
Fixed-Point Model For Structured Labeling

Quannan Li1 quannan.li@gmail.com

Jingdong Wang2 jingdw@microsoft.com

David Wipf2 davidwipf@gmail.com

Zhuowen Tu1,2 zhuowen.tu@gmail.com
1Lab of Neuro Imaging and Department of Computer Science, UCLA
2Microsoft Research Asia

Abstract

In this paper, we propose a simple but effec-
tive solution to the structured labeling prob-
lem: a fixed-point model. Recently, layered
models with sequential classifiers/regressors
have gained an increasing amount of interests
for structural prediction. Here, we design an
algorithm with a new perspective on layered
models; we aim to find a fixed-point func-
tion with the structured labels being both the
output and the input. Our approach allevi-
ates the burden in learning multiple/different
classifiers in different layers. We devise a
training strategy for our method and pro-
vide justifications for the fixed-point function
to be a contraction mapping. The learned
function captures rich contextual information
and is easy to train and test. On several
widely used benchmark datasets, the pro-
posed method observes significant improve-
ment in both performance and efficiency over
many state-of-the-art algorithms.

1. Introduction

Here we study the problem of predicting a labeling
for a structured input, which is denoted as a graph,
G = (V , E). Each node vi ∈ V corresponds to a
data entry with its features denoted as xi; the ob-
jective of the structured labeling task is to jointly as-
sign labels y = (yi : i = 1..|V|) (yi ∈ L, L is the
label space) to all nodes V = (vi : i = 1..|V|) as
a joint output. This problem is fundamental since
structured inputs and outputs are common in a wide
range of applications. For example, in computer vi-

Proceedings of the 30 th International Conference on Ma-
chine Learning, Atlanta, Georgia, USA, 2013. JMLR:
W&CP volume 28. Copyright 2013 by the author(s).

sion/image processing, a structured input is an image
of all pixels, and the structured outputs are the cor-
responding labels of these pixels. There are correla-
tions among the structured outputs, denoted by the
edges between the nodes, and the correlation may oc-
cur between neighboring nodes, or the nodes relatively
distant apart. These correlations make the structured
prediction problem a difficult task.

A simple scheme is to treat the structured outputs as
independent entries and apply the standard classifica-
tion/regression algorithms. Such a scheme is straight-
forward, but it loses the important interdependency
information, which is crucial in modeling and under-
standing the structured data. The other extreme of the
solution is to treat each instance of y = (y1, .., y|V|) as
a single label and transform the problem into a multi-
class classification problem. This implementation is
infeasible because the space of the output labels is ex-

ponentially large at the size of |L||V|
.

Markov random fields (MRF) (Geman & Geman,
1984) and conditional random fields (CRF)
(Lafferty et al., 2001) have been widely used to
model the correlations of the structured labels.
However, due to the heavy computational burdens
in their training and testing (inference) stages,
MRF and CRF are often limited to capturing a few
neighborhood interactions, and thus, limiting their
modeling capabilities. Structural SVM methods
(Tsochantaridis et al., 2005) and maximum margin
Markov networks (M3N) (Taskar et al., 2003) model
the correlation in a similar way as the CRF, but they
try to specifically maximize the prediction margin.
These approaches are also limited in the range of
contexts due to the high computational demand.
When long range contexts are used, approximations
should be used to trade-off the accuracy and the
running time (Finley & Joachims, 2008).

Recently, layered models (Tu & Bai, 2010; Heitz et al.,

Fixed-Point Model For Structured Labeling

2008; Daumé et al., 2009), in the spirit of stacking
(Wolpert, 1992), are proposed to take the outputs of
classifiers of the current layer as added features to
classifiers of the next layer. Since these approaches
perform direct label prediction as functions instead of
performing inferences as in MRF or CRF, the layered
models (Tu & Bai, 2010; Heitz et al., 2008) are able to
model complex and long range contexts.

In this paper, we look into the structured labeling
problem from a different angle and develop a simple yet
effective approach, a fixed-point model. We introduce
a contextual prediction function f : (x,L|V|−1) → L
with the output being the labeling of an individual
node and the input being both its features and the la-
beling of the rest of the nodes (or its neighbors). The
overall fixed-point function f : (x1, · · · ,x|V|,L|V|) →
L|V| is a vector form of the contextual prediction func-
tion of the nodes, and is trained with the property
of a contraction mapping so that an iterative solution
is applicable in the prediction process. We also ana-
lyze conditions for ensuring that our training strategy
leads to a contraction mapping, provably so in certain
cases. Not only does the learned fixed-point function
preserve the modeling capability of the layered mod-
els (Tu & Bai, 2010; Heitz et al., 2008), but also it is
simper and much easier to scale since it only consists
of a single layer function.

