
Guided Policy Search

A. Objective Gradients

To compute the gradient ∇Φ(θ), we first write the gra-
dient in terms of the gradients of Zt(θ) and πθ:

∇Φ(θ) =

T∑
t=1

[
1

Zt(θ)

m∑
i=1

∇πθ(ζi,1:t)
q(ζi,1:t)

r(xit,u
i
t)−

∇Zt(θ)
Zt(θ)2

m∑
i=1

πθ(ζi,1:t)

q(ζi,1:t)
r(xit,u

i
t) + wr

∇Zt(θ)
Zt(θ)

]
.

From the definition of Zt(θ), we have that

∇Zt(θ)
Zt(θ)

=
1

Zt(θ)

m∑
i=1

∇πθ(ζi,1:t)
q(ζi,1:t)

.

Letting J̃t(θ) = 1
Zt(θ)

∑m
i=1

πθ(ζi,1:t)
q(ζi,1:t)

r(xit,u
i
t), we can

rewrite the gradient as

∇Φ(θ) =

T∑
t=1

1

Zt(θ)

m∑
i=1

∇πθ(ζi,1:t)
q(ζi,1:t)

[
r(xit,u

i
t)−J̃t(θ)+wr

]
=

T∑
t=1

1

Zt(θ)

m∑
i=1

πθ(ζi,1:t)

q(ζi,1:t)
∇ log πθ(ζi,1:t)ξ

i
t,

using the identity ∇πθ(ζ) = πθ(ζ)∇ log πθ(ζ). When
the policy is represented by a large neural network,
it is convenient to write the gradient as a sum where
the output at each state appears only once, to produce
a set of errors that can be fed into a standard back-
propagation algorithm. For a neural network policy
with uniform output noise σ and mean µ(xt), we have

∇ log πθ(ζi,1:t) =
∑
t

∇ log πθ(ut|xt)

=
∑
t

∇µ(xt)
ut − µ(xt)

σ2
,

and the gradient of the objective is given by

∇Φ(θ) =

T∑
t=1

m∑
i=1

∇µ(xit)
uit − µ(xit)

σ2

T∑
t′=t

1

Zt′(θ)

πθ(ζi,1:t′)

q(ζi,1:t′)
ξit′ .

The gradient can now be computed efficiently by feed-
ing the terms after ∇µ(xit) into the standard back-
propagation algorithm.

B. Dynamic System Descriptions

This appendix describes the dynamical systems cor-
responding to the simulated robots in the swimming,
hopping, and walking tasks. Images of each robot are
provided in Figure 1 of the paper.

Swimmer: The swimmer is a 3-link snake, with 10
state dimensions for the position and angle of the head,
the joint angles, and the corresponding velocities, as
well as 2 action dimensions for the torques. The sur-
rounding fluid applies a drag on each link, allowing the
snake to propel itself. The simulation step is 0.05s, the
reward weights are wu = 0.0001, wv = 1, and wh = 0,
and the desired velocity is v?x = 2m/s.

Hopper: The hopper has 4 links: torso, upper leg,
lower leg, and foot. The state has 12 dimensions, and
the actions have 3. To make it easier to optimize a gait
with DDP, we employed a softened contact model as
proposed in (Tassa et al., 2012). The reward weights
are wu = 0.001, wv = 1, and wh = 10, and the desired
velocity and height are v?x = 1.5m/s and p?y = 1.5m. A
lower time step of 0.02s was used to handle contacts.

Walker: The walker has 7 links, corresponding to
two legs and a torso, 18 state dimensions and 6 torques.
The reward weights are wu = 0.0001, wv = 1, and
wh = 10, and the desired velocity and height are v?x =
1.2m/s and p?y = 1.5m. The time step is 0.01s.

3D Humanoid: The humanoid consists of 13 links,
with a free-floating 6 DoF base, 4 ball joints, 3 joints
with 2 DoF, and 5 hinge joints, for a total of 29 degrees
of freedom. Ball joints are represented by quaternions,
while their velocities are represented by 3D vectors,
so the entire model has 63 dimensions. The reward
weights are are wu = 0.00001, wv = 1, and wh = 10,
and the desired velocity and height are v?x = 2.5m/s
and p?y = 0.9m. The time step is 0.01s. Due to the
complexity of this model, the joint noise was reduced
from 10% of example torque variance to 1%.


