
Sparse coding for multitask and transfer learning

Andreas Maurer am@andreas-maurer.eu

Adalbertstrasse 55, D-80799, Munchen, Germany

Massimiliano Pontil m.pontil@cs.ucl.ac.uk

Department of Computer Science and Centre for Computational Statistics and Machine Learning
University College London, Malet Place, London WC1E 6BT, UK

Bernardino Romera-Paredes bernardino.paredes.09@ucl.ac.uk

Department of Computer Science and UCL Interactive Centre
University College London, Malet Place, London WC1E 6BT, UK

Abstract

We investigate the use of sparse coding and
dictionary learning in the context of multi-
task and transfer learning. The central as-
sumption of our learning method is that the
tasks parameters are well approximated by
sparse linear combinations of the atoms of a
dictionary on a high or infinite dimensional
space. This assumption, together with the
large quantity of available data in the multi-
task and transfer learning settings, allows a
principled choice of the dictionary. We pro-
vide bounds on the generalization error of
this approach, for both settings. Numerical
experiments on one synthetic and two real
datasets show the advantage of our method
over single task learning, a previous method
based on orthogonal and dense representa-
tion of the tasks and a related method learn-
ing task grouping.

1. Introduction

The last decade has witnessed many efforts of the ma-
chine learning community to exploit assumptions of
sparsity in the design of algorithms. A central devel-
opment in this respect is the Lasso (Tibshirani, 1996),
which estimates a linear predictor in a high dimen-
sional space under a regularizing ℓ1-penalty. Theo-
retical results guarantee a good performance of this
method under the assumption that the vector corre-
sponding to the underlying predictor is sparse, or at
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least has a small ℓ1-norm, see e.g. (Bühlmann & van de
Geer, 2011) and references therein.

In this work we consider the case where the predic-
tors are linear combinations of the atoms of a dictio-
nary of linear functions on a high or infinite dimen-
sional space, and we assume that we are free to choose
the dictionary. We will show that a principled choice
is possible, if there are many learning problems, or
“tasks”, and there exists a dictionary allowing sparse,
or nearly sparse representations of all or most of the
underlying predictors. In such a case we can exploit
the larger quantity of available data to estimate the
“good” dictionary and still reap the benefits of the
Lasso for the individual tasks. This paper gives the-
oretical and experimental justification of this claim,
both in the domain of multitask learning, where the
new representation is applied to the tasks from which
it was generated, and in the domain of learning to
learn, where the dictionary is applied to new tasks of
the same environment.

Our work combines ideas from sparse coding (Ol-
shausen & Field, 1996), multitask learning (Ando &
Zhang, 2005; Argyriou, Evgeniou, Pontil, 2008; Ar-
gyriou, Maurer, Pontil, 2008; Ben-David & Schuller,
2003; Caruana, 1997; Evgeniou, Micchelli, Pontil,
2005; Maurer, 2009) and learning to learn (Baxter,
2000; Thrun & Pratt, 1998). There is a vast litera-
ture on these subjects and the list of papers provided
here is necessarily incomplete. Learning to learn (also
called inductive bias learning or transfer learning) has
been proposed by Baxter (2000) and an error analysis
is provided therein, showing that a common represen-
tation which performs well on the training tasks will
also generalize to new tasks obtained from the same
“environment”. The precursors of the analysis pre-
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sented here are (Maurer & Pontil, 2010) and (Maurer,
2009). The first paper provides a bound on the recon-
struction error of sparse coding and may be seen as a
special case of the ideas presented here when the sam-
ple size is infinite. The second paper provides a learn-
ing to learn analysis of the multitask feature learning
method in (Argyriou, Evgeniou, Pontil, 2008).

We note that a method similar to the one presented in
this paper has been recently proposed within the mul-
titask learning setting (Kumar & Daumé III, 2012).
Here we highlight the connection between sparse cod-
ing and multitask learning and present a probabilistic
analysis which complements well with the practical in-
sights in the above work. We also address the different
problem of learning to learn, demonstrating the util-
ity of our approach in this setting by means of both
learning bounds and numerical experiments. A fur-
ther novelty of our approach is that it applies to a
Hilbert spaces setting, thereby providing the possibil-
ity of learning nonlinear predictors using reproducing
kernel Hilbert spaces.

