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Abstract

In this supplement, we provide the proofs for the theoretical results in our
submission Estimating Unknown Sparsity in Compressed Sensing.

Proposition 1.

Proof of Proposition 1. To prove the implication (i), we calculate

1√
T

‖x−xT ‖1
‖x‖2 = 1√

T

‖x‖1−‖xT ‖1
‖x‖2

=

√
s(x)√
T
− 1√

T

‖xT ‖1
‖xT ‖2

‖xT ‖2
‖x‖2

=

√
s(x)√
T
−
√
s(xT )√
T

‖xT ‖2
‖x‖2 .

(1)

Since s(xT ) ≤ ‖xT ‖0 ≤ T , and ‖xT ‖2‖x‖2 ≤ 1, we obtain the lower bound

1√
T

‖x−xT ‖1
‖x‖2 ≥

√
s(x)√
T
− 1.

Hence, if the left hand side is at most ε, we must have T ≥ s(x)
(1+ε)2

, proving (i).

To prove the second implication, note that T ≥ c log(p)
‖x‖21
‖x‖22

implies

1√
T

‖x−xT ‖1
‖x‖2 ≤ 1√

c log(p)

‖x−xT ‖1
‖x‖1

= 1√
c log(p)

(
1− ‖xT ‖1‖x‖1

)
.

(2)

Next, consider the probability vectors u, v ∈ Rp defined by ui = 1/p and vi =
|x|[i]/‖x‖1 (that is, v1 ≥ v2 ≥ · · · ≥ vp). It is a basic fact about the majorization
ordering on Rp that u is majorized by any other probability vector (Marshall et al.,
2010, p. 7). In particular, we have

∑T
i=1 ui ≤

∑T
i=1 vi for any T ∈ {1, . . . , p}, which

is the same as
T
p ≤

‖xT ‖1
‖x‖1 .

Combining this with line (2) proves (ii).
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Theorem 1.

Proof of Theorem 1. Define the noiseless version of the measurement yi to be

y◦i := 〈ai, x〉, i = 1, . . . , n1 + n2

and let the noiseless versions of the statistics T̂1 and T̂2 be given by

T̃1 := 1
γmedian(|y◦1|, . . . , |y◦n1

|) (3)

T̃ 2
2 := 1

γ2n2

(
(y◦n1+1)

2 + · · ·+ (y◦n1+n2
)2
)
. (4)

It is convenient to work in terms of these variables, since their limiting distribu-

tions may be computed exactly. Due to the fact that
y◦1

γ‖x‖1 , . . . ,
y◦n1
γ‖x‖1 is an i.i.d.

sample from the standard Cauchy distribution C(0, 1), the asymptotic normality
of the sample median implies√

n/2
(
T̃1
‖x‖1 − 1

) L→ N(0, τ21 ), (5)

where τ21 = π2/8. Additional details may be found in (David, Theorem 9.2) and (Li

et al., 2007, Lemma 3). Similarly, the variables (
y◦n1+1

γ‖x‖2 )2, . . . , (
y◦n1+n2
γ‖x‖2 )2 are an i.i.d.

sample from the chi-square distribution on one degree of freedom, and so it follows
from the delta method that√

n/2
(
T̃2
‖x‖2 − 1

) L→ N(0, τ22 ), (6)

where τ22 = 1/2. Note that in proving the last two limit statements, we intention-
ally scaled the variables y◦i in such a way that their distributions did not depend
on any model parameters. It is for this reason that the limits hold even when the
model parameters are allowed to depend on n. We conclude from the limits (5)
and (6) that for any α ∈ (0, 1/2),

P
(

T̃1
‖x‖1 ∈ [1− τ1z1−α√

n/2
, 1 + τ1z1−α√

n/2
]
)

= 1− 2α+ o(1), (7)

and

P
(

T̃2
‖x‖2 ∈ [1− τ2z1−α√

n/2
, 1 + τ2z1−α√

n/2
]
)

= 1− 2α+ o(1). (8)

We now relate T̂1 and T̂2 in terms of intervals defined by T̃1 and T̃2. Since the
noise variables are bounded by |εi| ≤ σ0, and yi = y◦i + εi, it is easy to see that

T̂1 ∈ [T̃1 − σ0
γ , T̃1 + σ0

γ ].

