
Sparse coding for multitask and transfer learning

Appendix

In this appendix, we present the proof of Theorems 1
and 2. We begin by introducing some more notation
and auxiliary results.

A. Notation and tools

Issues of measurability will be ignored throughout, in
particular, if F is a class of real valued functions on
a domain X and X a random variable with values in
X then we will always write E supf∈F f (X) to mean
sup {Emaxf∈F0

f (X) : F0 ⊆ F , F0 finite}.
In the sequel H denotes a finite or infinite dimensional
Hilbert space with inner product 〈·, ·〉 and norm ‖·‖.
If T is a bounded linear operator on H its operator
norm is written ‖T‖∞ = sup {‖Tx‖ : ‖x‖ = 1}.
Members of H are denoted with lower case italics such
as x, v, w, vectors composed of such vectors are in bold
lower case, i.e. x = (x1, . . . , xm) or v =(v1, . . . , vn),
where m or n are explained in the context.

Let B be the unit ball in H. An example is a pair z =
(x, y) ∈ B×R =: Z, a sample is a vector of such pairs
z = (z1, . . . , zm) = ((x1, y1) , . . . , (xm, ym)). Here we
also write z = (x,y), with x = (x1, . . . , xm) ∈ Hm

and y = (y1, . . . , ym) ∈ R
m.

A multisample is a vector Z = (z1, . . . , zT ) com-
posed of samples. We also write Z = (X,Y) with
X =(x1, . . . ,xT ).

For members of R
K we use the greek letters γ or

β. Depending on context the inner product and eu-
clidean norm on R

K will also be denoted with 〈·, ·〉
and ‖.‖. The ℓ1-norm ‖·‖1 on R

K is defined by

‖β‖1 =
∑K

k=1 |γk|.
In the sequel we denote with Cα the set
{

β ∈ R
K : ‖β‖1 ≤ α

}

, abbreviate C for the ℓ1-
unit ball C1. The canonical basis of R

K is denoted
e1, . . . , eK . Unless otherwise specified the summation
over he index i will always run from 1 to m, t will run
from 1 to T , and k will run from 1 to K.

A.1. Covariances

For x ∈Hm the empirical covariance operator Σ̂ (x) is
specified by

〈

Σ̂ (x) v, w
〉

=
1

m

∑

i

〈v, xi〉 〈xi, w〉 , v, w ∈ H.

The definition implies the inequality

∑

i

〈v, xi〉2 = m
〈

Σ̂ (x) v, v
〉

≤ m
∥

∥

∥
Σ̂ (x)

∥

∥

∥

∞
‖v‖2 .

(6)

It also follows that tr
(

Σ̂ (x)
)

= (1/m)
∑

i ‖xi‖
2
.

For a multisample X ∈ HmT we will consider two
quantities defined in terms of the empirical covari-
ances.

S1 (X) =
1

T

∑

t

∥

∥

∥Σ̂ (xt)
∥

∥

∥

1
:=

1

T

∑

t

tr
(

Σ̂ (xt)
)

S∞ (X) =
1

T

∑

t

∥

∥

∥
Σ̂ (xt)

∥

∥

∥

∞
:=

1

T

∑

t

λmax

(

Σ̂ (xt)
)

where λmax is the largest eigenvalue. If all data points
xti lie in the unit ball of H then S1 (X) ≤ 1. Of course
S1 (X) can also be written as the trace of the total
covariance (1/T )

∑

t Σ̂ (xt), while S∞ (X) will always
be at least as large as the largest eigenvalue of the
total covariance. We always have S∞ (X) ≤ S1 (X),
with equality only if the data is one-dimensional for all
tasks. The quotient S1 (X) /S∞ (X) can be regarded
as a crude measure of the effective dimensionality of
the data. If the data have a high dimensional distri-
bution for each task then S∞ (X) can be considerably
smaller than S1 (X).

