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Derivation of Cost Function. The projection of the joint probability distribution of the random
variables X = (X1, X2, . . . , Xn), associated with the vertices in V , on a decomposable graph G is
given by:

pG(x) =

∏
C∈C(G) pC(xC)∏

(C,D)∈T (G) pC∩D(xC∩D)
, (1)

where x is an instance in the domain of X, which we denote by X . pC(xC) denotes the marginal
distribution of random variables belonging to C ∈ C(G) and pC∩D(xC∩D) denotes the marginal
distribution of random variables belonging to the separator set C ∩D, such that (C,D) ∈ T (G).

Let p̂(x) denote the empirical distribution and p̂G(x) denotes the projected distribution on a de-
composable graph G. Estimating the maximum likelihood decomposable graph which best approxi-
mates p̂ is equivalent to finding the graph, G, which minimizes the KL-divergence between the target
distribution and the projected distribution, p̂G, defined by D(p̂||p̂G).

D(p̂||p̂G) =
∑
x∈X

p̂(x) log
p̂(x)

p̂G(x)

∝
∑
x∈X
−p̂(x) log p̂G(x) as p̂(x) is independent of G,

=
∑
x∈X
−p̂(x) log

∏
C∈C(G) p̂C(xC)∏

(C,D)∈T (G) p̂C∩D(xC∩D)
from Eq. (1),

=
∑
x∈X

(
− p̂(x) log

∏
C∈C(G)

p̂C(xC)

)
−
∑
x∈X

(
− p̂(x) log

∏
(C,D)∈T (G)

p̂C∩D(xC∩D)

)
=

∑
C∈C(G)

∑
x∈X
−p̂(x) log p̂C(xC)−

∑
(C,D)∈T (G)

∑
x∈X
−p̂(x) log p̂C∩D(xC∩D)

=
∑

C∈C(G)

∑
xC∈XC

−p̂C(xC) log p̂C(xC)−
∑

(C,D)∈T (G)

∑
xC∩D∈XC∩D

−p̂C∩D(xC∩D) log p̂C∩D(xC∩D)

=
∑

C∈C(G)

H(C)−
∑

(C,D)∈T (G)

H(C ∩D) , (2)

where H(S) is the entropy of the random variables representing the set S ⊆ V , defined by H(S) =∑
xS∈XS

−p̂S(xS) log p̂S(xS).
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Primal optimization problem. P(τ, ρ) denotes the primal cost function.

P(τ, ρ) =
∑
C∈D

H(C)τ(C)−
∑

(C,D)∈E

H(C ∩D)ρ(C,D). (3)

The constraints of the combinatorial optimization problem are given by:

∀i ∈ V,
∑
C∈D 1i∈Cτ(C) ≥ 1, (4)∑

(C,D)∈E ρ(C,D) = n− k − 1, (5)∑
C∈D τ(C) = n− k. (6)

∀i ∈ V,
∑

(C,D)∈E 1i∈(C∩D)ρ(C,D)−
∑
C∈D 1i∈Cτ(C) + 1 = 0, (7)

∀C ∈ D,∀(C,D) ∈ E , ρ(C,D) ≤ τ(C), (8)

∀C ∈ D, τ(C) ≤
∑

(C,D)∈E ρ(C,D), (9)

ρ is in the forest polytope of (D, E), (10)

τ is in the hyperforest polytope of (V,D). (11)

The combinatorial optimization problem is given by

minP(τ, ρ) subject to
τ ∈ {0, 1}D, ρ ∈ {0, 1}E ,
Eq. (4), Eq. (5), Eq. (6), Eq. (7),
Eq. (8), Eq. (9), Eq. (10) and Eq. (11).

(12)

The τ -relaxed primal optimization problem is

minP(τ, ρ) subject to
τ ∈ [0, 1]D, ρ ∈ {0, 1}E ,
Eq. (4), Eq. (5), Eq. (6), Eq. (7),
Eq. (8), Eq. (9), Eq. (10) and Eq. (11).

