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A. Proofs for Lemmas 3 and 4

Proof of Lemma 3. We make use of the following mul-
tivariate Chebyshev’s inequality to proof Lemma 3

Theorem 1. (Marshall & Olkin, 1960), (Bertsimas
& Popescu, 2001), (Lanckriet et al., 2002)

sup
y∼(ȳ,Σy)

Pr[y ∈ S] =
1

1 + d2
,with

d2 = inf
y∈S

(y − ȳ)>Σ−1
y (y − ȳ)

(1)

Where y is a random vector, the supremum is over all
distributions for y with mean ȳ and covariance matrix
Σy and S is a given convex set.

Now, setting S = {xi|yi(〈w,xi〉+ b) ≤ 1− ξi} we get
the claimed equality.

Proof of Lemma 4. We follow the proof in (Lanck-
riet et al., 2002) to find a closed form expression for
infxi|yi(〈w,xi〉+b)≤1−ξi(xi − qi)

>Σ−1
i (xi − qi).

If yi(〈w,qi〉+ b) ≤ 1− ξi then we can just set xi = qi
and the infimum becomes 0.

To show the other case of yi(〈w,qi〉 + b) ≥ 1 − ξi we

write d2 = inf〈c,k〉≥f 〈k,k〉, where k = Σ
−1/2
i (xi−qi),

c> = −yiw>Σ
1/2
i and f = yi(〈w,qi〉+ b)−1 + ξi ≥ 0.

We form the Lagrangian:

L(k, λ) = 〈k,k〉+ λ(f − 〈c,k〉)

and maximize it with respect to the dual variable λ ≥ 0
and minimize with respect to the primal variable k.
At the optimum we get 2k = λc and f = 〈c,k〉. So,
λ = 2f

〈c,c〉 such that indeed λ ≥ 0 because f > 0. Also,

k = fc
〈c,c〉 . This yields

(yi(〈w,qi〉+ b)− 1 + ξi)
2

w>Σiw

Combining both cases yi(〈w,qi〉 + b) ≤ 1 − ξi and
yi(〈w,qi〉 + b) ≥ 1 − ξi we get the right hand side of
Lemma 4:

max(0, yi(〈w,qi〉+ b)− 1 + ξi)
2

w>Σiw

B. Derivation of SOCP

First we write
√

w>Piw as ‖Aiw‖ with Pi = A>i Ai.

Then we replace the hinge-loss type part of the objec-
tive function in Equation (21) in the main article with
the following constraints, by introducing slack vari-
ables ξi:

min
w,b,ξ

λ

2
‖w‖2 −

∑
y+

(〈
w,

Piwk√
w>
k Piwk

+ qi

〉
+ b

)
+

B∑
i=1

ξi

s.t. ‖Aiw‖+w>qi + b ≤ ξi − 1, ∀i : yi = −1

‖Aiw‖+w>qi + b ≤ ξi + 1, ∀i : yi = +1

0 ≤ ξ

(2)

Where
∑
y+

means sum over all i for which yi = +1.

Next replace the remaining objective function with θ
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and add it as a constraint:

min
θ,w,b,ξ

θ

s.t.
λ

2
‖w‖2 −

∑
y+

(〈
w,

Piwk√
w>
k Piwk

+ qi

〉
+ b

)
+

B∑
i=1

ξi ≤ θ

‖Aiw‖+w>qi + b ≤ ξi − 1, ∀i : yi = −1

‖Aiw‖+w>qi + b ≤ ξi + 1, ∀i : yi = +1

0 ≤ ξ

(3)

Finally we see that this quadratic constraint is equiva-
lent to the SOC constraint in Equation 22 in the main
article.

C. Distance between an ellipsoid and a
hyperplane

Proof of Proposition 1. We would like to minimize the
squared distance between a point x on the hyperplane,
and a point z on the ellipsoid. This can be expressed
as the following constrained optimisation problem:

minx,z ‖z − x‖2
s.t. (z − q)>P−1(z − q) = 1

w>x+ b = 0

We form the Lagrangian, using multiplier η for the
ellipsoidal constraint and γ for the hyperplane.

L(x, z, η, γ) = ‖z−x‖2+η(z−q)>P−1(z−q)−η+γw>x+γb
(4)

Taking the gradient of Equation (4) with respect to x
and z respectively, and setting it to zero gives

2(z − x) = γw (5)

2(z − x) + 2ηP−1(z − q) = 0 (6)

By substituting Equation (5) into Equation (6), we
obtain that

z = − γ

2η
Pw + q (7)

and using this in Equation (5) gives

x = − γ

2η
Pw + q − γ

2
w (8)

By substituting Equation (7) and (8) into the La-
grangian (Equation (4)) we obtain an expression only
in the dual variables.

L(η, γ) = −γ
2

4
‖w‖2 + η

(
γ

2η
Pw

)>
P−1

(
γ

2η
Pw

)
−η + γw>

(
− γ

2η
Pw + q − γ

2
w

)
+ γb

= −γ
2

4
‖w‖2 − γ2

4η
w>Pw − η + γw>q + γb

We would like to maximize the dual with respect to
η and γ, and this point is achieved at the stationary
points

∂L
∂γ

= −γ
2
‖w‖2 − γ

2η
w>Pw + w>q + b = 0 (9)

and
∂L
∂η

=
γ2

4η2
w>Pw − 1 = 0 (10)

Equation (10) implies

η = ±γ
2

√
w>Pw (11)

Substituting the expression for η (Equation (11)) into
the stationary condition for γ (Equation (9)) gives

−γ
2
‖w‖2 ±

√
w>Pw + w>q + b = 0 (12)

Observe from Equation (5) that the distance from the
ellipsoid to the hyperplane is given by γ

2 ‖w‖ which
from Equation (12) is given by

γ

2
‖w‖ =

1

‖w‖

(
±
√
w>Pw + w>q + b

)
When the ellipsoid intersects the hyperplane, we would
like the point on the ellipsoid furthest away from the
hyperplane, which is given by the solution of the fol-
lowing constrained optimisation problem.

maxx,z ‖z − x‖2
s.t. (z − q)>P−1(z − q) = 1

w>x+ b = 0

Since the only difference is from finding the minimum
to finding the maximum, the above derivation remains
identical and the theorem follows.

D. Gradients

The gradient of the smooth hinge loss with respect to
w and b is given respectively by

∂

∂w
`δ(xi, yi,w, b) =


1−yif(xi)

δ · −yi ∂∂wf(xi) if Φ

−yi · ∂
∂wf(xi) if Ψ

0 if Ω

(13)

∂

∂b
`δ(xi, yi,w, b) =


1−yif(xi)

δ · −yi ∂∂bf(xi) if Φ

−yi · ∂∂bf(xi) if Ψ

0 if Ω

(14)
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Where

Φ ≡ 1− δ < yi · f(Pi; qi) ≤ 1

Ψ ≡ yi · f(Pi; qi) ≤ 1− δ
Ω ≡ yi · f(Pi; qi) > 1

And where the gradient of the ellipsoid predictor
f(q; P) =

√
w>Pw + w>q + b is given by Equa-

tion (15) and Equation (16).

∂

∂w
f(q; P) = q +

Pw√
w>Pw

(15)

∂

∂b
f(q; P) = 1 (16)
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