A.2. Concentration inequalities

Let X be any space. For x ∈ Xn, 1 ≤ k ≤ n and y ∈ X
we use xk←y to denote the object obtained from x by
replacing the k-th coordinate of x with y. That is

xk←y = (x1, . . . , xk−1, y, xk+1, . . . , xn) .

The concentration inequality in part (i) of the follow-
ing theorem, known as the bounded difference inequal-
ity is given in (McDiarmid, 1998). A proof of inequal-
ity (ii) is given in (Maurer, 2006).

Theorem 3. Let F : Xn → R and define A and B by

A2 = sup
x∈Xn

n
∑

k=1

sup
y1,y2∈X

(F (xk←y1
)− F (xk←y2

))
2

B2 = sup
x∈Xn

n
∑

k=1

(

F (x)− inf
y∈X

F (xk←y)

)2

.

Let X = (X1, . . . , Xn) be a vector of independent ran-
dom variables with values in X , and let X′ be i.i.d. to
X. Then for any s > 0

(i) Pr {F (X) > EF (X′) + s} ≤ e−2s
2/A2

;

(ii) Pr {F (X) > EF (X′) + s} ≤ e−s
2/(2B2).
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A.3. Rademacher and Gaussian averages

We will use the term Rademacher variables for any
set of independent random variables, uniformly dis-
tributed on {−1, 1}, and reserve the symbol σ for
Rademacher variables. A set of random variables
is called orthogaussian if the members are indepen-
dent N (0, 1)-distributed (standard normal) variables
and reserve the letter ζ for standard normal vari-
ables. Thus σ1, σ2, . . . , σi, . . . , σ11, . . . , σij etc. will
always be independent Rademacher variables and
ζ1, ζ2, . . . , ζi, . . . , ζ11, . . . , ζij will always be orthogaus-
sian.

For A ⊆ R
n we define the Rademacher and Gaussian

averages of A (Ledoux & Talagrand, 1991; Bartlett &
Mendelson, 2002) as

R (A) = Eσ sup
(x1,...,xn)∈A

2

n

n
∑

i=1

σixi,

G (A) = Eζ sup
(x1,...,xn)∈A

2

n

n
∑

i=1

ζixi.

If F is a class of real valued functions on a space X
and x = (x1, . . . , xn) ∈ Xn we write

F (x) = F (x1, . . . , xn)

= {(f (x1) , . . . , f (xn)) : f ∈ F} ⊆ R
n.

The empirical Rademacher and Gaussian complexities
of F on x are respectively R (F (x)) and G (F (x)).

The utility of these concepts for learning theory comes
from the following key-result (see (Bartlett & Mendel-
son, 2002; Koltchinskii & Panchenko, 2002)), stated
here in two portions for convenience in the sequel.

Theorem 4. Let F be a real-valued function class on
a space X and µ1, . . . , µm be probability measures on X
with product measure µ =

∏

i µi on Xm. For x ∈ Xm

define

Φ (x) = sup
f∈F

1

m

m
∑

i=1

(

Ex∼µi
[f (x)]− f (xi)

)

.

Then Ex∼µ [Φ (x)] ≤ Ex∼µR (F (x)).

Proof. For any realization σ = σ1, . . . , σm of the
Rademacher variables

Ex∼µ [Φ (x)]

= Ex∼µ sup
f∈F

1

m
Ex′∼µ

m
∑

i=1

(f (x′i)− f (xi))

≤ Ex,x′∼µ×µ sup
f∈F

1

m

m
∑

i=1

σi (f (x
′
i)− f (xi)) ,

because of the symmetry of the measure µ ×
µ (x,x′)=

∏

i µi ×
∏

i µi (x,x
′)under the interchange

xi ↔ x′i. Taking the expectation in σ and applying
the triangle inequality gives the result.

