stochastic so it behaves very
much like the matrix B in the discrete outputs case.

6.7. Proof of Theorem 4: Bounding the error
of Â in the discrete observations case

Let Â be the solution of

min
Aij≥0,

∑
i Aij=1

‖σ̂ − ĈA‖22, (25)

where σ̂ is given in (5). Recall that Ckk
′

ij = πjBkjBk′i

and Ĉkk
′

ij = π̂jBkjBk′i. First note that if π and σ
were known exactly, the above QP could be written as

minQ(A) = min
1

2
vec(A)

ᵀ

M vec(A)− vec(A)
ᵀ

h (48)

where M = C
ᵀ
C and h = C

ᵀ
vec(σ). Its solution

is precisely the transition probability matrix A. In
reality, as we only have estimates π̂ and σ̂, the opti-
mization problem is perturbed to

min Q̂(A) = min
1

2
vec(A)ᵀM̂ vec(A)− vec(A)

ᵀ

ĥ (49)

where M̂ = Ĉ
ᵀ
Ĉ, and ĥ = Ĉ

ᵀ
vec(σ̂).

To analyze how errors in σ̂ and Ĉ affect the optimiza-
tion problem we follow the same route as above. Thus
we need to bound ‖ĥ−h‖2, ‖M̂−M‖2, and the smallest
eigenvalue of M . Regarding the latter, by definition,
λmin(M) = σ2

1(C), where σ1(C) is the smallest sin-
gular value of C. A simple exercise in linear algebra
yields

σ1(C) ≥ a0σ2
1(B). (50)

The following lemma provides bounds on ‖M̂ −M‖2
and on ‖ĥ− h‖2.

Lemma 5. Asymptotically, as T →∞,

‖ĥ− h‖2 .P
√
n (‖π̂ − π‖2 + ‖σ̂ − σ‖2) (51)

and

‖M̂ −M‖2 .P 2n‖π̂ − π‖2. (52)
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Proof. By definition, hij =
∑
k,k′ C

kk′

ij σkk′ , and ĥij =∑
k,k′ Ĉ

kk′

ij σ̂kk′ . Using the definitions of C and Ĉ, up
to mixed terms O(‖π̂ − π‖∞‖σ̂ − σ‖∞), we obtain

ĥij − hij = (π̂j − πj)
∑
kk′

BkjBk′iσkk′

+πj
∑
kk′

BkjBk′i(σ̂kk′ − σkk′)

Since each of ‖π̂ − π‖∞ and ‖σ̂ − σ‖∞ are

OP (1/
√
T ), the neglected mixed terms are asymptot-

ically negligible as compared to each of the first two
ones. Next, we use the fact that σkk′ ≤ 1, πj ≤ 1 and∑
kk′ BkjBk′i ≤ 1 to obtain that∥∥∥ĥ− h∥∥∥

2
.P
√
n ‖π̂ − π‖2 +

√
n ‖vec(σ̂)− vec(σ)‖2

Similarly, we have that for the n2×n2 matrix M , and
not including higher order mixed terms (π̂j−πj)(π̂β−
πβ), which are asymptotically negligible,

(M̂ −M)ij,αβ = (π̂j − πj)πβ
∑
kk′

BkjBkβBk′iBk′α

+(π̂β − πβ)πj
∑
kk′

BkjBkβBk′iBk′α

Note that
∑
kk′ BkjBkβBk′iBk′α =

(
∑
k BkjBkβ)(

∑
k′ Bk′iBk′α) ≤ 1. Hence, by similar

arguments as for h, (52) follows.

We can now prove Theorem 4:

Proof. (of Theorem 4) Lemma 3, together with (22),
implies that with high probability,

‖σ̂ − σ‖F .P

√
g2ψ

T − 1
,

and

‖π̂ − π‖2 .P

√
g2ψ

Ta21σ
2
1(B̃)

.

Inserting these into (51) and (52) yields, w.h.p.,

ε = max
{∥∥∥ĥ− h∥∥∥

2
,
∥∥∥M̂ −M∥∥∥

2

}
.

√
n2g2ψ

Ta21σ
2
1(B̃)

. (53)

By Theorem 7, we have that∥∥∥Â−A∥∥∥
F
.

ε

λ1(M)
(1 + ‖A‖F ), (54)

where ‖A‖F ≤
√
n since A is column-stochastic. The

claim follows by substituting the bounds on ε in (53)
and on λ1(M) = σ2

1(C) ≥ a20σ
4
1(B) in (50) into (54)

and noting that σ2
1(B̃) ≥ σ2

1(B).

6.8. Proof of Theorem 5: Bounding the error
of Â in the continuous observations case

Let Â be the solution of

min
Aij≥0,

∑
i Aij=1

‖η̂ − ĈA‖22, (25)

where η̂ is given in (19) and Ckk
′

ij = πjFkjFk′i and

Ĉkk
′

ij = π̂jFkjFk′i. The above QP can be written as

min Q̂(A) = min
1

2
vec(A)ᵀM̂ vec(A)− vec(A)

ᵀ

ĥ (55)

where M̂ = Ĉ
ᵀ
Ĉ, and ĥ = Ĉ

ᵀ
vec(σ̂).