Consequently, if we note that σ0
γ‖x‖1 ≤

σ0
γ‖x‖2 = ρ, then we may write

T̂1
‖x‖1 ∈

[
T̃1
‖x‖1 − ρ,

T̃1
‖x‖1 + ρ

]
. (9)
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To derive a similar relationship involving T̂2 and T̃2, if we write T̂2 in terms of
‖(yn1 , . . . , yn1+n2)‖2 and apply the triangle inequality, it follows that

T̂2
‖x‖2 ∈

[
T̃2
‖x‖2 − ρ,

T̃2
‖x‖2 + ρ

]
. (10)

The proof may now be completed by assembling the last several items. Recall the
parameters δn and ηn, which are given by

δn = δn(α, ρ) = τ1z1−α√
n/2

+ ρ (11)

ηn = ηn(α, ρ) = τ2z1−α√
n/2

+ ρ. (12)

Combining the limits (7) and (8) with the intervals (9) and (10), we have the
following asymptotic bounds for the statistics T̂1 and T̂2,

P
(

T̂1
‖x‖1 ∈ [1− δn, 1 + δn]

)
≥ 1− 2α+ o(1), (13)

and
P
(

T̂2
‖x‖2 ∈ [1− ηn, 1 + ηn]

)
≥ 1− 2α+ o(1). (14)

Due to the independence of T̂1 and T̂2, and the relation√
ŝ(x)
s(x) = T̂1/‖x‖1

T̂2/‖x‖2
,

we conclude that

P
(√

ŝ(x)
s(x) ∈

[
1−δn
1+ηn

, 1+δn1−ηn
])
≥ (1− 2α)2 + o(1). (15)

Theorem 2.

The proof of Theorem 2 is almost the same as the proof of Theorem 1 and we omit
the details. One point of difference is that in Theorem 1, the bounding probability
is (1 − 2α)2, whereas in Theorem 2 it is (1 − 2α). The reason is that in the case
of Theorem 2, the condition T̆1/‖x‖1 ∈ [1 − %, 1 + %] holds with probability 1,
whereas the analogous statement T̂1/‖x‖1 ∈ [1 − ρ, 1 + ρ] holds with probability
1− 2α in the case of Theorem 1.

Theorem 3.

The following lemma illustrates the essential reason why estimating s(x) is difficult
in the deterministic case. The idea is that for any measurement matrix A, it is
possible to find two signals that are indistinguishable with respect to A, and yet
have very different sparsity levels in terms of s(·). We prove Theorem 3 after
giving the proof of the lemma.
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Lemma 1. Let A ∈ Rn×p be an arbitrary matrix, and let x ∈ Rp be an arbitrary
signal. Then, there exists a non-zero vector x̃ ∈ Rp satisfying Ax = Ax̃, and

s(x̃) ≥ p− n
(1 + 2

√
2 log(2p))2

. (16)

Proof of Lemma 1. By Hölder’s inequality, ‖x̃‖21/‖x̃‖22 ≥ ‖x̃‖22/‖x̃‖2∞, and so it
suffices to lower-bound the second ratio. The overall approach to finding a dense
vector x̃ is to use the probabilistic method. Let B ∈ Rp×(p−r) be a matrix whose
columns are an orthonormal basis for the null space of A, where r = rank(A). Also
define the scaled matrix B̃ := ‖x‖∞B. Letting z ∈ Rp−r be a standard Gaussian
vector, we will consider x̃ := x+ B̃z, which satisfies Ax = Ax̃ for all realizations
of z. We begin the argument by defining the function

f(z) := ‖x+ B̃z‖2 − c(n, p) · ‖x+ B̃z‖∞, (17)

where

c(n, p) :=

√
p− n

1 + 2
√

2 log(2p)
.

The proof amounts to showing that the event {f(z) > 0} holds with positive
probability. To see this, notice that the event {f(z) > 0} is equivalent to

‖x̃‖2
‖x̃‖∞

=
‖x+ B̃z‖2
‖x+ B̃z‖∞

>

√
p− n

1 + 2
√

2 log(2p)
.

