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Abstract

We propose an interpretable rule-based clas-
sification system based on ideas from Boolean
compressed sensing. We represent the prob-
lem of learning individual conjunctive clauses
or individual disjunctive clauses as a Boolean
group testing problem, and apply a novel
linear programming relaxation to find solu-
tions. We derive results for exact rule re-
covery which parallel the conditions for ex-
act recovery of sparse signals in the com-
pressed sensing literature: although the gen-
eral rule recovery problem is NP-hard, under
some conditions on the Boolean ‘sensing’ ma-
trix, the rule can be recovered exactly. This
is an exciting development in rule learning
where most prior work focused on heuristic
solutions. Furthermore we construct rule sets
from these learned clauses using set covering
and boosting. We show competitive classifi-
cation accuracy using the proposed approach.

1. Introduction

Organizations in many domains are turning to pre-
dictive analytics to support decision making (Daven-
port & Harris, 2007; Issenberg, 2013). However, with
this growth, predictions and other outputs of machine
learning algorithms are being presented to users who
have limited analytics, data, and modeling literacy.
Therefore, it is imperative to develop interpretable ma-
chine learning methods in order for predictions to have
impact by being adopted and trusted by decision mak-
ers (Fry, 2011).

It has been frequently noted that rule sets composed
of Boolean expressions with a small number of terms
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are the most well-received and trusted outputs (Liu
& Li, 2005). As an example, IBM’s SlamTracker re-
ports keys to winning a tennis match as a conjunctive
clause. The predictive decision rule for Federer defeat-
ing Murray in the 2013 Australian Open was:

e Win more than 59% of 4 to 9 shot rallies; AND

e Win more than 78% of points when serving at
30-30 or Deuce; AND

e Serve less than 20% of serves into the body.

Federer did not satisfy any of the three conditions and
lost the match.

Similarly, in a management setting, the prediction
for salespeople voluntarily resigning was presented by
Varshney et al. (2012) as a Boolean expression:

e Job Role = Specialty Software Sales Rep; AND
e Base Salary < 75,168; AND

e Months Since Promoted > 13; AND

e Months Since Promoted < 30; AND

e Quota-Based Compensation = FALSE.

In this paper, motivated by these consumability con-
cerns, i.e. acceptance by users with limited knowledge
of predictive modeling, we develop a new approach
to interpretable supervised classification through rule
learning based on Boolean compressed sensing. As
opposed to most ‘black-box’ classification paradigms
such as neural networks and kernel-based support vec-
tor machines (SVMs), Boolean rules can be easily in-
terpreted by the practitioner and provide readily rec-
ognizable insight into the phenomenon of interest. Ad-
ditionally, rules indicate actions that may be taken,
e.g. in the salesforce example, increasing salary, of-
fering promotion, or changing compensation plan to
prevent resignation.
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Supervised classification has been the subject of ac-
tive research for decades. The earliest successful ap-
proaches to machine learning were decision list ap-
proaches that produce Boolean rule sets (Rivest, 1987;
Clark & Niblett, 1989; Cohen, 1995), and decision tree
approaches, which can be distilled into Boolean rule
sets (Quinlan, 1987). Most such approaches attempt
to learn rules to maximize criteria such as support,
confidence, lift, conviction, Gini impurity, and infor-
mation gain, some followed by heuristic pruning pro-
cedures. These original methods, which are still widely
used by analytics practitioners today precisely due to
their interpretability, rely on greedy, heuristic training
procedures because rule learning is inherently combi-
natorial and notoriously difficult from the perspective
of the theory of computation (Valiant, 1985; Kearns &
Vazirani, 1994). Due to their heuristic nature, existing
rule learning methods tend to have worse accuracy on
many data sets than classification methods like SVMs
that are based on optimizing a principled objective
function.