Theorem 5. Let F be a [0, 1]-valued function class on
a space X , and µ as above. For δ > 0 we have with
probability greater than 1− δ in the sample x ∼ µ that
for all f ∈ F

Ex∼µ [f (x)] ≤ 1

m

m
∑

i=1

f (xi)+Ex∼µR (F (x))+

√

ln (1/δ)

2m
.

To prove this apply the bounded-difference inequality
( part (i) of Theorem 3) to the function Φ of the previ-
ous theorem (see e.g. (Bartlett & Mendelson, 2002)).
Under the conditions of this result, changing one of
the xi will not change R (F (x)) by more than 2, so
again by the bounded difference inequality applied to
R (F (x)) and a union bound we obtain the data de-
pendent version

Corollary 6. Let F and µ be as above. For δ > 0 we
have with probability greater than 1 − δ in the sample
x ∼ µ that for all f ∈ F

Ex∼µ [f (x)] ≤ 1

m

m
∑

i=1

f (xi)+R (F (x))+

√

9 ln (2/δ)

2m
.

To bound Rademacher averages the following result
is very useful (Bartlett & Mendelson, 2002; Ando &
Zhang, 2005; Ledoux & Talagrand, 1991)

Lemma 7. Let A ⊆ R
n, and let ψ1, . . . , ψn

be real functions such that ψi (s) − ψi (t) ≤
L |s− t|,∀i, and s, t ∈ R. Define ψ (A) =
{ψ1 (x1) , . . . , ψn (xn) : (x1, . . . , xn) ∈ A}. Then

R (ψ (A)) ≤ LR (A) .

Sometimes it is more convenient to work with gaus-
sian averages which can be used instead, by virtue of
the next lemma. For a proof see e.g. (Ledoux & Tala-
grand, 1991)

Lemma 8. For A ⊆ R
k we have R (A) ≤

√

π/2 G (A).

The next result is known as Slepian’s lemma ((Slepian,
1962), (Ledoux & Talagrand, 1991)).

Theorem 9. Let Ω and Ξ be mean zero, separable
Gaussian processes indexed by a common set S, such
that

E (Ωs1 − Ωs2)
2 ≤ E (Ξs1 − Ξs2)

2
for all s1, s2 ∈ S.

Then
E sup

s∈S
Ωs ≤ E sup

s∈S
Ξs.
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B. Proofs

B.1. Multitask learning

In this section we prove Theorem 1. It is an immediate
consequence of Hoeffding’s inequality and the follow-
ing uniform bound on the estimation error.

Theorem 10. Let δ > 0, fix K and let µ1, . . . , µT

be probability measures on H ×R. With probability at
least 1− δ in the draw of Z ∼∏T

t=1 µt we have for all
D ∈ DK and all γ ∈ CTα that

1

T

T
∑

t=1

E(x,y)∼µt
[ℓ (〈Dγt, x〉 , y)]

− 1

mT

T
∑

t=1

m
∑

i=1

ℓ (〈Dγt, xti〉 , yti)

≤ Lα

√

2S1 (X) (K + 12)

mT

+ Lα

√

8S∞ (X) ln (2K)

m
+

√

9 ln 2/δ

2mT
.

The proof of this theorem requires auxiliary results.

Fix X ∈ HmT and for γ = (γ1, . . . , γT ) ∈
(

R
K
)T

define the random variable

Fγ = Fγ (σ) = sup
D∈DK

∑

t,i

σti 〈Dγt, xti〉 . (7)

Lemma 11. (i) If γ = (γ1, . . . , γT ) satisfies ‖γt‖ ≤ 1
for all t, then

EFγ ≤
√

mTK S1 (X).

(ii) If γ satisfies ‖γt‖1 ≤ 1 for all t, then for any s ≥ 0

Pr {Fγ ≥ E [Fγ ] + s} ≤ exp

( −s2
8mT S∞ (X)

)

.