The paper is organized in the following manner. In
Section 2, we set up our notation and introduce the
learning problem. In Section 3, we present our learning
bounds for multitask learning and learning to learn. In
Section 4 we report on numerical experiments. Section
5 contains concluding remarks.

2. Method

In this section, we turn to a technical exposition of
the proposed method, introducing some necessary no-
tation on the way.

Let H be a finite or infinite dimensional Hilbert space
with inner product 〈·, ·〉, norm ‖·‖, and fix an integer
K. We study the problem

min
D∈DK

1

T

T
∑

t=1

min
γ∈Cα

1

m

m
∑

i=1

ℓ (〈Dγ, xti〉 , yti) , (1)

where

• DK is the set of K-dimensional dictionaries (or
simply dictionaries), which means that every D ∈
DK is a linear map D : R

K → H, such that
‖Dek‖ ≤ 1 for every one of the canonical basis
vectors ek of R

K . The number K can be re-
garded as one of the regularization parameters of
our method.

• Cα is the set of code vectors γ in R
K satisfying

‖γ‖1 ≤ α. The ℓ1-norm constraint implements
the assumption of sparsity and α is the other reg-
ularization parameter. Different sets Cα could be

readily used in our method, such as those associ-
ated with ℓp-norms.

• Z = ((xti, yti) : 1 ≤ i ≤ m, 1 ≤ t ≤ T ) is a dataset
on which our algorithm operates. Each xti ∈ H
represents an input vector, and yti is a corre-
sponding real valued label. We also write Z =
(X,Y) = (z1, . . . , zT ) = ((x1,y1) , . . . , (xT ,yT ))
with xt = (xt1, . . . , xtm) and yt = (yt1, . . . , ytm).
The index t identifies a learning task, and zt are
the corresponding training points, so the algo-
rithm operates on T tasks, each of which is rep-
resented by m example pairs.

• ℓ is a loss function where ℓ (y, y′) measures the
loss incurred by predicting y when the true label
is y′. We assume that ℓ has values in [0, 1] and
has Lipschitz constant L in the first argument for
all values of the second argument.

The minimum in (1) is zero if the data is gener-
ated according to a noise-less model which postulates
that there is a “true” dictionary D∗ ∈ DK∗ with K∗

atoms and vectors γ∗
1, . . . , γ

∗
T satisfying ‖γ∗

t ‖1 ≤ α∗,
such that an input x ∈ H generates the label y =
〈D∗γ∗

t , x〉 in the context of task t. If K ≥ K∗ and
α ≥ α∗ then the minimum in (1) is zero. In Sec-
tion 4, we will present experiments with such a gen-
erative model, when noise is added to the labels, that
is y = 〈D∗γ∗

t , x〉 + ζ with ζ ∼ N (0, σ), the standard
normal distribution.

The method (1) should output a minimizing D (Z) ∈
DK as well as a minimizing γ1 (Z) , . . . , γT (Z) cor-
responding to the different tasks. Our implementa-
tion, described in Section 4.1, does not guarantee ex-
act minimization, because of the non-convexity of the
problem. Below predictors are always linear, speci-
fied by a vector w ∈ H, predicting the label 〈w, x〉
for an input x ∈ H, and a learning algorithm is a
rule which assigns a predictor A (z) to a given data set
z = ((xi, yi) : 1 ≤ i ≤ m) ∈ (H × R)

m
.

3. Learning bounds

In this section, we present learning bounds for method
(1), both in the multitask learning and learning to
learn settings, and discuss the special case of sparse
coding.