There has been a renewed interest in rule learning
that attempts to retain the interpretability advan-
tages of rules, but changes the training procedures
to be driven by optimizing an objective. Riickert &
Kramer (2008) learn individual rules to maximize a
quantity they define: margin minus variance, using
quadratic programming. ENDER uses empirical risk
to both learn rules and ensembles, but learns rules in
a greedy manner (Dembcezyriski et al., 2010). Bert-
simas et al. (2012); Letham et al. (2012) attempt to
learn decision trees using mixed integer programming
techniques. Jawanpuria et al. (2011) propose a hier-
archical kernel learning approach. Set covering ma-
chines (SCM) formulate rule learning with an opti-
mization objective similar to ours, but find solutions
using a greedy heuristic (Marchand & Shawe-Taylor,
2002). Friedman & Popescu (2008) use optimization
to combine basic Boolean clauses obtained from deci-
sion trees. The goal, despite the combinatorial nature
of the problem, is to achieve classification accuracy on
par with techniques that are more difficult to interpret;
the contribution of our paper is in the same vein.

Compressed sensing and sparse signal recovery is a
field where the core problem is also combinatorial,
specifically NP-hard (Natarajan, 1995). However, re-
cent dramatic breakthroughs have established that al-
though the general problem is hard, for many specific
instances (under conditions based on the restricted
isometry property or incoherence), the hard combi-
natorial problem can be solved via a convex relax-
ation (Candes & Wakin, 2008). Moreover, recent work
has highlighted parallels between sparse signal recov-

ery and Boolean group testing (Gilbert et al., 2008).

In this paper, we reformulate a recent combinatorial
relaxation developed for Boolean group testing prob-
lems that resembles the basis pursuit algorithm for
sparse signal recovery in the context of learning clas-
sification rules (Malioutov & Malyutov, 2012).! The
primary contribution of this work is showing that the
problem of learning sparse conjunctive clause rules and
sparse disjunctive clause rules from training samples
can be represented as a group testing problem, and
that we can apply the linear programming (LP) relax-
ation developed by Malioutov & Malyutov (2012) to
solve it. Despite the fact that learning single clauses is
NP-hard, we also establish conditions under which, if
the data can be perfectly classified by a sparse Boolean
rule, the relaxation recovers it exactly. To the best
of our knowledge, this is the first work that combines
compressed sensing ideas with classification rule learn-
ing to produce optimal rules.

Single conjunctive clauses have value, as illustrated by
the tennis example on the previous page, but they are
not as expressive as sets of rules. Single rules are build-
ing blocks for more complex rule-based classifiers. Two
ways to combine conjunctive clause rules are as follows.
The first is by constructing a rule set in disjunctive
normal form (DNF), i.e. taking the OR operation of all
of the rules, through a set covering approach: the first
rule is learned on the entire training data set, the sec-
ond rule is learned on the subset of data that does not
satisfy the first rule, and so on (Rivest, 1987; Cohen,
1995); the recent work of Bertsimas et al. (2012) uses
mixed integer programming to construct decision lists
of this type. The second way is by treating each rule
as a weak learner in an ensemble with the overall clas-
sification being a weighted vote of all of the individual
rules (Cohen & Singer, 1999); the primary way to train
the individual rules is sequentially via boosting.

In this paper, we apply these construction approaches
to the individual rules found by our proposed exact
rule learning solution, which allows us to handle a
very general class of classification problems. On sev-
eral data sets, we find that the proposed Boolean group
testing approach has better accuracy than heuristic de-
cision lists and has similar interpretability, both with
single rule learning and rule set induction. We also
find accuracy on par with weighted rule set induction
via the C5.0 approach and better interpretability. Ad-
ditionally, accuracy is not far off from the best non-

interpretable classifiers, even providing the best accu-

!Other approaches to approximately solve group testing
include greedy methods and loopy belief propagation; see
references in Malioutov & Malyutov (2012).
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racy on one data set.

The remainder of this paper is organized as follows.
In Section 2 we describe how rule learning can be seen
as a form of Boolean group testing. In Section 3, by
alluding to ideas from compressed sensing, we present
an LP relaxation for rule learning, and show that it
can recover rules exactly under certain conditions. In
Section 4 we suggest two approaches to combine rules
into rule sets giving us a powerful classification algo-
rithm, that we evaluate empirically in Section 5. We
conclude with a summary and discussion in Section 6.