(13)

Proposition 1 The non-convex primal and the τ -relaxed primal are equivalent.

Proof Let us assume (τ∗, ρ∗) be a feasible solution for the relaxed primal with 0 < τ∗(C) < 1 for
some C ∈ D. The edge constraint in Eq. (8) ensures that there are no incident edges on C selected
by ρ∗ (as ρ∗ is integral). This violates the clique constraint in Eq. (9). Therefore, the feasible
solutions of relaxed primal are integral. Hence the optimal solutions of the primal and the relaxed
primal are identical.

The convex relaxation of the primal optimization problem is

minP(τ, ρ) subject to
τ ∈ [0, 1]D, ρ ∈ [0, 1]E ,
Eq. (4), Eq. (5), Eq. (6), Eq. (7),
Eq. (8), Eq. (9), Eq. (10) and Eq. (11).

(14)
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Dual Derivation. The dual variables are defined by :

– Set cover constraints in Eq. (4): γ ∈ RV+.

– Running intersection property in Eq. (7): µ ∈ RV .

– Edge constraints in Eq. (8): λ ∈ RE+ × RE+.

– Clique constraints in Eq. (9): η ∈ RD+.

Therefore, the dual space is represented by (γ, µ, λ, η).

Let L(τ, ρ, γ, µ, λ, η) be the Lagrangian relating the primal and dual variables. It is derived from
the primal cost function defined in Eq. (3) along with the covering constraint, running intersection
property, the edge and the clique constraints defined in Eq. (4), Eq. (7), Eq. (8) and Eq. (9)
respectively. The Lagrangian can be computed from the dual variables (γ, µ, λ, η) as follows:

L(τ, ρ, γ, µ, λ, η)

=
∑
C∈D

H(C)τ(C)−
∑

(C,D)∈E

H(C ∩D)ρ(C,D)

+
∑
i∈V

γi

(
1−

∑
C∈D

1i∈Cτ(C)

)
+
∑
i∈V

µi

( ∑
(C,D)∈E

1i∈(C∩D)ρ(C,D)−
∑
C∈D

1i∈Cτ(C) + 1

)

+
∑
C∈D

∑
(C,D)∈E

λCD

(
ρ(C,D)− τ(C)

)
+
∑
C∈D

ηC

(
τ(C)−

∑
(C,D)∈E

ρ(C,D)

)

=
∑
C∈D

(
H(C)−

∑
i∈C

(µi + γi)−
∑

(C,D)∈E

λCD + ηC

)
τ(C)

−
∑

(C,D)∈E

(
H(C ∩D)−

∑
i∈(C∩D)

µi − λCD − λDC + ηC + ηD

)
ρ(C,D) +

∑
i∈V

(µi + γi),

(15)

with the following dual constraints on the Lagrange multipliers

∀i ∈ V, γi ≥ 0,

∀C ∈ D, ∀(C,D) ∈ E , λCD ≥ 0,

∀C ∈ D, ηC ≥ 0. (16)

We can now derive a dual optimization problem with Q(γ, µ, λ, η) represent the dual cost function,
which can be derived from the Lagrangian in Eq. (15). We use the the number of edges constraint,
the number of cliques constraint, tree constraint and hyperforest constraint given by Eq. (5), Eq. (6),
Eq. (10) and Eq. (11) respectively in deriving the dual as follows:
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Q(γ, µ, λ, η)

= inf
τ∈[0,1]D∑

C∈D τ(C)=n−k
τ∈ hyperforest polytope of (V,D)

(
H(C)−

∑
i∈C

(µi + γi)−
∑

(C,D)∈E

λCD + ηC

)
τ(C)

− sup
ρ∈[0,1]E∑

(C,D)∈E ρ(C,D)=n−k−1
ρ∈forest polytope of (D,E)

∑
(C,D)∈E

(
H(C ∩D)−

∑
i∈(C∩D)

µi − λCD − λDC + ηC + ηD

)
ρ(C,D)