Proof. (i) We observe that

EFγ = E sup
D

∑

k

〈

Dek,
∑

t,i

σtiγtkxti

〉

≤ sup
D

(

∑

k

‖Dek‖2
)1/2

E







∑

k

∥

∥

∥

∥

∥

∥

∑

t,i

σtiγtkxti

∥

∥

∥

∥

∥

∥

2






1/2

≤
√
K







∑

k

E

∥

∥

∥

∥

∥

∥

∑

t,i

σtiγtkxti

∥

∥

∥

∥

∥

∥

2






1/2

=
√
K





∑

k,t,i

|γtk|2 ‖xti‖2




1/2

=
√
K

(

∑

t

(

∑

k

|γtk|2
)

∑

i

‖xti‖2
)1/2

≤
√

K
∑

t,i

‖xti‖2 =
√

mTK S1 (X).

(ii) For any configuration σ of the Rademacher vari-
ables let D (σ) be the maximizer in the definition of
Fγ (σ). Then for any s ∈ {1, . . . , T}, j ∈ {1, . . . ,m}
and any σ′ ∈ {−1, 1} to replace σsj we have

Fγ (σ)− Fγ

(

σ(sj)←σ′

)

≤ 2 |〈D (σ) γs, xsj〉| .

Using the inequality (6) we then obtain

∑

sj

(

Fγ (σ)− infσ′∈{−1,1} Fγ

(

σ(sj)←σ′

))2

≤ 4
∑

t,i

〈D (σ) γt, xti〉2

≤ 4m
∑

t

∥

∥

∥
Σ̂ (xt)

∥

∥

∥

∞
‖D (σ) γt‖2

≤ 4m
∑

t

∥

∥

∥
Σ̂ (xt)

∥

∥

∥

∞
.

In the last inequality we used the fact that for any D ∈
DK we have ‖Dγt‖ ≤

∑

k |γtk| ‖Dek‖ ≤ ‖γt‖1 ≤ 1.
The conclusion now follows from part (ii) of Theorem
3.

Proposition 12. We have for every fixed Z =
(X,Y) ∈ (H × R)

mT
we have

Eσ supD∈D,γ∈(Cα)T
∑

t,i σitℓ (〈Dγt, xti〉 , yti)

≤ Lα
√

2mTS1 (X) (K + 12)+LαT
√

8mS∞ (X) ln (2K).

Proof. It suffices to prove the result for α = 1, the
general result being a consequence of rescaling. By
Lemma 7 and the Lipschitz properties of the loss func-
tion ℓ we have
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Eσ supD∈DK ,γ∈(C)T ,

∑

t,i σitℓ (〈Dγt, xti〉 , yti)

≤ LEσ sup
D∈DK ,γ∈(C)T ,

∑

t,i

σit 〈Dγt, xti〉 . (8)

Since linear functions on a compact convex set attain
their maxima at the extreme points, we have

E sup
D∈DK ,γ∈(C)T ,

T
∑

t=1

m
∑

i=1

σit 〈Dγt, xti〉 = E max
γ∈ext(C)T

Fγ ,

(9)
where Fγ is defined as in (7). Let c =

√

mKTS1 (X).
Now for any δ ≥ 0 we have, since Fγ ≥ 0,

Emax
γ∈ext(C)T Fγ =

∫∞
0

Pr
{

max
γ∈ext(C)T Fγ > s

}

ds

≤ c+ δ +
∑

γ∈(ext(C))T

∫ ∞

√
mKTS1(X)+δ

Pr {Fγ > s} ds

≤ c+ δ +
∑

γ∈(ext(C))T

∫ ∞

δ

Pr {Fγ > EFγ + s} ds

≤ c+ δ + (2K)
T
∫ ∞

δ

exp

( −s2
8mTS∞ (X)

)

ds

≤ c+ δ +
4mTS∞ (X) (2K)

T

δ
exp

( −δ2
8mTS∞ (X)

)

.