2. Related Work

The conditional random fields (CRF) model
(Lafferty et al., 2001) is a state-of-the-art work
for solving the structured prediction problem. In the
max-margin Markov networks (Taskar et al., 2003;
Tsochantaridis et al., 2005), the authors propose
to maximize the margin for structured output, in
a spirit similar to the multi-class SVM method
(Weston & Watkins, 1998). Due to the computational
demand in both the training and the testing stages,
usually only a small number of interactions among
the neighboring outputs are included in both the CRF
and the M3N. The hidden Markov models (Rabiner,
1989) share a similar property in modeling the graph
connections.

The layered contextual models (Tu & Bai, 2010;
Heitz et al., 2008) train a sequences of classifiers us-
ing the output of the previous layers as additional fea-
tures to the next layer; on tasks where the long range
contexts play a significant role, e.g., the OCR task,
they greatly outperform the CRF and M3N (as shown
in the experiments). The proposed fixed-point model
has a similar modeling capability to model long range
contexts as the layered models. During the training

process, while the layered models train a series of clas-
sifiers, the fixed-point model trains a single classifica-
tion/regression function which assumes a stable status
for the ground-truth labeling. Layered models have to
compute the classification scores for each training sam-
ple as the input to the next layer, thus limiting their
capability to scale up. On the contrary, the fixed-point
model is much faster to train than the layered models,
and thus is much more scalable. In addition, the con-
vergence behavior of the layered models has not been
clearly stated so far, whereas the proposed fixed-point
model provides a contraction mapping interpretation
to the convergence.

The pseudo-likelihood algorithm in (Besag, 1975)
models the conditional probability of an entry based on
its neighborhoods; in (Sontag et al., 2010), a pseudo-
max framework is introduced to approximate the expo-
nential number of constraints by a polynomial number
of constraints; in structured output-associative regres-
sion (SOAR) (Bo & Sminchisescu, 2009), the output
components, other than the one being considered, are
used as auxiliary features to train a vector of regres-
sion functions for the task of image reconstructions
and human pose estimation. Compared with SOAR,
the main purpose of the proposed fixed-point model is
to train a fixed-point function that assumes the stable
status of the structured labels; in SOAR, a generalized
linear regression function is trained for reconstruction,
whereas we study the structured labeling problem by
exploring rich contextual correlations; the lack of anal-
ysis in the learned function also leaves the convergence
in SOAR untouched; on the contrary, our algorithm is
not limited to generalized linear regressions and, ex-
isting methods such as logistic regression and random
forest (Breiman, 2001) can be used too.

There are also other related algorithms. In (Collins,
2002), an averaged perceptron algorithm is proposed:
the training samples are processed iteratively; once a
mistake occurs, the weight vector is updated according
to the prediction error and the final weight vector is a
weighted version of all the vectors that have appeared.
In (Nguyen & Guo, 2007), an ensemble method is pro-
posed to transform the predictions of different models
into a chain with state transition matrices and then dy-
namic programming is used to get the voted prediction
result. The underlying mechanism of the fixed-point
model is different from that of these algorithms, and
we will compare the performance in Section 4.

It is worth mentioning that the proposed fixed-point
model is not a method merely designed to balance the
performance and learning-time; it provides a new way
of thinking about the structured learning problem by

Fixed-Point Model For Structured Labeling

investigating a shallow model (instead of cascaded ap-
proaches with deep layers) and also having the capa-
bility to incorporate rich structural/contextual infor-
mation with effective and efficient inference.

3. The Fixed-Point Model

3.1. Model Description

In this paper, we are interested in the structured la-
beling task for a graph G = (V , E). The edges E
decides the graph topology, and hence the neighbor-
hoods of each node. For instance, in sequence la-
beling, where the nodes {v1, v2, · · · , vn} in V form
a chain, we can specify the neighborhood Ni of
vi to be the m nodes preceding and after it, i.e.,
Ni = {vi−m/2, vi−m/2+1, · · · , vi−1, vi+1, · · · , vi+m/2}.
We use m to denote the number of neighbors a node
can have in the neighborhood specification.

We assume that our problem is a binary-classification
problem where L = {−1,+1}. To this end, we train
a contextual prediction function which outputs the la-
beling of the node. Note that, as a lexical category
label, yi cannot be used in the equation/function di-
rectly. Instead, we can represent y with a labeling con-
fidence q. For the binary class case, if yi = 1, qi = 1
and if yi = −1, qi = 0. At the prediction process, the
label yi is unknown, and thus q can be relaxed to a
real value ranging in [0, 1]. We use qNi

to denote the
labeling of the neighborhood of vi and use q to de-
note the labeling of all the nodes in G. This can easily
be extended to multiclass problems by encoding the
labeling with a matrix.