+
∑
i∈V

(µi + γi). (17)

It is decomposed in three parts defined in Eq. (19), Eq. (20) and Eq. (21) respectively :

Q(γ, µ, λ, η) = q1(γ, µ, λ, η) + q2(γ, µ, λ, η) + q3(γ, µ, λ, η), (18)

where

q1(γ, µ, λ, η) = inf
τ∈[0,1]D∑

C∈D τ(C)=n−k
τ∈ hyperforest polytope of (V,D)

∑
C∈D

(
H(C)−

∑
i∈C

(µi + γi)−
∑

(C,D)∈E

λCD + ηC

)
τ(C).(19)

q2(γ, µ, λ, η) = − sup
ρ∈[0,1]E∑

(C,D)∈E ρ(C,D)=n−k−1
ρ∈ forest polytope of (D,E)

∑
(C,D)∈E

(
H(C ∩D)−

∑
i∈(C∩D)

µi − λCD − λDC + ηC + ηD

)
ρ(C,D).

(20)

q3(γ, µ, λ, η) =
∑
i∈V

(µi + γi). (21)

Therefore, the dual optimization problem using the dual cost function defined in Eq. (17) and the
dual constraints defined in Eq. (16) is given by

maxQ(γ, µ, λ, η) subject to

 ∀i ∈ V, γi ≥ 0,
∀C ∈ D,∀(C,D) ∈ E , λCD ≥ 0,
∀C ∈ D, ηC ≥ 0.

(22)

Proposition 2 If k = 1, the convex relaxation in Eq. (14) is equivalent to Eq. (12).

Proof If k = 1, all the cliques in the clique space contain only 2 vertices, i.e., ∀C ∈ D, |C| = 2 and
the number of elements in the feasible edges is only 1, i.e., ∀(C,D) ∈ E , |C ∩D| = 1.

Solving the convex relaxation defined in Eq. (14) is equivalent to solving the dual defined in Eq. (22).
On solving the dual variables, the optimal dual solution is given by

∀i ∈ V, µi = H({i}),
∀i ∈ V, γi = 0,
∀C ∈ D,∀(C,D) ∈ E , λCD = 0,
∀C ∈ D, ηC = 0,

(23)
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where H({i}) = −p̂i(xi) log(p̂i(xi)).

The optimal solution to the dual problem is given by

Q∗(γ, µ, λ, η) = inf
τ∈[0,1]D∑

C∈D τ(C)=n−k
τ∈ hyperforest polytope of (V,D)

∑
C∈D

(
H(C)−

∑
i∈C

H({i})
)
τ(C) +

∑
i∈V

H({i})

= inf
τ∈[0,1]D∑

C∈D τ(C)=n−k
τ∈ hyperforest polytope of (V,D)

−I(C).τ(C) +
∑
i∈V

H({i}), (24)

where ∀C ∈ D, I(C) =
∑
i∈C H({i})−H(C), which defines the mutual information of the elements

in the clique, i.e., an edge if k = 1. The constraints in Eq. (24) define a spanning tree polytope [4] and
the optimal solution is a maximal information spanning tree, which is given by Chow-Liu trees [1].
They also form the optimal solution to the non-convex primal optimization defined in Eq. (12).

Approximate Greedy Primal Solution. We describe an algorithm to project from the average
of a sequence of fractional primary infeasible solutions, estimated during the iterations of projec-
tive supergradient, to an integral primary feasible solution. “AddClique” adds all the edges of a
clique to the adjacency matrix. “checkGraphDecomposability” checks if the maximal cardinality
search is a perfect elimination ordering. For decomposable graphs the maximal cardinality search
yields a perfect elimination ordering [2]. We refer to this as decomposability test in this paper.
“getNumberConnectedComponents” gives the number of connected components in the graph using
breadth-first search. Note that the projection only uses the average clique selection function, τ̂m, to
obtain the primary feasible solutions, τm. The corresponding edge selection, ρm, can be estimated
from clique selection, τm, by selecting the edges between consecutive cliques of the perfect sequence
of selected cliques [3]. The time complexity of the projection algorithm is O(nk+2). This is due to
decomposability test with run time complexity O(nk+1), that is performed on adding O(n) cliques.