3.1. Multitask learning

Let µ1, . . . , µT be probability measures on H × R.
We interpret µt (x, y) as the probability of observ-
ing the input/output pair (x, y) in the context of
task t. For each of these tasks an i.i.d. training
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sample zt = ((xti, yti) : 1 ≤ i ≤ m) is drawn from

(µt)
m

and the ensemble Z ∼ ∏T

t=1 µ
m
t is input

to algorithm (1). Upon returning of a minimizing
D (Z) and γ1 (Z) , . . . , γT (Z), we will use the predic-
tor D (Z) γt (Z) on the t-th task. The average over all
tasks of the expected error incurred by these predictors
is

1

T

T
∑

t=1

E(x,y)∼µ
t
[ℓ (〈D (Z) γt (Z) , x〉 , y)] .

We compare this task-average risk to the minimal
analogous risk obtainable by any dictionary D ∈ DK

and any set of vectors γ1, . . . , γT ∈ Cα. Our first result
is a bound on the excess risk.

Theorem 1. Let δ > 0 and let µ1, . . . , µT be probabil-
ity measures on H ×R. With probability at least 1− δ
in the draw of Z ∼ ∏T

t=1 µ
m
t we have

1

T

T
∑

t=1

E(x,y)∼µ
t
[ℓ (〈D (Z) γt (Z) , x〉 , y)]

− inf
D∈DK

1

T

T
∑

t=1

inf
γ∈Cα

E(x,y)∼µ
t
[ℓ (〈Dγ, x〉 , y)]

≤ Lα

√

2S1 (X) (K + 12)

mT

+ Lα

√

8S∞ (X) ln (2K)

m
+

√

8 ln 4/δ

mT
,

where S1 (X) = 1
T

∑T

t=1 tr
(

Σ̂ (xt)
)

and S∞ (X) =

1
T

∑T

t=1 λmax

(

Σ̂ (xt)
)

. Here Σ̂ (xt) is the empirical

covariance of the input data for the t-th task, tr (·) de-
notes the trace and λmax(·) the largest eigenvalue.

We state several implications of this theorem.

1. The quantity S1 (X) appearing in the bound is
just the average square norm of the input data
points, while S∞ (X) is roughly the average in-
verse of the observed dimension of the data for
each task. Suppose that H = R

d and that
the data-distribution is uniform on the surface
of the unit ball. Then S1 (X) = 1 and for
m ≪ d it follows from Levy’s isoperimetric in-
equality (see e.g. (Ledoux & Talagrand, 1991))
that S∞ (X) ≈ 1/m, so the corresponding term
behaves like

√
lnK/m. If the minimum in (1)

is small and T is large enough for this term to
become dominant then there is a significant ad-
vantage of the method over learning the tasks in-
dependently. If the data is essentially low dimen-
sional, then S∞ (X) will be large, and in the ex-
treme case, if the data is one-dimensional for all

tasks then S∞ (X) = S1 (X) and our bound will
always be worse by a factor of lnK than stan-
dard bounds for independent single task learning
as in (Bartlett & Mendelson, 2002). This makes
sense, because for low dimensional data there can
be little advantage to multitask learning.

2. In the regime T < K the bound is dominated by
the term of order

√

S1 (X)K/mT >
√

S1 (X) /m.
This is easy to understand, because the dictionary
atoms Dek can be chosen independently, sepa-
rately for each task, so we could at best recover
the usual bound for linear models and there is no
benefit from multitask learning.

3. Consider the noiseless generative model men-
tioned in Section 2. If K ≥ K∗ and α ≥ α∗ then
the minimum in (1) is zero. In the bound the
overestimation of K∗ can be compensated by a
proportional increase in the number of tasks con-
sidered and an only very minor increase of the
sample size m, namely m → (lnK∗/ lnK)m.

4. Suppose that we concatenate two sets of tasks. If
the tasks are generated by the model described
in Section 2 then the resulting set of tasks is also
generated by such a model, obtained by concate-
nating the lists of atoms of the two true dictionar-
ies D∗

1 and D∗
2 to obtain the new dictionary D∗ of

length K∗ = K∗
1 +K∗

2 and taking the union of the

set of generating vectors
{

γ∗1
t

}T

t=1
and

{

γ∗2
t

}T

t=1
,

extending them to R
K∗

1
+K∗

2 so that the supports
of the first group are disjoint from the supports of
the second group. If T1 = T2, K

∗
1 = K∗

2 and we
train with the correct parameters, then the excess
risk for the total task set increases only by the or-
der of 1/

√
m, independent of K, despite the fact

that the tasks in the second group are in no way
related to those in the first group. Our method
has the property of finding the right clusters of
mutually related tasks.