For each node vi, the contextual prediction function f
takes in both vi’s feature xi and the labeling qNi

of
its neighborhood. The contextual prediction function
f can be formulated as

qi = f(xi,qNi
; θ), (1)

where f is a regression function within range [0, 1], and
θ is the parameter of the function. From Equation 1,
the labeling q of all the nodes can be written in a
vector form,

q = f(x1,x2, · · · ,xn,q; θ), (2)

where q = [q1, q2, · · · , qn]T , f(·) =
[f(x1,qN1

; θ), f(x2,qN2
; θ), · · · , f(xn,qNn

; θ)]T .

As from Equation 2, the labeling q appears as both the
output as well as part of the input. Given the label-
ing q and the features {x1,x2, · · · ,xn} of the training
data, we learn the parameter θ.

To get the labeling of a structured input G, one
can solve for the non-linear equation set q =

f(x1,x2, · · · ,xn,q; θ), which is generally a difficult
task. In this paper, we focus on a type of func-
tions f that assumes the property of a contraction
mapping, i.e., having a stable status (an attractive
fixed-point) for each structured input. When using
the ground-truth labeling in the training process, the
ground-truth labeling is assumed to be the stable sta-
tus and the existence of the stable status leads to the
fixed-point iteration in the prediction process: qt =
f(x1,x2, · · · ,xn,q

t−1; θ) and qt → q as t → ∞. We
name the functions f with such a property the fixed-
point functions (models). In the following subsections,
we provide a sufficient condition for the fixed-point
model, propose the learning strategy, and describe the
training and testing processes.

3.2. Contraction Condition for the
Fixed-Point Model

In this section, we give a sufficient condition for
f(x1,x2, · · · ,xn,q; θ) to be the fixed-point model and
illustrate it using a logistic regression model first.

Our derivation is based on the Banach Fixed-Point
theorem (Banach, 1922): for a complete metric space
(X, dist) and a mapping F : X → X , if there exists a
non-negative real number ρ < 1 such that,

dist(F(a),F(b)) ≤ ρ× dist(a, b), ∀a, b ∈ X, (3)

then F is a contraction mapping and it has a unique
fixed-point.

Since for a node vi, its feature xi is given and fixed,
we thus for notational simplicity we can simply write
qi = fi(qNi

; θ) and q = f(q; θ).

Assuming fi is a continuously differentiable real-
valued function, then according to the mean value the-
orem for a scalar function of several variables, ∀ q,q

fi(qNi
; θ) − fi(qNi

; θ) =
〈

∇fi(q̃Ni
;θ),(qNi

−qNi
)
〉

, (4)

where ∇fi(q̃Ni
; θ) is the gradient of fi at q̃Ni

= (1 −
ci)qNi

+ ciqNi
, for some 0 < ci < 1. For f ,

f(q; θ) − f(q; θ) = Jf (q − q), (5)

where Jf is a matrix of coordinate-wise derivatives,
and its i-th row corresponds to ∇fi(q̃Ni

; θ): for the
(i, k)-th element of Jf , if the node vk is a neighbor of
node vi, Jfi,k

= ∂fi

∂qk
|q̃k

(q̃k = (1− ci)qk + ciqk); if vk is
not in the neighborhood of vi, Jfi,k

= 0. Clearly

‖f(q; θ) − f(q; θ)‖
‖q− q‖ =

‖Jf (q − q)‖
‖q − q‖

≤ max
q−q6=0

‖Jf (q − q)‖
‖q− q‖ = ‖Jf‖, (6)

Fixed-Point Model For Structured Labeling

where ‖Jf‖ denotes the matrix norm on Jf induced
from some vector norm ‖ · ‖. For example, ‖Jf‖1 =

max1≤k≤n

∑n
i=1

∣

∣

∣

∂fi

∂qk
|q̃k

∣

∣

∣
, the induced ℓ1 norm of Jf .

We then have the following:

Lemma 1 If ‖Jf‖ < 1 ∀ q,q, then f is a contraction
mapping.

3.2.1. Contraction for logistic regression

Now we assume a linear logistic regression model. θ

can be decomposed into α (α ∈ Rd×1, d is the dimen-
sion of xi) and β (β ∈ Rm×1), corresponding to the
appearance feature xi and the contextual feature qNi

respectively. qi = fi(qNi
; θ) can be formulated as

qi =
exp(〈α,xi〉 + 〈β,qNi

〉)
1 + exp(〈α,xi〉 + 〈β,qNi

〉) . (7)

In the following, we use I(k, j) to denote the in-
dex of the node that has vk as its j-th neigh-
bor and define an auxiliary function hi(α,β) =

exp(−〈α,xi〉−(
∑

m
j=1

βj−
∑

m
j=1

|βj |)/2)

(1+exp(−〈α,xi〉−(
∑

m
j=1

βj+
∑

m
j=1

|βj |)/2))2 . In Lemma 2,

we give a sufficient condition for ‖Jf‖1 < 1 for logistic
regression.