Algorithm 1 Approximate Greedy Primal Solution

Input: primal infeasible sequence τ t of Projected Supergradient algorithm, treewidth k, number
of Vertices n, set of cliques D and integer m such that 0 < m ≤ T
Output: approximate discrete primal feasible solution τm after m iterations of Algorithm 1
Initialize Adjacency Matrix Adj = zeros(n, n), τ̂m = 1

m

∑m
t=0 τ

t and τm = zeros(length(τ̂m))
order = Sorted indices in the descending order τ̂m
repeat

Initialize decomposable = false, treewidth = 0, numConnectedComponents = 0, i = 1
update TestAdj = AddClique(Adj, D(order(i)))
update [decomposable, treewidth] = checkGraphDecomposability(TestAdj)
if decomposable = true and treewidth ≤ k then
update Adj = TestAdj
update τm(Order(i)) = 1

end if
[numConnectedComponents] = getNumberConnectedComponents(TestAdj)
update i = i+ 1

until decomposable = true, treewidth = k, numConnectedComponents = 1, i = length(order)
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Generating Decomposable Covariance Matrices. In order to generate a covariance matrix
of a multivariate Gaussian representing a graph, we generate a random matrix and project this onto
the graph to get a covariance matrix which represents the graph. If the projection is performed onto
decomposable graphs, the resultant covariance matrices are called decomposable covariance matrices.

A random positive definite covariance matrix, Σ′ is generated as follows:

Σ′ =
d

d′
ZZ> + (1− d

d′
)I, (25)

where Z is a random matrix of dimensions n × d′, I is the n-dimensional identity matrix and d is
a parameter to determine the correlations between the nodes of the graph, which takes values in
{0, d′}. In our experiments, we choose d′ to be 128. We have tight correlations between the nodes
with higher values of d.

The random positive definite covariance matrix, Σ′, which is generated using Eq. (25) is projected
onto a decomposable graph G as follows:

(Σ)−1 =
∑

C∈C(G)

[(Σ′C)−1]n −
∑

(C,D)∈T (G)

[(Σ′C∩D)−1]n, (26)

where the operator [(Σ′X)−1]n gives an n × n matrix whose columns and rows representing the
set X ⊆ V are filled by (Σ′X)−1 and the rest of the elements of the matrix are filled with zeroes.
The matrix, Σ, thus generated represents the covariance matrix of a multivariate Gaussian on a
decomposable graph, G.

The projection ensures the following relationship between the random positive definite matrix, Σ′

and the projected covariance matrix Σ:

Σ(i, j) = Σ′(i, j) if A(i, j) = 1 or i = j,

Σ−1(i, j) = 0 if A(i, j) = 0. (27)

where A is the adjacency matrix of the decomposable graph G onto which Σ′ was projected.

The entropy of a multivariate Gaussian with a covariance matrix, Σ, is given by 1
2 log(2πe)n|Σ|,

where |Σ| denotes the determinant of the covariance matrix. However, for Gaussian distribution
that is factored in G ∈ G:

|Σ| =
∏
C∈C(G) |ΣC |∏

((C,D)∈T (G) |ΣC∩D|
, (28)

where ΣX is the sub-matrix of the covariance matrix whose rows and columns belong to the set
X ⊆ V . Therefore, for any multivariate decomposable Gaussian graphical model, G:

H(G) =
1

2
log((2πe)n|Σ|)

=
1

2
(
∑

C∈C(G)

log((2πe)n|ΣC |)−
∑

(C,D)∈T (G)

log((2πe)n|ΣC∩D|))

=
∑

C∈C(G)

H(C)−
∑

(C,D)∈T (G)

H(C ∩D). (29)

Note that the entropy of any graph, G, is independent of the mean of the normal distribution, hence
we consider only the covariance matrix.
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