Here the first inequality follows from the fact that
probabilities never exceed 1 and a union bound. The
second inequality follows from Lemma 11, part (i),
since EFk ≤

√

mKTS1 (X). The third inequality fol-
lows from Lemma 11, part (ii), and the fact that the
cardinality of ext(C) is 2K, and the last inequality fol-
lows from a well known estimate on Gaussian random

variables. Setting δ =

√

8mTS∞ (X) ln
(

e (2K)
T
)

we

obtain with some easy simplifying estimates

Emax
γ∈ext(C)T Fγ ≤

√

2mT (K + 12)S1 (X)

+T
√

8mS∞ (X) ln (2K),

which together with (8) and (9) gives the result.

Theorem 10 now follows from Corollary 6.

If the set Cα is replaced by any other subset C′ of the
ℓ2-ball of radius α, a similar proof strategy can be em-
ployed. The denominator in the exponent of Lemma
11-(ii) then obtains another factor of

√
K. The union

bound over the extreme points in ext(C) in the previ-
ous proposition can be replaced by a union bound over
a cover C′. This leads to the alternative result men-
tioned in Remark 5 following the statement of Theo-
rem 1.

Another modification leads to a bound for the method
presented in (Kumar & Daumé III, 2012), where the
constraint ‖Dek‖ ≤ 1 is replaced by ‖D‖2 ≤

√
K (here

‖·‖2 is the Frobenius or Hilbert Schmidt norm) and the
constraint ‖γt‖1 ≤ α, ∀t is replaced by

∑ ‖γt‖1 ≤ αT .
To explain the modification we set α = 1. Part (i)
of Lemma 11 is easily verified. The union bound over
(ext (C))T in the previous proposition is replaced by
a union bound over the 2TK extreme points of the
ℓ1-Ball of radius T in R

TK . For part (ii) we use the
fact that the concentration result is only needed for γ
being an extremepoint (so that it involves only a single

task) and obtain the bound
∑

t

∥

∥

∥
Σ̂ (xt)

∥

∥

∥

∞
‖Dγt‖2 ≤

TKS′∞ (X), leading to

Pr {Fγ ≥ E [Fγ ] + s} ≤ exp

( −s2
8mTK S′∞ (X)

)

.

Proceeding as above we obtain the excess risk bound

Lα
√

2S1(X)(K+12)
mT + Lα

√

8KS′
∞

(X) ln(2KT )
m

+

√

8 ln 4/δ

mT
,

to replace the bound in Theorem 1. The factor
√
K

in the second term seems quite weak, but it must be
borne in mind that the constraint ‖D‖2 ≤

√
K is much

weaker than ‖Dek‖ ≤ 1, and allows for a smaller
approximation error. If we retain ‖Dek‖ ≤ 1 and
only modify the γ-constraint to

∑ ‖γt‖1 ≤ αT the√
K in the second term disappears and by comparison

to Theorem 1 there is only and additional lnT and
the switch from S∞ (X) to S′∞ (X), reflecting the fact
that

∑ ‖γt‖1 ≤ αT is a much weaker constraint than
‖γt‖1 ≤ α, ∀t, so that, again, a smaller minimum in
(1) is possible for the modified method.

B.2. Learning to learn

In this section we prove Theorem 2. The basic strategy
is as follows. Recall the definition (4) of the measure
ρE , which governs the generation of a training sample
in the environment E . On a given training sample
z ∼ρE the algorithm AD as defined in (3) incurs the
empirical risk

R̂D (z) = min
γ∈Cα

1

m

m
∑

i=1

ℓ (〈Dγ, xi〉 , yi) .

The algorithm AD, essentially being the Lasso, has
very good estimation properties, so R̂D (z) will be close
to the true risk of AD in the corresponding task. This
means that we only really need to estimate the ex-
pected empirical risk Ez∼ρ

E
R̂D (z) of AD on future
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tasks. On the other hand the minimization problem
(1) can be written as

min
D∈DK

1

T

T
∑

t=1

R̂D (zt) with Z =(z1, . . . , zT ) ∼ (ρE)
T
,

with dictionary D (Z) being the minimizer. If DK is
not too large this should be similar to Ez∼ρ

E
R̂D(Z) (z).