2. Clause learning as group testing

We start by discussing the problem of learning AND-
clauses and OR-clauses, and use these clauses to build
more expressive and powerful rule sets in Section 4.
Despite the apparent simplicity of learning conjunc-
tive clauses, this is in fact an NP-hard combinatorial
optimization problem. Our approach builds upon the
problems of group testing and sparse signal recovery.

2.1. The group testing problem

The group testing problem arose during the second
world war when the United States was drafting citizens
into the military and needed to test a large population
for syphilis at low cost. One option would have been
to test each of the n subjects’ blood samples individ-
ually, but this would have been costly because most
individuals did not have the disease. If the blood sam-
ples of several subjects were mixed together and then
tested, the result on this mixed sample represented the
OR of the subjects’ disease state. By cleverly coming
up with mixtures of subjects, it was possible to isolate
the diseased subjects using m < n tests. The mixture
of subjects can be represented by an m x n Boolean
matrix A, where the rows represent different pools or
mixtures and the columns represent different subjects.
An entry {A};; is one if subject j is part of a pool ¢
and zero otherwise.

The true diseased states of the subjects (which are not
known when conducting the tests) can be represented
by a vector w € {0,1}". The group testing then re-
sults in a Boolean vector y € {0,1}". We summarize
the result of all m tests using the following notation
which represents a Boolean matrix-vector product:

y=AVw, (1)
ie.,

Yi = \/ {A}” N wj. (2)

In the presence of measurement errors,
y=(AVw)®n, (3)
where & is the XOR operator and n is a noise vector.

Once the tests have been conducted, the objective is
to recover w from A and the measured y. The recov-
ery can be stated through the following combinatorial
optimization problem:

min ||wl||p such that y = AV w, (4)

where || - ||p, the £p-quasinorm, counts the number of
nonzero elements in its argument. The ones in the
resulting w identify the sparse set of diseased subjects.

2.2. Classification rules as collections of
diseased subjects

We have described group testing; now we show how
the formulation can be adapted to rule-based classi-
fication. The problem setup of interest is standard
binary supervised classification. We are given m la-
beled training samples {(x1,%1),- -, (Xm,¥m)} where
the x; € X are the features and the y; € {0,1} are
the Boolean labels. We would like to learn a function
9(-) + X — {0,1} that will accurately generalize to
classify unseen, unlabeled feature vectors drawn from
the same distribution as the training samples.

In rule-based classifiers, the clauses are made up of
individual Boolean terms, e.g. ‘months since promoted
> 13.” Such a term can be represented by a function
a(x). To represent the full diversity and dimensions of
the feature space X', we have many such Boolean terms
a;(-): X - {0,1}, 5 =1,...,n. For each continuous
dimension of X', these terms may be comparisons to
several suitably chosen thresholds. Then for each of
the training samples, we can calculate the truth value
for each of the terms, leading to an m X n truth table
A with entries {A};; = a;(x;).

Writing the true labels of the training set as a vector
y, we can write the same expression in the classifica-
tion problem as in group testing (3): y = (AVw)®n.
In the classification problem, w is the binary vector
to be learned that indicates the relevant features and
thresholds. For reasons of interpretability, insight, and
generalization, we would like w to be sparse, i.e. have
mostly zero-valued entries. The w corresponding to
the tennis example of Section 1 has three nonzero
elements and the salesforce example five. With the
desideratum of sparsity, the optimization problem to
be solved is also the same as for group testing (4).

The nonzero coefficients thus directly specify a
Boolean clause classification rule which can be applied
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to new unseen data. This clause is a disjunctive OR-
rule. In most of the rule-based classification literature,
however, the learning of AND-clauses is preferred. This
is easy to handle using DeMorgan’s law. If we comple-
ment y and A prior to the learning, then we have:

y=AAw & y“=A%w. (5)

Hence, our results apply to both OR-rules and AND-
rules, and we focus on the conjunctive case for the
remainder of the paper.