Lemma 2 For the logistic regression model, if
max1≤k≤n

∑m
j=1 |βj |hI(k,j)(α,β) < 1, ‖Jf‖1 < 1 and

the fixed-point function f is a contraction mapping.

Proof If vk is the j-th neighbor of vi, then the par-

tial derivative ∂fi

∂qk
=

βj exp(−〈α,xi〉−〈β,qNi〉)
(1+exp(−〈α,xi〉−〈β,qNi〉))2 . As qk

is in the range [0, 1], for the term 〈β,qNi
〉, its mini-

mum is (
∑m

j=1 βj −
∑m

j=1 |βj |)/2, the sum of the neg-

ative entries of β, and its maximum is (
∑m

j=1 βj +
∑m

j=1 |βj |)/2, the sum of the positive entries of β.

So
exp(−〈α,xi〉−〈β,qNi〉)

(1+exp(−〈α,xi〉−〈β,qNi〉))2 ≤ hi(α,β) and
∣

∣Jfi,k

∣

∣ =
∣

∣

∣

∂fi

∂gk
|q̃k

∣

∣

∣
≤ |βj |hi(α,β).

Ignoring the boundary effect of the structured input,
the k-th absolute column sum of Jf sums over the m
nodes that have vk as their neighbor giving

n
∑

i=1

∣

∣Jfi,k

∣

∣ =
∑

i:vk∈Ni

∣

∣

∣

∣

∂fi

∂qk
|q̃k

∣

∣

∣

∣

≤
m

∑

j=1

|βj |hI(k,j)(α,β).

(8)
Thus, ‖Jf‖1 ≤ max1≤k≤n

∑m
j=1 |βj |hI(k,j)(α,β). If

max1≤k≤n

∑m
j=1 |βj |hI(k,j)(α,β) < 1, f is then a con-

traction mapping.

The value of x plays a role in the constraint require-
ment in Equation 8. So long as the value of x satisfies
the constraint requirement in Equation 8, the fixed-
points can be guaranteed. Another possible sufficient

condition is ‖β‖1 < 1 as
∣

∣Jfi,k

∣

∣ = |βj | qi(1− qi) < |βj |.
This condition is much simpler but more difficult to
satisfy because it ignores dependency on x entirely.

3.2.2. Contraction in general cases

The condition described above can be used as con-
straints for the fixed-point function in the training
process when f is restricted to a logistic regression
function. We now briefly discuss a scheme for learn-
ing a contraction function in a more general setting,
which can be used to implicitly enforce the contraction
condition for other functions.

It is well-known that adding some amount of input
noise (also called input jitter) during the training pro-
cess can improve the robustness of neural network clas-
sifiers (Reed et al., 1992). Moreover, this is gener-
ally true with recursive models such as the algorithm
being proposed herein, in part by favoring the con-
traction condition. For example, when training the
function q = f(x1,x2, · · · ,xn,q; θ), we may produce
some replica Q = {q + δr, r = 1..R} by introducing
small random perturbations δr. This small amount of
randomness is added to the input q of the function
f while keeping the targeted output the same as the
ground-truth q, leading to an augmented training set.
Given modest assumptions on the space of classifiers
and training algorithms, it is possible to show that
when a sufficient number of such replica are included
with suitable distribution, then a contraction mapping
will be obtained as part of the learning process with
high probability. Intuitively, this occurs because these
replica will effectively reduce the relative importance
of q as an input feature to f(x1,x2, · · · ,xn,q; θ). In
the case of logistic regression, this is tantamount to
reducing the magnitude of the coefficients β; however,
with other classifiers the effect may be less transparent.
While it is difficult to know the optimal distribution of
such replica a priori, we have found empirically that a
contraction mapping is consistently obtained without
sensitivity to this distribution. For evaluation pur-
poses, the gradient of any classifier can be computed
in principle, numerically or analytically, to examine if
the contraction condition is satisfied in a particular re-
gion. Additionally, if a classifier is ever observed to vi-
olate the contraction condition, we can always retrain
after increasing the number and/or magnitude of the
replica. Given some assumptions about the classifier
and the replica, we next briefly discuss efficient meth-
ods for checking (at least locally around the training
data) whether or not a contracting function has been
obtained.

