1 Proof of Theorem 1

Proof Let us rewrite the minimization problem,
witlt = argmln(<G W) + /\\/>Z [[Wille + = be Z [[W.4|[3)
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Since the minimization problem is component-wise on one column of W, we can focus on each of
the column of W separately to find its solution.

Wit = argagin ((GY W) + WEIW.ll + 3 12
Since inner product of 2 vectors of same length will have smallest value when the 2 vectors are

in opposite direction, solution to the above minimization problem should be V[/,ti+1 = pG!, where
¢ < 0. We now need to solve the following minimization problem,
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Solving for the minimum point of that familiar quadratic function, we have
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0 otherwise.

Therefore, the update rule is as in theorem 1.

2 Proof of Theorem 3

Proof For any action a, consider the following expression, where x is a vector of all state attributes
and features extracted from state s and e is the action effect leading to s’ from s.
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The first step is from definition of effect. The second step is from the fact that weighted average of
elements must be smaller than the largest one. The sixth step is from the property that if a; and b;
are non-negative, then (3, a;) / (>_, b;) > min;(a;/b;). The seventh step is from monotonicity of
logarithmic function.

By Pinsker’s inequality,
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which implies
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Extending to all actions,
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To complete the theorem, the following lemma (see lemma 33 in [1]) is used without proof.

Lemma 1 Let M; = (S, A, PM R),M, = (S, A, PM2 R) be two MDPs, and fixed discount
factor ~. w1 and o are their optimal policies respectively. Let VM be the value functions of T in
MDP M. If
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for every state-action (s, a), then |V21 (s) = V22 (s)| < %‘je and |[V2(s)—Vi(s)| < Wl%“;e
for every s € S.

It is clear that
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The proof is therefore complete.
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