We have now described how to set up the problem of
learning AND-clause classifiers. However, the ¢y mini-
mization (4), as we have written it, is a combinatorial
optimization problem. The next section shows how w
can be found by relating the problem to Boolean com-
pressed sensing and using a linear programming relax-
ation. The section also provides theoretical results on
exact recovery.

3. Learning AND-clauses through
Boolean compressed sensing

Gilbert et al. (2008) and others have pointed out the
similarity of group testing to another problem: com-
pressed sensing—a signal processing technique for ef-
ficiently measuring and reconstructing signals. Both
involve sparse signal recovery, but group testing is un-
der a Boolean algebra instead of the typical algebra of
real numbers encountered in compressed sensing. Due
to their close connection, we show that it is possible to
apply suitably modified, efficient LP relaxations from
compressed sensing to solve the group testing prob-
lem, and now, due to Section 2, the classification rule
learning problem.

3.1. Basis pursuit

In the compressed sensing and sparse signal recov-
ery problem, the most popular technique for getting
around the combinatorial ¢y objective is to relax it
using a convex alternative, the ¢;-norm. This relax-
ation, known as basis pursuit, results in the following
optimization problem:

min |w||; such that y = Aw, (6)
where y, w, and A are all real-valued and the prod-
uct Aw is the standard matrix-vector product. This
optimization problem (6) can be solved efficiently via
LP solvers.

It has been shown that under certain conditions on
the matrix A, the £y solution and the ¢; solution are
equivalent, and that it is even possible to use a random

matrix for A and satisfy the conditions with high prob-
ability. The work of Malioutov & Malyutov (2012) ex-
tends the basis pursuit idea to Boolean algebras as we
describe next.

3.2. Boolean compressed sensing

The challenge in compressed sensing is with the non-
convexity of the fp-quasinorm. In the Boolean setting,
the equation (1) is also not a linear operation and must
also be dealt with if an LP relaxation is to be applied.
If a vector w satisfies the constraint that y = AV w,
then it also satisfies the pair of ordinary linear inequal-
ities:

APW Z 1, (7)
AZW = 0,

where P = {i|ly; = 1} is the set of positive tests, Z =
{ily; = 0} is the set of negative (or zero) tests, and
Ap and Az are the corresponding subsets of rows of
A. The vectors 1 and O are all ones and all zeroes,
respectively. These constraints can be incorporated
into an LP.

Thus the Boolean ¢; problem is:

min Z w; (8)
j=1

st. w;€{0,1},7=1,...,n
APWZ].
A2W:0.

Because of the Boolean integer constraint on the
weights, the problem (8) is NP-hard. We can further
relax the optimization to the following LP?:

min Z w; 9)
j=1

st. 0<w; <1,5=1,...,n
APWZ]_
AZWZO,

which is tractable. If non-integer w; are found, we set
them to one.

Slack variables may be introduced in the presence of
errors, when there may not be any sparse rules pro-
ducing the labels y exactly, but there are sparse rules
that approximate y very closely. This is the typical

’Instead of using LP, one can find solutions greedily,
as is done in the SCM, which gives a log(m) approxima-
tion. The same guarantee holds for LP with randomized
rounding. Empirically, LP tends to find sparser solutions.
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case in the supervised classification problem. The LP
is then:

min iwj + )\i& (10)
j=1 i=1

st. 0<w; <1,5=1,...,n

A’pW—'—s'le
AZWZ€Z~

The regularization parameter A trades training error
and the sparsity of w.

3.3. Exact recovery guarantees

We now use some tools from combinatorial group test-
ing (Dyachkov & Rykov, 1983; Du & Hwang, 2006)
to establish results for exact recovery and recovery
with small error probability in AND-clause learning via
an LP relaxation. First we introduce some definitions
used in group testing.

Definition 1 We call a measurement matrizc A K-
separating, if Boolean sums of sets of K columns are
all distinct. A is called K-disjunct, if the union of any
K columns does not contain any other column.