From Lemma 1, we want to guarantee that ‖Jf‖ < 1,
for some norm ‖·‖. If we choose the induced ℓ∞ norm,

Fixed-Point Model For Structured Labeling

this corresponds to the requirement that all rows of Jf

have ℓ1 norm less than one. This can be guaranteed if
the gradient of each fi with respect to q is less than
one for all q. Let ψi(q) denote this gradient. Using a
Taylor series expansion we can approximate each func-
tion fi as

fi(q + δr) = fi(q) + δr · ψi(q) +O(∂nfi, n ≥ 2), (9)

where for simplicity we use fi(q) to denote the i-th
element of f(x1,x2, · · · ,xn,q; θ). It is not uncommon
to assume a relatively smooth function fi with small
higher-order derivatives O(∂nfi), n ≥ 2. Moreover, we
may also assume in some situations that the δr are
small, in which case higher-order terms can be largely
ignored. Let fi(q + δr) − fi(q) = er for all r = 1..R.
Given the first-order Taylor-series approximation, we
then have

δr · ψi(q) ≈ er, r = 1..R. (10)

The above constraints represent a linear system that
can be viewed as random samples of the unknown
ψi(q). These samples, which can be efficiently col-
lected and monitored during the training process, can
then be used to help determine whether or not the con-
traction condition is satisfied (at least in the locality
of the training data). Depending on the neighborhood
structure of the graph, we know that ψi(q) will typi-
cally be sparse, with nonzero-valued locations inferred
from the edges. In cases where this degree of sparsity
is sufficiently high relative to the number of replica,
we can simply solve for ψi(q) directly via the above
linear system. However, when this is not possible, we
may still potentially estimate whether ‖ψi(q)‖1 < 1.

For example, assume for simplicity that the replica δr

are iid Gaussian distributed with zero mean and known
covariance σ2I (other distributions can be accommo-
dated as well). It then follows that each er represents
an iid sample from a zero-mean Gaussian with variance
σ2‖ψi(q)‖2

2. Given R such samples, it is a simple mat-
ter to design any number of standard statistical tests
to infer the likelihood that ‖ψi(q)‖2

2 < C for any con-
stantC. So we need only determine some C sufficiently
small such that we ensure the contraction condition
holds, namely ‖ψi(q)‖1 < 1 with high probability.
Now assume that the number of significant elements in
ψi(q) is less than or equal to some value τ (in addition
to zero-valued elements enforced by the graph, there
are typically many other elements with marginal in-
fluence, although these locations may not be known).
Using the well-known relationships among p-norms, if
τ‖ψi(q)‖2

2 < 1, then ‖ψi(q)‖1 ≤ √
τ‖ψi(q)‖2 < 1. So

C = 1/τ is an appropriate choice.

This methodology can be loosely used to show that our
learned function satisfies the contraction condition of

Algorithm 1 The training process of the fixed-point
model

Input: Training structures {G1,G2, · · · ,GN} and
their labelings {q1,q2, · · · ,qN};
Output: The trained contextual prediction func-
tion f ;

1: For each q, produce some replica Q = {q+
δr} by adding random perturbations;

2: For each node vi, create the contextual
feature qNi

from the perturbed labeling q ∈ Q;
3: Based on the feature xi and qNi

, train a
f : qi = f(xi,qNi

; θ).

Algorithm 2 The testing process of the fixed-point
model

Input: The testing structure G = (V , E); the
trained contextual prediction function f ; the num-
ber of iterations T ; a threshold ε;
Output: The labeling q of G;
Initialize: t = 1; for each vi ∈ V , q0i = 0;
repeat

1: For each node vi, compute the labeling qt
i :

qt
i = f(xi,q

t−1
Ni

; θ);
2: t = t+ 1;

until t ≥ T or ‖qt − qt−1‖ ≤ ε.
q = [qt

1, q
t
2, · · · , qt

n]T .

‖ψi(q)‖1 < 1 at the q from the training data and in
neighboring regions such that an affine approximation
to the true f is sufficient. We could also potentially
incorporate an additional penalty term to encourage
each er and therefore ψi(q) to be small. In practice,
as shown in the experiments, our method can learn a
good contraction mapping with few or even no per-
turbations during training. Moreover, it can quickly
converge to good solutions even though we always ini-
tialize from q = 0 in testing, demonstrating a nice
convergence property of the fixed-point model.

3.3. The Training and Prediction Processes

The training and prediction processes are depicted in
Algorithm 1 and Algorithm 2. The training process
is to learn a contextual prediction function f by fa-
voring fixed-point solutions (or nearly so) using some
perturbations. Once learned, the contraction mapping
is applied iteratively to the new structured inputs. For
a novel structured input G = (V , E), the labeling qi of
a node vi ∈ V is initialized with a value. Note that qi
is not sensitive to the choice of initialization, and it is
simply initialized with 0 in our experiments.

Fixed-Point Model For Structured Labeling

4. Experiments

We now apply the proposed fixed-point model to
the tasks of Optical Character Recognition (OCR),
Part-of-Speech tagging (POS) and Hypertext (web
pages) classification. The data in OCR and POS have
chain structure and the average error per sequence in
(Nguyen & Guo, 2007) is used for performance evalu-
ation. In hypertext classification, the linking structure
of the hypertext is highly non-regular and we use the
average labeling error over all the testing web pages.