5. Consider the alternative method of subspace
learning (SL) where Cα is replaced by an euclidean
ball of radius α. With similar methods one can
prove a bound for SL where, apart from slightly
different constants,

√
lnK above is replaced by

K. SL will be successful and outperform the pro-
posed method, whenever K can be chosen small,
with K < m and the vector γ∗

t utilize the entire
span of the dictionary. For large values of K, a
correspondingly large number of tasks and sparse
γ∗
t the proposed method will be superior.

The proof of Theorem 1, which is given in Section B.1
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of the supplementary appendix, uses standard meth-
ods of empirical process theory, but also employs a
concentration result related to Talagrand’s convex dis-
tance inequality to obtain the crucial dependence on
S∞ (X). At the end of Section B.1 we sketch ap-
plications of the proof method to other regulariza-
tion schemes, such as the one presented in (Kumar
& Daumé III, 2012), in which the Frobenius norm on
the dictionary D is used in place of the ℓ2/ℓ∞-norm
employed here and the ℓ1/ℓ1 norm on the coefficient
matrix [γ1, . . . , γT ] is used in place of the ℓ1/ℓ∞.

3.2. Learning to learn

There is no absolute way to assess the quality of a
learning algorithm. Algorithms may perform well on
one kind of task, but poorly on another kind. It is
important that an algorithm performs well on those
tasks which it is likely to be applied to. To formalize
this, Baxter (2000) introduced the notion of an envi-
ronment, which is a probability measure E on the set
of tasks. Thus E (τ) is the probability of encountering
the task τ in the environment E , and µτ (x, y) is the
probability of finding the pair (x, y) in the context of
the task τ .

Given E , the transfer risk (or simply risk) of a learning
algorithm A is defined as follows. We draw a task from
the environment, τ ∼ E , which fixes a corresponding
distribution µτ on H × R. Then we draw a training
sample z ∼ µm

τ and use the algorithm to compute the
predictor A (z). Finally we measure the performance
of this predictor on test points (x, y) ∼ µτ . The cor-
responding definition of the transfer risk of A reads
as

RE (A) = Eτ∼EEz∼µm
τ
E(x,y)∼µ

τ
[ℓ (〈A (z) , x〉 , y)] (2)

which is simply the expected loss incurred by the use of
the algorithm A on tasks drawn from the environment
E .
For any given dictionary D ∈ DK we consider the
learning algorithm AD, which for z ∈ Zm computes
the predictor

AD (z) = D arg min
γ∈Cα

1

m

m
∑

i=1

ℓ (〈Dγ, xi〉 , yi) . (3)

Equivalently, we can regard AD as the Lasso operat-
ing on data preprocessed by the linear map D⊤, the
adjoint of D.

We can make a single observation of the environment
E in the following way: one first draws a task τ ∼ E .
This task and the corresponding distribution µτ are
then observed by drawing an i.i.d. sample z from µτ ,

that is z ∼ µm
τ . For simplicity the sample size m will

be fixed. Such an observation corresponds to the draw
of a sample z from a probability distribution ρE on
(H × R)

m
which is defined by

ρE (z) := Eτ∼E [(µτ )
m
(z)] . (4)

To estimate an environment a large number T of in-
dependent observations is needed, corresponding to a

vector Z = (z1, . . . , zT ) ∈ ((H × R)
m
)
T

drawn i.i.d.

from ρE , that is Z ∼ (ρE)
T
.