Note that the K-separating property for A is sufficient
to allow exact recovery of w with up to K nonzero
entries (Du & Hwang, 2006). However, finding the
solution would in general require searching over all
K-subsets out of n. The property of K-disjunctness,
which can be viewed as a Boolean analog of spark, is
a more restrictive condition which allows a dramatic
simplification of the search: a simple algorithm that
considers rows where y; = 0 and sets all w; where
{A};; = 1 to zero and leaves the other w; = 1, is
guaranteed to recover the correct solution. For non-
disjunct matrices this simple algorithm finds feasible
but suboptimal solutions. Note that any K-disjunct
matrix is guaranteed to be K-separating.

We recall the simple proof from Malioutov & Malyutov
(2012) that shows that LP relaxation in (9) recovers
the correct solution for the group testing problem with
K-disjunct A.

Lemma 1 Suppose there exists w* with K nonzero
entries andy = AVw*. If the matriz A is K-disjunct
then LP solution W in (9) recovers w*, i.e. W = w™.

Proof. First, due to the K-disjunct property, w* is a
unique solution to y = A V w* with up to K entries.

Also, w* is a feasible solution to the LP. Consider rows
of A corresponding to positive tests, and columns of A
which are not eliminated via the zero-rows. There are
exactly K such columns, and the K-disjunct property
implies that the matrix is full-rank (in the Euclidean
sense). For each column a; there is at least one
nonzero entry ¢ which does not appear in any other
column. Since y; = 1, and {A};; = 1, we have w; > 1.
Now wj = 1 for all j not eliminated via zero-rows,
so w* must be the unique optimal solution of the LP. ¢

Now to apply it to rule learning we start with classi-
fication problems with binary features. In this setting
the matrix A simply contains the feature values.? A
simple corollary of Lemma 1 is that if A is K-disjunct
and there is an underlying error-free K-term AND-rule,
then we can recover the rule exactly via our LP in (9).

A critical question is when can we expect our features
to yield a K-disjunct matrix? We show that if we have
enough samples to guarantee that each K +1 subset of
features is well-sampled as we define below, then the
matrix is K-disjunct. More formally,

Lemma 2 Suppose that for each subset of K + 1 fea-
tures, among our m samples we find at least one exam-
ple of each one of the possible binary (K + 1)-patterns,
then the matriz A is K-disjunct.

Proof. Note that there are 25€+1 possible binary pat-
terns for K features. Suppose that on the contrary the
matrix is not K-disjunct. Without loss of generality,
K-disjunctness fails for the first K columns covering
the (K + 1)-st one. Namely, columns aj,...,axi1
satisfy a1 C Uszlak. This is clearly impossible,
since by our assumption the pattern (0,0,...,0,1) for
our K + 1 variables is among our m samples. ¢

To interpret the lemma: if features are not strongly
correlated, then for any fixed K, for large enough
m we will eventually obtain all possible binary
patterns.  Using a simple union bound, for the
case of uncorrelated equiprobable binary features,
the probability that at least one of the K-subsets
exhibits a non-represented pattern is bounded above
by (5)2%(1 — (1/2)%)™. Clearly as m — oo this
bound approaches zero: with enough samples A is
K-disjunct.

3In general it will contain the features and their com-

plements as columns. However, with enough data, one of
the two choices will be removed by zero-row elimination
beforehand.
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3.4. Recovery with small error probability

We now use approximate disjunctness (also known as
a weakly-separating design) (Mazumdar, 2012; Malyu-
tov, 1978) to develop less restrictive conditions, when
we allow a small probability of error in recovery.

Definition 2 We call an m x n measurement matriz
A (e,K )-disjunct, if out of () K-subsets of columns
of A at least a (1—e€)-fraction of them satisfy the prop-
erty that their union does not contain any other col-
umn of A.

Lemma 3 If the matriz A is (¢, K)-disjunct then LP
in (9) recovers the correct solution with probability at
least 1 — €.

The proof is a direct extension of our earlier proof.