4.1. Optical Character Recognition (OCR)

Optical character recognition involves the identifica-
tion of letters in scanned texts. In this paper, the
benchmark dataset (Taskar et al., 2003) is used.

In OCR, a word corresponds to a structured input V
and the i-th character corresponds to vi. We use the
m/2 characters preceding and the m/2 characters af-
ter vi as its neighbors and thus m indicates the com-
plexity of the interdependence. For each character,
its pixel values are concatenated to form xi. In train-
ing, the lexical label yi is encoded to a |L|-dimensional
contextual feature vector, which has value 1 only at
the entry corresponding to the value of yi. In all, a
|L| ×m-dimensional contextual feature is created. In
testing, the entry corresponding to the label with the
maximum score is assigned 1 at each iteration. No
perturbed replicas are used in OCR and we use kernel
logistic regression (KLR) (Zhu & Hastie, 2001) as the
contextual prediction function; at the testing process,
5 iterations are used, i.e., T = 5.

0 2 4 6 8 10 12 14
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

m

av
er

ag
e

er
ro

r

auto−context model
fixed−point model

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

number of iterations

av
er

ag
e

er
ro

r

training error
testing error

(a) (b)

Figure 1. (a): comparison of the testing errors on the OCR
dataset by varying m; (b): the training and testing errors
on the OCR dataset as T varies.

In Fig. 1 (a), we compare the fixed-point model with
the auto-context model. Both of the two methods use
KLR with RBF kernel as the classifier. We note that
the original result of the auto-context model reported
in (Tu & Bai, 2010) is only 19.5% because the Harr-
like features used in that paper are not so effective
on the OCR dataset. We compare the two models by
varying m from 0 to 14. As from Fig. 1 (a), the er-

Table 1. Average errors on the OCR dataset in percent-
age. The results of SVMstruct2 and CRF2 are from
(Keerthi & Sundararajan, 2007)

SVMstruct SVMstruct2 M3N SVM
21.16 19.24 25.08 28.54

Perceptron KLR SEARN CRF
26.4 26.7 27.02 32.30

CRF2 HMM SLE KCGM
19.97 23.7 20.58 5.8

Auto-context Fixed-Point
2.22 3.6

rors decrease monotonously as m increases. The fixed-
point model performs slightly worse than the auto-
context model, but it is simpler and more efficient: it
takes about 7.55 minutes to train the model, while the
auto-context model takes around 50 minutes because
the auto-context model needs to train T classifiers se-
quentially and apply the classifiers to each of the train-
ing sequences.

In Table 1, we compare the fixed-point
model with several state-of-the-art algorithms:
SVM (Crammer & Singer, 2001), SVMstruct

(Tsochantaridis et al., 2005), M3N (Taskar et al.,
2003), Perceptron (Collins, 2002), KLR
(Zhu & Hastie, 2001), SEARN (Daumé et al., 2009),
CRF (Lafferty et al., 2001), HMM (Rabiner, 1989),
structured learning ensemble (SLE) (Nguyen & Guo,
2007), kernel conditional graphic model (KCGM)
(Cruz et al., 2007) and the auto-context model
(Tu & Bai, 2010). For SVMstruct, M3N and CRF,
the results are from (Nguyen & Guo, 2007) with
linear kernel. As from Table 1, with the exception
of the auto-context model, the fixed-point model
outperforms the state-of-the-art methods.

In (Keerthi & Sundararajan, 2007), CRF and struc-
tural SVM are implemented with a different set of
features and the performance is better than that in
(Nguyen & Guo, 2007), see CRF2 and SVMstruct2 in
Table 1. Still, the errors are much higher than that of
the fixed-point model. In (Taskar et al., 2003), M3N
reports the average error per character 12.8% with cu-
bic kernel while the average error per character of the
fixed-point model is 2.13%. One may argue that if
CRF, SVMstruct and M3N were to use the contexts like
those in the fixed-point model, they would generate
similar results. However, it is exactly their large com-
putational burden in taking into account long range
interactions that limits their modeling ability.

In Fig. 1 (b), we illustrate the convergence rate of
the fixed-point model, revealing that both the train-
ing and testing errors are very small after the second

Fixed-Point Model For Structured Labeling

Table 2. Average errors on the POS dataset in percent-
age. The results of SVMstruct2 and CRF2 are from
(Keerthi & Sundararajan, 2007).

Train Size 500 1000 2000 4000 8000

SVM-L1 8.74 6.74 5.67 4.81 4.28
SVMstruct 8.37 6.58 5.75 4.71 4.08
SVMstruct2 8.38 7.15 5.63 - -

M3N 10.19 7.26 6.34 5.26 4.19
Perceptron 10.16 7.79 6.38 5.39 4.49
SEARN 10.49 8.92 7.58 6.44 5.48

CRF 16.53 12.51 9.84 7.76 6.38
CRF2 8.84 7.08 5.83 - -
HMM 23.46 19.95 17.96 17.58 15.87
SLE 7.71 5.93 5.14 4.19 3.67

Auto-context 8.12 6.34 5.38 4.6 3.91
Fixed-point 8.24 6.40 5.48 4.66 4.02

iteration. This suggests that we are able to train a
fixed-point function that satisfies the conditions for
convergence. In addition, the fixed-point model con-
verges very quickly at the testing stage with only 2 ∼ 3
iterations.