We now propose to solve the problem (1) with the
data Z, ignore the resulting γi (Z), but retain the dic-
tionary D (Z) and use the algorithm AD(Z) on future
tasks drawn from the same environment. The perfor-
mance of this method can be quantified as the transfer
risk RE

(

AD(Z)

)

as defined in equation (2) and again
we are interested in comparing this to the risk of an
ideal solution based on complete knowledge of the en-
vironment. For any fixed dictionary D and task τ the
best we can do is to choose γ ∈ C so as to minimize
E(x,y)∼µ

τ
[ℓ (〈Dγ, x〉 , y)], so the best is to choose D so

as to minimize the average of this over τ ∼ E . The
quantity

Ropt = min
D∈DK

Eτ∼E min
γ∈Cα

E(x,y)∼µ
τ
ℓ [(〈Dγ, x〉 , y)]

thus describes the optimal performance achievable un-
der the given constraint. Our second result is

Theorem 2. With probability at least 1 − δ in the
multisample Z = (X,Y) ∼ ρTE we have

RE

(

AD(Z)

)

−Ropt ≤ LαK

√

2πS1 (X)

T

+4Lα

√

S∞ (E) (2 + lnK)

m
+

√

8 ln 4/δ

T
,

where S1 (X) is as in Theorem 1 and S∞ (E) :=

Eτ∼EE(x,y)∼µm
τ
λmax

(

Σ̂ (x)
)

.

We discuss some implications of the above theorem. 1.

1. The interpretation of S∞ (E) is analogous to that
of S∞ (X) in the bound for Theorem 1. The same
applies to Remark 6 following Theorem 1.

2. In the regime T ≤ K2 the result does not imply
any useful behaviour. On the other and, if T ≫
K2 the dominant term in the bound is of order
√

S∞ (E) /m.

3. There is an important difference with the mul-
titask learning bound, namely in Theorem 2 we
have

√
T in the denominator of the first term of
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the excess risk, and not
√
mT as in Theorem 1.

This is because in the setting of learning to learn
there is always a possibility of being misled by
the draw of the training tasks. This possibility
can only decrease as T increases – increasing m
does not help.

The proof of Theorem 2 is given in Section B.2 of the
supplementary appendix and follows the method out-
lined in (Maurer, 2009): one first bounds the estima-
tion error for the expected empirical risk on future
tasks, and then combines this with a bound of the ex-
pected true risk by said expected empirical risk. The
term K/

√
T may be an artefact of our method of proof

and the conjecture that it can be replaced by
√

K/T
seems plausible.

3.3. Connection to sparse coding

We discuss a special case of Theorem 2 in the limit
m → ∞, showing that it subsumes the sparse coding
result in (Maurer & Pontil, 2010). To this end, we as-
sume the noiseless generative model yti = 〈wt, xti〉 de-
scribed in Section 2, that is µ(x, y) = p(x)δ(y, 〈w, x〉),
where p is the uniform distribution on the sphere in R

d

(i.e. the Haar measure). In this case the environment
of tasks is fully specified by a measure ρ on the unit
ball in R

d from which a task w ∈ R
d is drawn and the

measure µ is identified with the vector w. Note that we
do not assume that these tasks are obtained as sparse
combinations of some dictionary. Under the above as-
sumptions and choosing ℓ to be the square loss, we
have that E(x,y)∼µ

t
ℓ(〈w, x〉, y) = ‖wt − w‖2. Conse-

quently, in the limit of m → ∞ method (1) reduces to
a constrained version of sparse coding (Olshausen &
Field, 1996), namely

min
D∈DK

1

T

T
∑

t=1

min
γ∈Cα

‖Dγ − wt‖2.

In turn, the transfer error of a dictionary D is given
by the quantity R(D) := minγ∈Cα

‖Dγ − w‖2 and
Ropt = minD∈DK

Ew∼ρ minγ∈Cα
‖Dγ−w‖2. Given the

constraints D ∈ DK , γ ∈ Cα and ‖x‖ ≤ 1, the square

loss ℓ (y, y′) = (y − y′)
2
, evaluated at y = 〈Dγ, x〉, can

be restricted to the interval y ∈ [−α, α], where it has
the Lipschitz constant 2 (1 + α) for any y′ ∈ [−1, 1], as
is easily verified. Since S1(X) = 1 and S∞ (E) < ∞,
the bound in Theorem 2 becomes