We note that by allowing a small probability of er-
ror in recovery, i.e. approximate disjunctness, we
can dramatically decrease the required number of
samples. For example for deterministic designs
there are known constructions of K-disjunct matri-
ces of size O(K?log(n)), whereas by allowing (e, K)-
disjunctness, there exist constructions requiring as
few as O(K>/%,/log(n/e)) measurements, and a non-
constructive information-theoretic argument suggest-
ing it could go to O(K log(n)) (Mazumdar, 2012).

3.5. Continuous features

Now let us consider the case where we have con-
tinuous features. We discretize feature dimension
x; using thresholds 60;; < 6;2 < < bp
such that the columns of A corresponding to
x; are the outputs of Boolean indicator functions
I, <6, (). .
One choice of thresholds is empirical quantiles.* Note
that the columns are not bins between the thresholds,
but rather half-spaces defined by all threshold values.

This matrix, as defined above, is not disjunct because,
e.g., In;>0;,(X) > I4;>0,,(x). However, without loss
of generality, for each feature we can remove all but
one of the corresponding columns of A. First, all of
the columns that intersect zero-rows in y can be elimi-
nated. Second, since the columns form a nested set, we
can select the remaining column with the most nonzero
entries without affecting the optimal value of the ob-
jective.® Through this reduction we are left with a sim-

4We could also use all the sample values as thresh-
olds: while it would increase complexity, column gener-
ation could be used to mitigate it (Demiriz et al., 2002).

®Some of the thresholds will be violated by the optimal

. 71337' <0;,p (X)7 ij>9j,1 (X)7 ) I$j>9j,D(X)'

ple classification problem with binary features, hence
the results in Lemmas 1 and 3 carry through for con-
tinuous features, where we can recover the rules up to
the threshold resolution.

4. Rule sets

In Section 3, we have shown how to efficiently solve the
single AND-clause learning problem from training data
by appealing to Boolean group testing and compressed
sensing. In this section we discuss how to take these
individual rules and combine them into rule sets.

The first rule set induction approach we consider, the
set covering approach, also known as separate-and-
conquer, is the outer loop of myriad learning algo-
rithms (Fiirnkranz, 1999). The differences in the al-
gorithms are in how they learn individual conjunctive
rules (our proposal here being to learn the individ-
ual rules through Boolean compressed sensing). After
the first individual AND-rule is learned, the training
samples for which the rule returns one are removed
from the training set. Then a second individual rule is
learned on the remaining training samples. The train-
ing samples classified as one are again removed from
the training set, a third rule is learned, and the process
continues. The final classification is a DNF, i.e. the OR
of all of the learned AND-clauses.

The second rule set construction approach we consider
is boosting. The result is a weighted rule set in which
the individual rules vote to produce the final classifica-
tion. The learning procedure is sequential, like set cov-
ering, but instead of removing training samples that
are classified as one on each round, all samples are in-
cluded on each round but weights are given to empha-
size incorrectly classified samples. For a given round
t, the objective of the LP becomes:

n m
min Y w; + A dribi,
j=1 i=1

where d;; > 0 is the weight applied to sample ¢ and
> ;dii = 1. Cohen & Singer (1999) propose a form
of boosting for rule sets that results in a voting that
is interpretable and similar to set covering rule sets.
We adopt the same boosting updates, as presented in
Algorithm 1.

(11)

5. Empirical results

In this section, we first discuss some implementation
notes and show an illustrative example of the proposed

solution—the ones that are not violated are indistinguish-
able given the available data and our choice of thresholds.



Exact Rule Learning via Boolean Compressed Sensing

Algorithm 1 Boosting Decision Rules
initialize: d; ; = %
fort=1to T do

w* < LP with objective (11)
STP €= D (il (xi)=1y,=1} Dt
SEP € 2 (il (x)= 1.y =0} It
ST € Dfilyi=1y Gt

SE 4 2 ijy,=o) Tt
if (\/STp — N/SFP)Q > (\/ﬁ— \/5)2 then

A 1 stpte
Ct — 3 In (SFP+6

Ut (X) — ét?JW* (X)
elsg
Ct — %ln (m)

sp+e
:l)t (X) < Ct

end if

d(t+1),z‘ — dt,i/eXp((Qyi —1)9:(x))

normalize so that ), d41); = 1
end for

0 d <0

output: j(x) = { 2 Br(x) <

]., Zt g]t(x) >0

approach. Then we provide a comparative study of
classification accuracy and rule set complexity.