In the sequel we make this precise.

Lemma 13. For v ∈ H with ‖v‖ ≤ 1 and x ∈ Hm let
F be the random variable

F =

∣

∣

∣

∣

∣

〈

v,
∑

i

σixi

〉∣

∣

∣

∣

∣

.

Then (i) EF ≤ √m
∥

∥

∥Σ̂ (x)
∥

∥

∥

1/2

∞
and (ii) for t ≥ 0

Pr {F > EF + s} ≤ exp





−s2

2m
∥

∥

∥Σ̂ (x)
∥

∥

∥

∞



 .

Proof. (i). Using Jensen’s inequality and (6) we get

EF ≤



E

〈

v,
∑

i

σixi

〉2




1/2

=

(

∑

i

〈v, xi〉2
)1/2

≤ m
∥

∥

∥Σ̂ (x)
∥

∥

∥

∞
.

(ii) Let σ be any configuration of the Rademacher vari-
ables. For any σ′, σ′′ ∈ {−1, 1} to replace σsj we have

F
(

σ(sj)←σ′

)

− F
(

σ(sj)←σ′′

)

≤ 2 |〈v, xj〉| ,

so the conclusion follows from the bounded difference
inequality, Theorem 3 (i).

Lemma 14. For v1, . . . , vK ∈ H satisfying ‖vk‖ ≤ 1,
x ∈ Hm we have

Emax
k

∣

∣

∣

∣

∣

〈

vk,
∑

i

σixi

〉∣

∣

∣

∣

∣

≤
√

2m
∥

∥

∥
Σ̂ (x)

∥

∥

∥

∞

(

2 +
√
lnK

)

.

Proof. Let Fk = |〈vk,
∑

i σixi〉|. Setting c =
√

m
∥

∥

∥
Σ̂ (x)

∥

∥

∥

∞
and using integration by parts we have

for δ ≥ 0

Emaxk Fk

≤ c+ δ +

∫ ∞
√

m‖Σ̂(x)‖
∞

+δ

max
k

Pr {Fk ≥ s} ds

≤ c+ δ +
∑

k

∫ ∞

δ

Pr {Fk ≥ EFk + s} ds

≤ c+ δ +
∑

k

∫ ∞

δ

exp





−s2

2m
∥

∥

∥Σ̂ (x)
∥

∥

∥

∞



 ds

≤ c+ δ +
mK

∥

∥

∥
Σ̂ (x)

∥

∥

∥

∞
δ

exp





−δ2

2m
∥

∥

∥Σ̂ (x)
∥

∥

∥

∞



 .

Above the first inequality is trivial, the second follows
from Lemma 13 (i) and a union bound, the third in-
equality follows from Lemma 13 (ii) and the last from
a well known approximation. The conclusion follows

from substitution of δ =

√

2m
∥

∥

∥Σ̂ (x)
∥

∥

∥

∞
ln (eK).

Proposition 15. Let SE :=

Eτ∼EE(x,y)∼µm
τ

∥

∥

∥Σ̂ (x)
∥

∥

∥

∞
. With probability at

least 1− δ in the multisample Z ∼ ρTE

sup
D∈DK

RE (AD)− 1

T

T
∑

t=1

R̂D (zt) (10)

≤ LαK

√

2πS1 (X)

T
(11)

+ 4Lα

√

S∞ (E) (2 + lnK)

m
+

√

ln 1/δ

2T
.

Proof. Following our strategy we write (abbreviating
ρ = ρE)

sup
D∈DK

RE (AD)− 1

T

T
∑

t=1

R̂D (zt)

≤ sup
D∈DK

Eτ∼EEz∼µm
τ

(12)

[

E(x,y)∼µτ
[ℓ (〈AD (z) , x〉 , y)]− R̂D (z)

]

+ sup
D∈DK

Ez∼ρ
[

R̂D (z)
]

− 1

T

T
∑

t=1

R̂D (zt)

and proceed by bounding each of the two terms in
turn.