We will prove that P(f(z) > 0) is positive by showing that E[f(z)] > 0, and this
will be accomplished by lower-bounding the expected value of ‖x + B̃z‖2, and
upper-bounding the expected value of ‖x+ B̃z‖∞.

First, to lower-bound ‖x + B̃z‖2, we begin by considering the variance of
‖x+ B̃z‖2, and use the fact that ‖B̃z‖22 = z>B̃>B̃z = ‖x‖2∞ ‖z‖22, obtaining

E‖x+ B̃z‖2 =

√
E‖x+ B̃z‖22 − var ‖x+ B̃z‖2

=

√
‖x‖22 + ‖x‖2∞ (p− r)− var ‖x+ B̃z‖2.

(18)

To upper-bound the variance, we use the Poincaré inequality for the standard
Gaussian measure on Rp−r Beckner (1989). Since the function g(z) := ‖x+ B̃z‖2
has a Lipschitz constant equal to ‖B̃‖op = ‖x‖∞ with respect to the Euclidean
norm, it follows that ‖∇g(z)‖2 ≤ ‖x‖∞. Consequently, the Poincaré inequality
implies

var ‖x+ B̃z‖2 ≤ ‖x‖2∞.

Using this in conjunction with the inequality (18), and the fact that r = rank(A)
is at most n, we obtain the lower bound

E‖x+Bz‖2 ≥
√
‖x‖22 + ‖x‖2∞(p− n)− ‖x‖2∞. (19)

The second main portion of the proof is to upper-bound E‖x + B̃z‖∞. Since
‖x+ B̃z‖∞ ≤ ‖x‖∞+ ‖B̃z‖∞, it is enough to upper-bound E‖B̃z‖∞, and we will
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do this using a version of Slepian’s inequality. If b̃i denotes the ith row of B̃, define
gi = 〈b̃i, z〉, and let w1, . . . , wp be i.i.d. N(0, 1) variables. The idea is to compare
the Gaussian process gi with the Gaussian process ‖x‖∞wi. By Proposition A.2.6
in van der Vaart and Wellner van der Vaart & Wellner (1996), the inequality

E‖B̃z‖∞ = E
[

max
i=1,...,p

|gi|
]
≤ 2‖x‖∞ E

[
max
i=1,...,p

|wi|
]
,

holds as long as the condition E(gi − gj)2 ≤ ‖x‖2∞ E(wi − wj)2 is satisfied for all
i, j ∈ {1, . . . , p}, and this is simple to verify. To finish the proof, we make use of
a standard bound for the expectation of Gaussian maxima

E
[

max
i=1,...,p

|wi|
]
<
√

2 log(2p),

which follows from a modification of the proof of Massart’s finite class lemma (Mas-
sart, 2000, Lemma 5.2)1. Combining the last two steps, we obtain

E‖x+Bz‖∞ < ‖x‖∞ + 2‖x‖∞
√

2 log(2p). (20)

Finally, applying the bounds (19) and (20) to the definition of the function f in
(17), we have

E‖x+Bz‖2
E‖x+Bz‖∞

>

√
‖x‖22 + ‖x‖2∞(p− n)− ‖x‖2∞
‖x‖∞ + 2‖x‖∞

√
2 log(2p)

=

√
‖x‖22
‖x|2∞

+ (p− n)− 1

1 + 2
√

2 log(2p)

≥
√
p− n

1 + 2
√

2 log(2p)
,

(21)

which proves E[f(z)] > 0, as needed.

We now apply Lemma 3 to prove Theorem 3.

Proof of Theorem 3. We begin by making several reductions. First, it is enough
to show that

inf
A∈Rn×p

inf
δ:Rn→R

sup
x∈Rp\{0}

∣∣∣δ(Ax)− s(x)
∣∣∣ ≥ p− n− 1

2(1 + 2
√

2 log(2p))2
. (22)

To see this, note that the general inequality s(x) ≤ p implies∣∣ δ(Ax)
s(x) − 1

∣∣ ≥ 1
p

∣∣δ(Ax)− s(x)
∣∣,

1The “extra” factor of 2 inside the logarithm arises from taking the absolute value of the wi.