5.1. Implementation notes

As discussed in Section 3.5, continuous features are
approached using indicator functions on thresholds in
both directions of comparison; in particular we use 10
quantile-based thresholds per continuous feature di-
mension. To solve the LP (10), we use SDPT3 version
4.0. We do not attempt to optimize the regulariza-
tion parameter A in this work, but leave it fixed at
A = 1000. We also do not attempt to optimize the
number of rounds of boosting, but leave T' = 5.

5.2. Illustrative example

We illustrate the types of sparse interpretable rules
that are obtained using the proposed rule learner on
the iris data set. We consider the binary problem of
classifying iris versicolor from the other two species,
setosa and virginica. Of the four features, sepal length,
sepal width, petal length, and petal width, the rule
that is learned, plotted in Fig. 1, involves only two
features and three Boolean expressions:

e petal length < 5.350 cm; AND
e petal width < 1.700 cm; AND

e petal width > 0.875 cm.

25 T T T T *

x X
XXX X X X x
X X x
XXX X x
2 XK X X
—_ XX X x
S KX X XXX X X
L ++ o+ x
1.5 + - xx
ﬂ + 4 x
= +
o= H++ +
=3 +
—_ 1 +++ ++
<
-
]
& .
051 x
X XX X
200¢ X
300050 X
X XX
0 . . .
1 2 4 5 6 7

3
petal length (cm)

Figure 1. Decision rule learned to classify the iris species
versicolor (magenta + markers) from the other two species
(black x markers).

5.3. Classification performance comparisons

As an empirical study, we consider several inter-
pretable classifiers: the proposed Boolean compressed
sensing-based single rule learner (1Rule), the set cov-
ering approach to extend the proposed rule learner
(RuSC), the boosting approach to extend the proposed
rule learner (RuB), the decision lists algorithm in SPSS
(DList), the C5.0 Release 2.06 algorithm with rule set
option in SPSS (C5.0), and the classification and re-
gression trees algorithm in Matlab’s classregtree func-
tion (CART).5

We also consider several classifiers that are not in-
terpretable: the random forests classifier in Matlab’s
TreeBagger class (TrBag), the k-nearest neighbor al-
gorithm in SPSS (kNN), discriminant analysis of the
Matlab function classify, and SVMs with radial basis
function kernel in SPSS (SVM).

The data sets to which we apply these classification
algorithms come from the UCI repository (Frank &
Asuncion, 2010). They are all binary classification
data sets with real-valued features. (We have not con-
sidered data sets with categorical-valued features in
this study to allow comparisons to a broader set of
classifiers; in fact, classification of categorical-valued
features is a setting in which rule-based approaches
excel.) The specific data sets are: Indian liver pa-
tient dataset (ILPD), Ionosphere (Ionos), BUPA liver
disorders (Liver), Parkinsons (Parkin), Pima Indian
diabetes (Pima), connectionist bench sonar (Sonar),
blood transfusion service center (Trans), and breast
cancer Wisconsin diagnostic (WDBC).

S5We use IBM SPSS Modeler 14.1 and Matlab R2009a
with default settings.
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Table 1. Tenfold cross-validation test error on various data sets.