For any fixed dictionary D and any measure µ on Z
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we have

Ez∼µm

[

E(x,y)∼µ [ℓ (〈AD (z) , x〉 , y)]− R̂D (z)
]

≤ Ez∼µm sup
γ∈Cα

[

E(x,y)∼µ [ℓ (〈Dγ, x〉 , y)]

− 1

m

m
∑

i=1

ℓ (〈Dγ, xi〉 , yi)
]

≤ 2

m
Ez∼µmEσ sup

γ∈Cα

m
∑

i=1

σiℓ (〈Dγ, xi〉 , yi) [Theorem 4]

≤ 2L

m
Ez∼µmEσ sup

γ∈Cα

∑

k

γk

〈

Dek,

m
∑

i=1

σixi

〉

[Lemma 7]

≤ 2Lα

m
Ez∼µmEσ max

k

∣

∣

∣

∣

∣

〈

Dek,

m
∑

i=1

σixi

〉∣

∣

∣

∣

∣

[Hölder’s ineq.]

≤ 2Lα

m
Ez∼µm

√

2mλmax

(

Σ̂ (x)
)(

2 +
√
lnK

)

[Lemma 13 (i)]

≤ 2Lα

√

√

√

√

4Ez∼µmλmax

(

Σ̂ (x)
)

(2 + lnK)

m
[Jensen’s ineq.].

This gives the bound

Ez∼µm

[

E(x,y)∼µ [ℓ (〈AD (z) , x〉 , y)] − R̂D (z)
]

≤ 4Lα

√

√

√

√

Ez∼µmλmax

(

Σ̂ (x)
)

(2 + lnK)

m
(13)

valid for every measure µ on H×R and every D ∈ DK .
Replacing µ by µτ , taking the expectation as τ ∼ E
and using Jensen’s inequality bounds the first term on
the right hand side of (12) by the second term on the
right hand side of (10).

We proceed to bound the second term. From Corollary
6 and Lemma 8 we get that with probability at least
1− δ in Z ∼ (ρE)

T

supD∈DK
Ez∼ρ

[

R̂D (z)
]

− 1
T

∑T
t=1 R̂D (zt)

≤
√
2π

T
Eζ sup

D∈DK

T
∑

t=1

ζtR̂D (zt) +

√

ln 1/δ

2T
,

where ζt is an orthogaussian sequence. Define two
Gaussian processes Ω and Ξ indexed by DK as

ΩD =
∑T

t=1 ζtR̂D (zt)

and

ΞD = Lα√
m

∑T
t=1

∑m
i=1

∑K
k=1 ζkij 〈Dek, xti〉,

where the ζijk are also orthogaussian. Then for
D1, D2 ∈ DK

E (ΩD1
− ΩD2

)
2
=

=

T
∑

t=1

(

R̂D1
(zt)− R̂D2

(zt)
)2

≤
T
∑

t=1

(

sup
γ∈Cα

1

m

m
∑

i=1

ℓ (〈D1γ, xti〉 , yti)

−ℓ (〈D2γ, xti〉 , yti)
)2

≤ L2
T
∑

t=1

sup
γ∈Cα

(

1

m

m
∑

i=1

〈γ, (D∗1 −D∗2)xti〉
)2

Lipschitz

≤ L2

m

T
∑

t=1

sup
γ∈Cα

m
∑

i=1

〈γ, (D∗1 −D∗2)xti〉2 Jensen

≤ L2α2

m

T
∑

t=1

m
∑

i=1

K
∑

k=1

‖(D∗1 −D∗2)xti‖2 (Cauchy-Schwarz)

=
L2α2

m

T
∑

t=1

m
∑

i=1

K
∑

k=1

(〈D1ek, xti〉 − 〈D2ek, xti〉)2

= E (ΞD1
− ΞD2

)
2
.