4.2. Part-of-Speech Tagging (POS)

For the Part-of-Speech Tagging task, we use the
POS dataset (Treebank, 2002) and comply with the
training/validation/testing splits in (Nguyen & Guo,
2007). For each word, 446, 054 lexical features are
used. We use the L1 regularized support vector ma-
chine (SVM-L1) provided in the LIBLINEAR software
package (Fan et al., 2008) as the classifier.

In our experiment, m = 6 is used as it gives the best
results on the validation datasets. For each sequence,
one perturbed replica is produced using Gaussian noise
with δ = 0.25 and the contextual prediction function
is trained with the perturbed replica and the original
sequences.

In Table 2 and Table 3, we compare the average er-
rors and the times to train the classifiers respectively.
HMM is the most efficient in training, but its per-
formance is poor. The fixed-point model is nearly as
efficient as SVM-L1 since it needs only more feature
dimensions and more training samples than SVM-L1;
it is much simpler and more efficient than algorithms
such as the auto-context model: on the data split of
8, 000 training sentences, it takes 2.214 hours for the
auto-context model to train, while it takes only 0.192
hours for the fixed-point model to train. The average
error of the fixed-point model is slightly worse than
the auto-context model but the difference is rather
small. With the exception of the auto-context model
and SLE, the fixed-point model outperforms the other
methods. SLE performs the best but is the most com-

Table 3. Training times on the split of POS Dataset with
8, 000 sentences (in hour)

Train Size 500 1000 2000 4000 8000

SVM-L1 0.0027 0.004 0.0053 0.009 0.0166
SVMstruct 0.11 0.21 0.38 1.7 2.2

M3N 12.0 22.9 46.2 144.4 204
Perceptron 0.107 0.22 0.53 1.02 1.27
SEARN 0.035 0.043 0.053 0.096 0.13

CRF 0.53 2.33 5.4 13.3 32.7
HMM 6E-5 8E-5 1E-4 2E-4 3E-4

Auto-context 0.144 0.271 0.543 1.097 2.214
Fixed-point 0.009 0.019 0.037 0.08 0.192

Table 4. Comparison on the WebKB Dataset.

CRF SVM Auto-context Fixed-Point

error (%) 15 22.95 16.55 16.47
train time(s) 3005 0.05 1.85 0.3

plex since it is an ensemble method using about 200
different models and its training time is not listed in
(Nguyen & Guo, 2007).

4.3. Hypertext Classification

Hypertext classification aims to classify the web pages
based on their contents and the linking structures. We
use the WebKB dataset in (Craven et al., 1998) which
contains web pages from 4 universities: Cornell, Texas,
Washington and Wisconsin. Each page belongs to one
of the 5 categories: course, faculty, student, project
or other. The Bag of Words representation is used,
and a codebook with 40, 195 codes is built using Rain-
bow (McCallum, 1996). We compare the fixed-point
model with SVM, CRF, and the auto-context model.
The statistics (a normalized histogram) of the labels
of the in-linking and out-linking pages are used as the
context feature. The fixed-point model and the auto-
context algorithm both achieve small average errors
when the third-order in-linking and out-linking statis-
tics are used. For CRF, we adopt the UGM toolbox
(Schmidt, 2011) and use loopy belief propagation for
the inference. The first order, token-independent first
order, and token-independent second order feature
functions are used as these feature functions give the
best performance in (Keerthi & Sundararajan, 2007).

The models are trained on three universities and tested
on the remaining one. The average errors of the 4
universities are reported in Table 4. With one layer
of fixed-point function, the proposed method achieves
comparable result but is more efficient than the auto-
context model. CRF performs the best but is much
more computationally demanding.

Fixed-Point Model For Structured Labeling

5. Conclusions

In this paper, we have proposed a fixed-point model
for the structured labeling problem. The fixed-point
model takes the labeling of the structure as both the
input and the output with the assumption that the
ground-truth labeling being the stable status for the
function. The fixed-point model preserves the ability
to capture long range contexts as in more complex lay-
ered models. A simple learning strategy is adopted
and contraction conditions are analyzed. On three
structured labeling problems, the fixed-point model
has achieved encouraging performance and efficiency.