Exactly as in the previous subsection, we want to
bound the difference between the solutions for the
above QP and the unperturbed one.

First note that

σ1(C) ≥ a0σ2
1(F ). (56)

Next we give the analogue of lemma 5.

Lemma 6. Asymptotically, as T →∞,

‖ĥ− h‖2 .P
√
n

(
1

a0
‖π̂ − π‖2 + ‖η̂ − η‖2

)
(57)

and

‖M̂ −M‖2 .P 2n
‖π̂ − π‖2

a0
. (58)

Proof. In contrast to Lemma 5, here F is also per-
turbed due to errors in π̂ with

F̂ij =

∫
Y

π̂ifi(y)fj(y)∑
k π̂kfk(y)

dy.

Expending the difference ∆Fij ≡
∣∣∣F̂ij − Fij∣∣∣ up to first

order in π̂ − π we find that

‖∆F‖F ≤
‖π̂ − π‖∞

a0
‖F‖F ≤

√
n ‖π̂ − π‖∞

a0
,

where in the last inequality we used the fact that F
is stochastic. Repeating the arguments in the proof
for Lemma 5 and noting that a0 � 1 we get (57) and
(58).

We now come to the proof of Theorem 5.

Proof. (of Theorem 5) Lemma 4, together with (24),
implies that with high probability,

‖η̂ − η‖F .P

√
(n2 lnn)g2ψ
T − 1

,
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and

‖π̂ − π‖2 .P

√
(n3 lnn)g2ψL

4

Tσ4
1(K̃)

Inserting these into (57) and (58) yields, w.h.p.,

ε = max
{∥∥∥ĥ− h∥∥∥

2
,
∥∥∥M̂ −M∥∥∥

2

}
.

√
(n5 lnn)g2ψL

4

Tσ4
1(K̃)

. (59)

By Theorem 7, we have that∥∥∥Â−A∥∥∥
F
.

ε

λ1(M)
(1 + ‖A‖F ), (60)

where ‖A‖F ≤
√
n since A is column-stochastic. The

claim follows by substituting the bounds on ε in (59)
and on λ1(M) = σ2

1(C) ≥ a20σ
4
1(F ) in (50) into (60)

and noting that σ2
1(F̃ ) ≥ σ2

1(F ).

As for remark 1, we point out that estimating η′

with the help of the matrix K (instead of η with
F ) results in an estimator that is not O(1/T )-
Lipschitz any more but O(L2/T )-Lipschitz with L =
maxi∈[n] supy∈R fθi(y). This means that in principle
we will need many more samples to accurately esti-
mate η′ compared to η, see Lemma 4. Thus, since
in high dimensions calculating F via numerical inte-
gration may be computational intensive, choosing be-
tween the two estimators is in some sense choosing
between working with limited number of samples and
computational efficiency.

6.9. Proof of Theorem 6: Perturbations in the
output parameters

We give here the proof for the perturbation in the ma-
trix F . The proof for perturbations in the matrix K
is similar.

Proof. By definition, bij =
∑
k,k′ C

kk′

ij σkk′ , and b̂ij =∑
k,k′ Ĉ

kk′

ij σ̂kk′ . Using the definitions of C and Ĉ, up
to first order in {‖π̂ − π‖∞ , ‖σ̂ − σ‖∞ , εF } we obtain

b̂ij − bij = (π̂j − πj)
∑
kk′

BkjBk′iσkk′

+πj
∑
kk′

BkjBk′i(σ̂kk′ − σkk′)

+εFπj
∑
kk′

(PkjBk′i +BkjPk′i)σkk′ .

As the two first terms already considered we focus on
the last term. It can be shown that:∑

ij

(
πj
∑
kk′

PkjBk′iσkk′

)2

≤ n ‖P‖2F .

Thus∥∥∥b̂− b∥∥∥
2
≤ √n (‖π̂ − π‖2 + ‖vec(σ̂)− vec(σ)‖2 + (61)

+2εF ‖P‖F ) (1 + o(1)).

Similarly, for the matrix K up to first order in
{‖π̂ − π‖∞ , εF } we have

(K̂ −K)ij,αβ = (π̂j − πj)πβ
∑
kk′

BkjBkβBk′iBk′α

+ (π̂β − πβ)πj
∑
kk′

BkjBkβBk′iBk′α

+ εFπjπβ
∑
kk′

PkjBkβBk′iBk′α + . . .

+ εFπβπj
∑
kk′

BkjBkβBk′iPk′α.

Again considering only the terms including P
and using the facts that

∑
k BkjBkβ ≤ 1 and∑

kk′(PkjBk′i)
2 ≤∑k P

2
kj we similarly find that∥∥∥K̂ −K∥∥∥

2
≤ (1 + op(1))2n (‖π̂ − π‖2 + 4εF ‖P‖F ) .

Repeating the analysis in the proofs for Theorems 3,
4 and 5 give the desired result.