So by Slepian’s Lemma

E supD∈DK

∑T
t=1 ζjR̂D (zt)

= E sup
D∈DK

ΩD ≤ E sup
D∈D

ΞD

=
2π

T

Lα√
m
E sup

D∈DK

T
∑

t=1

m
∑

i=1

K
∑

k=1

ζkij 〈Dek, xti〉

=
Lα√
m
E sup

D∈DK

K
∑

k=1

〈

Dek,

T
∑

t=1

m
∑

i=1

ζkijxti

〉

≤ Lα√
m

sup
D∈DK

(

∑

k

‖Dek‖2
)1/2

Eζ







∑

k

∥

∥

∥

∥

∥

∥

∑

t,i

ζtkixti

∥

∥

∥

∥

∥

∥

2






1/2

≤ Lα
√
K√
m







∑

k

Eζ

∥

∥

∥

∥

∥

∥

∑

t,i

ζtkixti

∥

∥

∥

∥

∥

∥

2






1/2

≤ Lα
√
K√
m





∑

k

∑

t,i

‖xti‖2




1/2

≤ LαK
√

mTS1 (X).

We therefore have that with probability at least 1− δ
in the draw of the multi sample Z ∼ρT
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supD∈DK
Ez∼ρ

[

R̂D (z)
]

− 1
T

∑T
i=1 R̂D

(

Ztj

)

≤ LαK

√

2πS1 (X)√
T

+

√

9 ln 2/δ

2T
. (14)

which in (12) combines with (13) to give the conclu-
sion.

Proof of Theorem 2. Let Dopt and γτ the minimizers
in the definition of Ropt, so that

Ropt = Eτ∼EE(x,y)∼µτ
ℓ [(〈Doptγτ , x〉 , y)] .

RE
(

AD(Z)

)

− Ropt can be decomposed as the sum of
four terms,

(

RE
(

AD(Z)

)

− 1

T

T
∑

t=1

R̂D(Z) (zt)

)

(15)

+

(

1

T

T
∑

t=1

R̂D(Z) (zt)−
1

T

T
∑

t=1

R̂Dopt
(zt)

)

(16)

+
1

T

T
∑

t=1

R̂Dopt
(zt)− Ez∼ρR̂Dopt

(z) (17)

+Eτ∼E

[

Ez∼µm
τ
R̂Dopt

(z)

−E(x,y)∼µτ
[ℓ (〈Doptγτ , x〉 , y)]

]

. (18)

By definition of R̂ we have for every τ that

Ez∼µm
τ
R̂Dopt

(z)

= Ez∼µm
τ

min
γ∈Cα

1

m

m
∑

i=1

ℓ [(〈Doptγ, xi〉 , yi)]

≤ Ez∼µm
τ

1

m

m
∑

i=1

ℓ [(〈Doptγτ , xi〉 , yi)]

= E(x,y)∼µτ
ℓ [(〈Doptγτ , x〉 , y)] .

The term (18) above is therefore non-positive. By
Hoeffding’s inequality the term (17) is less than
√

ln (2/δ) /2T with probability at least 1 − δ/2. The
term (16) is non-positive by the definition of D (Z).
Finally we use Proposition 15 to obtain with probabil-
ity at least 1− δ/2 that

RE
(

AD(Z)

)

− 1
T

∑T
t=1 R̂D(Z) (zt)

≤ sup
D∈DK

RE (AD)− 1

T

T
∑

t=1

R̂D (zt)

≤ LαK

√

2πS1 (X)

T

+ 4Lα

√

S∞ (E) (2 + lnK)

m
+

√

9 ln 4/δ

2T
.

Combining these estimates on (15), (16), (17) and (18)
in a union bound gives the conclusion.