R(D)−Ropt ≤ 2α(1 + α)K

√

2π

T
+ 8

√

ln 4/δ

T
(5)

in the limit m → ∞. The typical choice for α is α ≤ 1,
which ensures that ‖Dγ‖ ≤ 1. In this case inequality

(5) provides an improvement over the sparse coding
bound in (Maurer & Pontil, 2010) (cf. Theorem 2 and
Section 2.4 therein), which contains an additional term
of the order of

√

(lnT )/T and the same leading term in
K as in (5) but with slightly worse constant (14 instead
of 4

√
2π). The connection of our method to sparse

coding is experimentally demonstrated in Section 4.4
and illustrated in Figure 6.

4. Experiments

In this section, we present experiments on a synthetic
and two real datasets. The aim of the experiments is
to study the statistical performance of the proposed
method, in both settings of multitask learning and
learning to learn. We compare our method, denoted as
Sparse Coding Multi Task Learning (SC-MTL), with
independent ridge regression (RR) as a base line and
multitask feature learning (MTFL) (Argyriou, Evge-
niou, Pontil, 2008) and GO-MTL (Kumar & Daumé
III, 2012). We also report on sensitivity analysis of the
proposed method versus different number of parame-
ters involved.

4.1. Optimization algorithm

We solve problem (1) by alternating minimization over
the dictionary matrix D and the code vectors γ. The
techniques we use are very similar to standard meth-
ods for sparse coding and dictionary learning, see e.g.
(Jenatton et al., 2011) and references therein for more
information. Briefly, assuming that the loss function ℓ
is convex and has Lipschitz continuous gradient, either
minimization problem is convex and can be solved ef-
ficiently by proximal gradient methods, see e.g. (Beck
& Teboulle, 2009; Combettes & Wajs, 2006). The key
ingredient in each step is the computation of the prox-
imity operator, which in either problem has a closed
form expression.

4.2. Toy experiment

We generated a synthetic environment of tasks as fol-
lows. We choose a d × K matrix D by sampling its
columns independently from the uniform distribution
on the unit sphere in R

d. Once D is created, a generic
task in the environment is given by w = Dγ, where
γ is an s-sparse vector obtained as follows. First, we
generate a set J ⊆ {1, . . . ,K} of cardinality s, whose
elements (indices) are sampled uniformly without re-
placement from the set {1, . . . ,K}. We then set γj = 0
if j /∈ J and otherwise sample γj ∼ N (0, 0.1). Fi-
nally, we normalize γ so that it has ℓ1-norm equal
to some prescribed value α. Using the above proce-
dure we generated T tasks wt = Dγt, t = 1, . . . , T .
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Figure 1. Multitask error (Top) and Transfer error (Bot-
tom) vs. number of training tasks T .

Further, for each task t we generated a training set
zt = {(xti, yti)}mi=1, sampling xti i.i.d. from the uni-
form distribution on the unit sphere in R

d. We then
set yti = 〈wt, xti〉+ξti, with ξti ∼ N (0, σ2), where σ is
the variance of the noise. This procedure also defines
the generation of new tasks in the transfer learning
experiments below.

The above model depends on seven parameters: the
number K and the dimension d of the atoms, the spar-
sity s and the ℓ1-norm α of the codes, the noise level σ,
the sample size per task m and the number of training
tasks T . In all experiments we report both the multi-
task learning (MTL) and learning to learn (LTL) per-
formance of the methods. For MTL, we measure per-
formance by the estimation error 1/T

∑T

t=1 ‖wt−ŵt‖2,
where ŵ1, . . . , ŵT are the estimated task vectors (in
the case of SC-MTL, ŵt = D(Z)γ(Z)t – see the discus-
sion in Section 2. For LTL, we use the same quantity
but with a new set of tasks generated by the environ-
ment (in the experiment below we generate 100 new
tasks). The regularization parameter of each method
is chosen by cross validation. Finally, all experiments
are repeated 50 times, and the average performance
results are reported in the plots below.