Acknowledgement

This project is supported by NSF CAREER award IIS-

0844566, NSF award IIS-1216528, and Microsoft Research

Asia. We thank Jian Zhang and Xianghang Liu for the

initial discussions; we thank Bo Wang and Liwei Wang for

verifying the codes; also, we want to thank the anonymous

reviewers for their valuable comments.

References

Banach, Stefan. Sur les opérations dans les ensembles ab-
straits et leur application aux équations intégrales. In
Fund. Math, pp. 133–181, 1922.

Besag, Julian. Statistical Analysis of Non-Lattice Data.
Journal of the Royal Statistical Society. Series D (The
Statistician), 24(3):179–195, 1975.

Bo, Liefeng and Sminchisescu, Cristian. Structured output-
associative regression. In CVPR, pp. 2403–2410, 2009.

Breiman, Leo. Random forests. Machine Learning, 45(1):
5–32, 2001.

Collins, Michael. Discriminative training methods for hid-
den markov models: Theory and experiments with per-
ceptron algorithms. In EMNLP, pp. 1–8, 2002.

Crammer, Koby and Singer, Yoram. On the algorithmic
implementation of multiclass kernel-based vector ma-
chines. Journal of Machine Learning Research, 2:265–
292, 2001.

Craven, Mark, DiPasquo, Dan, Freitag, Dayne, McCallum,
Andrew, Mitchell, Tom M., Nigam, Kamal, and Slattery,
Seán. Learning to extract symbolic knowledge from the
world wide web. In AAAI/IAAI, pp. 509–516, 1998.

Cruz, F. Perez, Ghahramani, Z., and Pontil, M. Ker-
nel conditional graphical models. Predicting Structured
Data, pp. 265–282, 2007.

Daumé, Hal III, Langford, John, and Marcu, Daniel.
Search-based structured prediction. Machine Learning,
75(3):297–325, 2009.

Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., and
Lin, C.-J. Liblinear: A library for large linear classifica-
tion, 2008.

Finley, Thomas and Joachims, Thorsten. Training struc-
tural svms when exact inference is intractable. In ICML,
pp. 304–311, 2008.

Geman, Stuart and Geman, Donald. Stochastic relaxation,
gibbs distributions, and the bayesian restoration of im-
ages. IEEE Trans. Pattern Anal. Mach. Intell., 6(6):
721–741, 1984.

Heitz, Geremy, Gould, Stephen, Saxena, Ashutosh, and
Koller, Daphne. Cascaded classification models: Com-
bining models for holistic scene understanding. In NIPS,
pp. 641–648, 2008.

Keerthi, S. Sathiya and Sundararajan, S. Crf versus svm-
struct for sequence labeling. In Yahoo Research Techni-
cal Report, 2007.

Lafferty, John D., McCallum, Andrew, and Pereira, Fer-
nando C. N. Conditional random fields: Probabilistic
models for segmenting and labeling sequence data. In
ICML, pp. 282–289, 2001.

McCallum, Andrew Kachites. Bow: A toolkit for statistical
language modeling, text retrieval, classification and clus-
tering. http://www.cs.cmu.edu/ mccallum/bow, 1996.

Nguyen, Nam and Guo, Yunsong. Comparisons of sequence
labeling algorithms and extensions. In ICML, pp. 681–
688, 2007.

Rabiner, Lawrence R. A tutorial on hidden markov mod-
els and selected applications in speech recognition. In
Proceedings of the IEEE, pp. 257–286, 1989.

Reed, R., Oh, S., and Marks, R. J. Regularization using
jittered training data. In IJCNN, pp. 509–516, 1992.

Schmidt, Mark. Ugm: Matlab code for undirected graphi-
cal models. 2011.

Sontag, David, Meshi, Ofer, Jaakkola, Tommi, and Glober-
son, Amir. More data means less inference: A pseudo-
max approach to structured learning. In NIPS, pp. 2181–
2189, 2010.

Taskar, Benjamin, Guestrin, Carlos, and Koller, Daphne.
Max-margin markov networks. In NIPS, 2003.

Treebank, The Penn. Penn’s linguistic data consortium.
http://www.cis.upenn.edu/treebank. 2002.

Tsochantaridis, Ioannis, Joachims, Thorsten, Hofmann,
Thomas, and Altun, Yasemin. Large margin methods for
structured and interdependent output variables. Journal
of Machine Learning Research, 6:1453–1484, 2005.

Tu, Zhuowen and Bai, Xiang. Auto-context and its ap-
plication to high-level vision tasks and 3d brain image
segmentation. IEEE Trans. Pattern Anal. Mach. Intell.,
32(10):1744–1757, 2010.

Weston, J. and Watkins, C. Multi-class support vector
machines. Technical Report, 1998.

Wolpert, D. Stacked generalization. In Neural Networks,
pp. 241–259, 1992.

Zhu, Ji and Hastie, Trevor. Kernel logistic regression and
the import vector machine. In NIPS, pp. 1081–1088,
2001.