5



and we can optimize over both sides with p being a constant. Next, for any fixed
matrix A ∈ Rn×p, it is enough to show that

inf
δ:Rn→R

sup
x∈Rp\{0}

∣∣∣δ(Ax)− s(x)
∣∣∣ ≥ p− n− 1

2(1 + 2
√

2 log(2p))2
, (23)

as we may take the infimum over all matrices A without affecting the right hand
side. To make a third reduction, it is enough to prove the same bound when Rp\{0}
is replaced with any smaller set, as this can only make the supremum smaller. In
particular, we will replace Rp \ {0} with a two-point subset {x◦, x̃} ⊂ Rp \ {0},
where by Lemma 1, we may choose x̃ and x◦ to satisfy Ax◦ = Ax̃, as well as

s(x◦) = 1, and s(x̃) ≥ p− n
2(1 + 2

√
2 log(2p))2

.

We now aim to prove that

inf
δ:Rn→R

sup
x∈{x◦,x̃}

∣∣∣δ(Ax)− s(x)
∣∣∣ ≥ p− n− 1

2(1 + 2
√

2 log(2p))2
, (24)

and we will accomplish this using the classical technique of constructing a Bayes
procedure with constant risk. For any decision rule δ : Rn → R and any point
x ∈ {x◦, x̃}, define the (deterministic) risk function

R(x, δ) :=
∣∣∣δ(Ax)− s(x)

∣∣∣.
Also, for any prior π on {x◦, x̃}, define

r(π, δ) :=

∫
R(x, δ)dπ(x).

By Propositions 3.3.1 and 3.3.2 of Bickel & Doksum (2001), the inequality (24)
holds if there exists a prior distribution π∗ on {x◦, x̃} and a decision rule δ∗ :
Rn → R with the following three properties:

1. The rule δ∗ is Bayes for π∗, i.e. r(π∗, δ∗) = infδ r(π
∗, δ).

2. The rule δ∗ has constant risk over {x◦, x̃}, i.e. R(x◦, δ∗) = R(x̃, δ∗).

3. The constant value of the risk of δ∗ is at least p−n−1
2(1+2

√
2 log(2p))2

.

To exhibit π∗ and δ∗ with these properties, we define π∗ to be the two-point prior
that puts equal mass at x◦ and x̃, and we define δ∗ to be the trivial decision
rule that always returns the average of the two possibilities, namely δ∗(Ax) =
1
2(s(x̃) + s(x◦)). It is simple to check the second and third properties, namely
that δ∗ has constant risk equal to 1

2 |s(x̃) − s(x◦)| , and that this risk is at least
p−n−1

2(1+2
√

2 log(2p))2
. It remains to check that δ∗ is Bayes for π∗. This follows easily
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from the triangle inequality, and the fact that δ(Ax̃) = δ(Ax◦) holds for all δ.
Namely,

r(π∗, δ) = 1
2

∣∣∣δ(Ax̃)− s(x̃)
∣∣∣+ 1

2

∣∣∣δ(Ax◦)− s(x◦)∣∣∣,
≥ 1

2

∣∣∣s(x̃)− s(x◦)
∣∣∣

= r(π∗, δ∗).

(25)
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Beckner, W. A generalized Poincaré inequality for Gaussian measures. Proceedings
of the American Mathematical Society, 105(2):397–400, 1989.

Bickel, P.J. and Doksum, K.A. Mathematical Statistics, volume I. Prentice Hall,
2001.

David, HA. Order statistics. 1981. J. Wiley.

Li, P., Hastie, T., and Church, K. Nonlinear estimators and tail bounds for
dimension reduction in l 1 using cauchy random projections. Journal of Machine
Learning Research, pp. 2497–2532, 2007.

Marshall, A.W., Olkin, I., and Arnold, B.C. Inequalities: theory of majorization
and its applications. Springer, 2010.

Massart, P. Some applications of concentration inequalities to statistics. In
Annales-Faculte des Sciences Toulouse Mathematiques, volume 9, pp. 245–303.
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