In the first experiment, we fix K = 10, d = 20, s =
2, α = 10,m = 10, σ = 0.1 and study the statistical
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Figure 2. Multitask error (Top) and Transfer error (Bot-
tom) vs. number of atoms K′ used by dictionary-based
methods.

performance of the methods as a function of the num-
ber of tasks. The results, shown in Figure 1, clearly
indicate that the proposed method outperforms the
remaining approaches. In this experiment the number
of atoms used by dictionary-based approaches, which
here we denote by K ′ to avoid confusion with the num-
ber of atoms K of the target dictionary, was equal to
K = 10. This gives an advantage to both GO-MTL
and SC-MTL. We therefore also studied the perfor-
mance of those methods in dependence on K ′. Fig-
ure 2, reporting this result, is in qualitative agreement
with our theoretical analysis: the performance of SC-
MTL is not too sensitive to K ′ if K ′ ≥ K, and the
method still outperforms independent RR and MTFL
if K ′ = 4K. On the other hand if K ′ < K the per-
formance of the method quickly degrades. In the last
experiment we study performance vs. the sparsity ra-
tio s/K. Intuitively we would expect our method to
have greater advantage over MTL if s ≪ K. The
results, shown in Figure 3, confirm this fact, also in-
dicating that SC-MTL is outperformed by both GO-
MTL and MTFL as sparsity becomes less pronounced
(s/K > 0.6).
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Figure 3. Multitask error (Top) and Transfer error (Bot-
tom) vs. sparsity ratio s/K.

4.3. Learning to learn optical character

recognition

We have conducted experiments on real data to study
the performance of our method in a learning to learn /
transfer learning setting. To this end, we employed the
NIST dataset1, which is composed of a set of 14 × 14
pixels images of handwritten characters (digits and
lower and capital case letters, for a total of 52 charac-
ters).

We considered the following experimental protocol.
First, a set of 20 characters are chosen randomly as
well as n instances for each character. These are used
to learn all possibilities of 1-vs-1 train tasks, which
makes T = 190, each of which having m = 2n in-
stances. The knowledge learned in this stage is em-
ployed to learn another set of target tasks. In our
approach, the assumption that is made is that some
of the components in the dictionary learned from the
training tasks, can also be useful for representing the
target tasks. In order to create the target tasks, an-
other set of 10 characters are chosen among the re-
maining set of characters in the dataset, inducing a
set of 45 1-vs-1 classification tasks. Since we are in-
terested in the case where the training set size of the

1The NIST dataset is available at
http://www.nist.gov/srd/nistsd19.cfm
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Figure 4. Multiclassification accuracy of RR, MTFL GO-
MTL and SC-MTL vs. the number of training instances in
the transfer tasks, m.

target tasks is small, we sample only 3 instances for
each character, hence 6 examples per task.

In order to tune the hyperparameters of all compared
approaches, we have also created another set of 45 val-
idation tasks by following the process previously de-
scribed, simulating the target set of tasks. Note that
there is not overlapping between the digits associated
to the train, target and validation tasks.

We have run 50 trials of the above process for different
values of m and the average multiclass accuracy on the
target tasks is reported in Figure 4.

4.4. Sparse coding of images with missing

pixels

In the last experiment we consider a sparse coding
problem (Olshausen & Field, 1996) of optical char-
acter images, with missing pixels. We employ the Bi-
nary Alphadigits dataset2, which is composed of a set
of binary 20 × 16 images of all digits and capital let-
ters (39 images for each character). In the following
experiment only the digits are used. We regard each
image as a task, hence the input space is the set of
320 possible pixels indices, while the output space is
the real interval [0, 1], representing the gray level. We
sample T = 100, 130, 160, 190, 220, 250 images, equally
divided among the 10 possible digits. For each of these,
a corresponding random set of m = 160 pixel values
are sampled (so the set of sample pixels varies from
one image to another).