1RULE RuSC RuB DLisT C5.0 CART TrBacG KNN Discr SVM
ILPD 0.2985 0.2985 0.2796 0.3654 0.3053 0.3362 0.2950 0.3019 0.3636 0.3002
ToNos 0.0741 0.0712 0.0798 0.1994 0.0741 0.0997 0.0655 0.1368 0.1425 0.0541
LIVER 0.4609 0.4029 0.3942 0.4522 0.3652 0.3768 0.3101 0.3101 0.3768 0.3217
PARKIN  0.1744 0.1538 0.1590 0.2513 0.1641 0.1282 0.0821 0.1641 0.1641 0.1436
Pima 0.2617 0.2539 0.2526 0.3138 0.2487 0.2891 0.2305 0.2969 0.2370 0.2344
SONAR  0.3702 0.3137 0.3413 0.3846 0.2500 0.2837  0.1490 0.2260 0.2452 0.1442
TRANS 0.2406 0.2406 0.2420 0.3543 0.2166 0.2701 0.2540 0.2286 0.3369 0.2353
WDBC 0.0703 0.0562 0.0562 0.0967 0.0650 0.0808 0.0422 0.0685 0.0404 0.0228

Table 1 gives tenfold cross-validation test errors for the
various classifiers. Table 2 gives the average number
of rules across the ten folds needed by the different
rule-based classifiers to achieve those error rates.

It can be noted that our rule sets have better accuracy
than decision lists on all data sets and our single rule
has better accuracy than decision lists in all but one
instance. On about half of the data sets, our set cover-
ing rule set has fewer rules than decision lists. Taking
the number of rules as an indication of interpretabil-
ity, we see that our set covering rule set has about
the same level of interpretability as decision lists but
with better classification accuracy. (We did not opti-
mize the number of rules in boosting.) Even our single
rule, which is very interpretable, typically has better
accuracy than decision lists with more rules.

Compared to the C5.0 rule set, our proposed rule sets
are much more interpretable because they have many
fewer rules on average across the data sets considered.
The accuracy of C5.0 and our rule sets is on par, as
each approach has better accuracy on half of the data
sets. The best performing algorithms in terms of ac-
curacy are SVMs and random forests, but we see gen-
erally quite competitive accuracy with the advantage
of interpretability by the proposed approach. On the
ILPD data set, our boosting approach has the best
accuracy among all ten classifiers considered.

6. Conclusion

In this paper, we have developed a new optimization
approach for learning decision rules based on com-
pressed sensing ideas. The approach leads to a power-
ful rule-based classification system whose outputs are
easy for human users to trust and draw insight from.
In contrast to typical rule learners, the proposed ap-
proach is not heuristic. We prove theoretical results
showing that exact rule recovery is possible through
a convex relaxation of the combinatorial optimization
problem under certain conditions.

Table 2. Tenfold average number of conjunctive clauses in
rule set.

1RuLE RuSC RuB DList C5.0
ILPD 1.0 1.2 5.0 3.7 11.7
ToNos 1.0 4.1 5.0 3.7 8.4
LIVER 1.0 3.5 5.0 1.1 15.3
PARKIN 1.0 3.1 5.0 1.2 7.3
Pima 1.0 2.3 5.0 5.0 12.0
SONAR 1.0 3.9 5.0 1.0 10.4
TRANS 1.0 1.2 5.0 2.3 4.3
WDBC 1.0 4.1 5.0 3.2 7.4

In addition, through an empirical study, we have
shown that the proposed algorithm is practical and
leads to a classifier that has better accuracy than
SPSS’s decision lists, similar accuracy as C5.0’s
weighted rule set as well as classification and regression
trees, and accuracy not far from SVMs and random
forests. In fact, on the ILPD data set, the boosting
version of the rule set provides the best accuracy over-
all. This accuracy is achieved while maintaining simi-
lar interpretability as SPSS’s decision lists and having
better interpretability than all other methods. Even
our single rule classifier without a full rule set can be
used in practical situations.

In future work we plan to conduct a detailed study of
the practical aspects of our algorithm, such as optimiz-
ing the number of rounds of boosting and setting the
error parameters, to further improve its performance.
Furthermore, we plan to evaluate the performance of
our approach on much larger data sets from real-world
projects, compare both the accuracy and the inter-
pretability, and evaluate feedback from typical users.
We also plan to investigate the generalization perfor-
mance of our approach from the statistical learning
theory perspective: as it is based on principled convex
relaxations, such analysis may be more amenable than
for heuristic rule learning approaches.
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