We test the performance of the dictionary learned by
method (1) in a learning to learn setting, by choosing
100 new images. The regularization parameter for each
approach is tuned using cross validation. The results,
shown in Figure 5, indicate some advantage of the pro-

2Available at http://www.cs.nyu.edu/ roweis/data.html.
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Figure 5. Transfer error vs. number of tasks T (Top) and
vs. number of atoms K (Bottom) on the Binary Alphadig-
its dataset.

posed method over trace norm regularization. A sim-
ilar trend, not reported here due to space constraints,
is obtained in the multitask setting. Ridge regression
performed significantly worse and is not shown in the
figure. We also show as a reference the performance of
sparse coding (SC) applied when all pixels are known.

With the aim of analyzing the atoms learned by the
algorithm, we have carried out another experiment
where we assume that there are 10 underlying atoms
(one for each digit). We compare the resultant dic-
tionary to that obtained by sparse coding, where all
pixels are known. The results are shown in Figure 6.

Figure 6. Dictionaries found by SC-MTL using m = 240
pixels (missing 25% pixels) per image (top) and by Sparse
Coding employing all pixels (bottom).

5. Summary

In this paper, we have explored an application of
sparse coding, which has been widely used in unsuper-
vised learning and signal processing, to the domains of
multitask learning and learning to learn. Our learn-

ing bounds provide a justification of this method and
offer insights into its advantage over independent task
learning and learning dense representation of the tasks.
The bounds, which hold in a Hilbert space setting, de-
pend on data dependent quantities which measure the
intrinsic dimensionality of the data. Numerical simu-
lations presented here indicate that sparse coding is a
promising approach to multitask learning and can lead
to significant improvements over competing methods.

In the future, it would be valuable to study exten-
sions of our analysis to more general classes of code
vectors. For example, we could use code sets Cα which
arise from structured sparsity norms, such as the group
Lasso, see e.g. (Jenatton et al., 2011; Lounici et al.,
2011) or other families of regularizers. A concrete ex-
ample which comes to mind is to choose K = Qr,
Q, r ∈ N and a partition J = {{(q − 1)r + 1, . . . , qr} :
q = 1, . . . , Q} of the index set {1, . . . ,K} into contigu-
ous index sets of size r. Then using a norm of the
type ‖γ‖ = ‖γ‖1 +

∑

J∈J
‖γJ‖2 will encourage codes

which are sparse and use only few of the groups in J .
Using the ball associated with this norm as our set of
codes would allow to model sets of tasks which are di-
vided into groups. A further natural extension of our
method is nonlinear dictionary learning in which the
dictionary columns correspond to functions in a repro-
ducing kernel Hilbert space and the tasks are expressed
as sparse linear combinations of such functions.
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Kumar, A. and Daumé III, H. Learning task group-
ing and overlap in multitask learning. International
Conference on Machine Learning (ICML), 2012.

Ledoux, M. and Talagrand, M. Probability in Banach
Spaces. Springer, 1991.

Lounici, K., Pontil, M., Tsybakov, A.B. and van de
Geer, S. Oracle inequalities and optimal inference
under group sparsity Annals of Statistics, 39(4):
2164-2204, 2011.

Maurer, A. Concentration inequalities for functions
of independent variables. Random Structures and
Algorithms, 29:121–138, 2006.

Maurer, A. Transfer bounds for linear feature learning.
Machine Learning, 75(3):327–350, 2009.

Maurer, A. and Pontil, M. K-dimensional coding
schemes in Hilbert spaces. IEEE Transactions on
Information Theory, 56(11):5839–5846, 2010.

McDiarmid, C. Probabilistic Methods of Algorithmic
Discrete Mathematics. Springer, 1998.

Olshausen, B.A. and Field, D.J. Emergence of simple-
cell receptive field properties by learning a sparse
code for natural images. Nature, 381:607–609, 1996.

Slepian, D. The one-sided barrier problem for gaussian
noise. Bell System Tech. J., 41:463–501, 1962.

Thrun, S. and Pratt, L. Learning to Learn. Springer,
1998.

Tibshirani, R. Regression shrinkage and selection via
the lasso. J. R. Statist. Soc. B, 58(1):267–288, 1996.


