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Abstract

We propose a new framework for learning
the world dynamics of feature-rich environ-
ments in model-based reinforcement learn-
ing. The main idea is formalized as a new,
factored state-transition representation that
supports efficient online-learning of the rel-
evant features. We construct the transition
models through predicting how the actions
change the world. We introduce an online
sparse coding learning technique for feature
selection in high-dimensional spaces. We de-
rive theoretical guarantees for our framework
and empirically demonstrate its practicality
in both simulated and real robotics domains.

1. Introduction

In model-based reinforcement learning (RL), factored
state representations, often in the form of dynamic
Bayesian networks (DBNs), are deployed to exploit
structures of the world dynamics. This allows the
agent to plan and act in large state spaces without
actually visiting every state. However, learning the
world dynamics of a complex environment is very dif-
ficult and often computationally infeasible. Most re-
cent work in this area is based on the RMAX frame-
work (Brafman & Tennenholtz, 2003), and focuses on
sample-efficient learning of the optimal policies. This
approach incurs heavy computational costs for maxi-
mizing information gain from every interaction, even
in carefully designed, low-dimensional spaces.

We propose a variant formulation of the factored
Markov decision process (MDP) that incorporates a
principled way to compactly factorize the state space,
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while capturing comprehensive transition and reward
dynamics information. We also propose an online
multinomial logistic regression method with group
lasso to automatically learn the relevant structure of
the world dynamics model. While the regression mod-
els cannot capture the full conditional distributions
like DBNs, their simplicity allows fast, online learn-
ing in very high dimensional spaces. Online feature
selection is implemented with operating the regression
algorithm in our variant MDP formulation.

In the rest of the paper, we will first introduce an
MDP representation that captures the world dynamics
as action effects. We then present an online learning
algorithm for identifying relevant features via sparse
coding, and show that in theory our framework should
lead to computationally efficient learning of a near op-
timal policy. Due to the space limit, full proofs are
placed in the supplementary materials. To back up
the theoretical claims, we conduct experiments in both
simulated and real robotics domains.

2. Method

In RL, a task is typically modelled as an MDP defined
by a tuple (S,A, T,R, γ), where S is a set of states; A
is a set of actions; T : S×A×S → [0, 1] is a transition
function, such that T (s, a, s′) = P (s′|s, a) specifies the
probability of transiting to state s′ upon taking an ac-
tion a at state s; R is a reward function indicating
immediate expected reward after the state transition
s

a−→ s′; and future reward that occurs t time steps
in future is discounted by γt. The agent’s goal is to
learn a policy π that specifies an action to perform
at each state s, so that the expected discounted, cu-
mulative future reward starting from s is maximized.
In model-based RL, the optimal policy is estimated
from the transition model T and the reward model R.
In this paper we concentrate on learning the transi-
tion model, with a known reward model. The reward
model, however, can be learned in a similar way.
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In a factored MDP, each state is represented by a
vector of n state-attributes. The transition func-
tion for the factored states is commonly expressed
using dynamic Bayesian networks (DBNs) in which
T (s, a, s′) =

∏n
i=1 P (s′i|Paai (s), a), where Paai indi-

cates a subset of state-attributes in s called the parents
of s′i (Fig.1a). Learning T requires learning the subsets
Paai and the parameters for conditional distributions,
or the DBN local structures in other words.

Learning DBN structures of the transition function
online, i.e., while the agent is interacting with the
environment, however, is computationally prohibitive
in most domains. On the other hand, recent stud-
ies (Xiao, 2009; Yang et al., 2010) have shown encour-
aging results in learning the structure of logistic regres-
sion models, which can effectively serve as local struc-
tures in the DBNs even in high dimensional spaces.
While these regression models cannot fully capture the
conditional distributions, their expressive power can
be improved by augmenting low dimensional state rep-
resentation with non-linear features of the state vec-
tors. We introduce an online sparse multinomial logis-
tic regression method that supports efficient learning
of the structured representation of the transition func-
tion.

2.1. CMDP - a factored MDP with
feature-variables and action effects

We present a variant of the factored MDP that de-
fines a “compact but comprehensive” factorization of
the transition function and supports efficient learn-
ing of the relevant features. We consider two major
approaches to modeling world dynamics: predicting
changes and differentiating features.

First, we predict the relative changes of states instead
of directly specifying the next states in a transition.
Mediating state changes via action effects is a common
strategy in situation calculus (McCarthy, 1963). Since
the number of relative changes or action effects is usu-
ally much smaller than the size of the state space, the
corresponding prediction task should be easier. The
learning problem can then be expressed as a multi-
class classification task of predicting the action effects.

Second, we differentiate the roles of attributes or fea-
tures that characterize a state. In a regular factored
MDP, the state-attributes or features serve to both de-
fine the state space and capture information about the
transition model. For example, two state-attributes,
the (x, y)-coordinates uniquely identify a state and
compactly factorize the state space in a grid-world.
A policy can be learned on this factored space. The
transition dynamics or action effects, however, may

depend on other features of the state, such as the sur-
face material at the location (state). Such features are
often carefully included in the state representations.
While essential in formulating the transition or reward
models, these features may complicate the planning or
learning processes by increasing the size and complex-
ity of the state space.

We separate the state identifying state-attributes from
the “merely” informative state-features in our repre-
sentation. This way, we can apply an efficient feature
selection method on a large number of state features
to capture the transition dynamics, while maintaining
a compact state space.

More formally, a situation Calculus MDP (CMDP)
is defined by a tuple (S, f,A, T,E,R, γ), where
S,A, T,R, γ have the same meaning as in regular MDP.
S = 〈S1, S2, .., Sn〉 is the state space implicitly repre-
sented by vectors of n state-attributes. The function
f : S → Rm extracts m state-features from each state.
E is an action effect variable such that the transition
function can be factored as

T (s, a, s′) = P (s′ | s, a) =

n∏
i=1

P (s′i | s, f(s), a)

=

n∏
i=1

∑
e∈E

P (s′i | e, s)P (e | s, f(s), a).

Figure 1b shows an example of this decomposition.
The agent uses the feature function f to identify the
relevant features, and then use both state attributes
and features to predict the action effects. We also as-
sume that the effect e and current state s determine
the next state s′, thus P (s′|e, s) is either 0 or 1. This
defines the semantic meaning of the effect which is
assumed to be known by the agent. The remaining
task is to learn the P (e|s, a) = P (e|x(s), a), where
x(s) = (s, f(s)), which is a classification problem; we
solve this problem using multinomial logistic regres-
sion methods.

2.2. Online multinomial logistic regression
with group lasso

We introduce a regularized online multinomial regres-
sion method with group lasso that allows us to learn
a probabilistic multi-class classifier with online feature
selection. We also show that the structure and param-
eters of the learnt classifier are likely to converge to
those of the optimal classifier.

2.2.1. Multinomial logistic regression

Multinomial logistic regression is a simple yet effec-
tive classification method. Assuming K classes of d-
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Figure 1. a.) Standard DBN. b.) Our customized DBN
for CMDP.

dimensional vectors x ∈ Rd, we represent each class
k with a d-dimensional prototype vector Wk. Classifi-
cation of an input vector x is based on how “similar”
it is to the prototype vectors. Similarity is measured
with inner product 〈Wk, x〉 =

∑d
i=1Wkixi, where xi

denotes feature i. The log probability of a class is
defined by logP (y = k|x;Wk) ∝ 〈Wk, x〉. The param-
eter vectors of the model form the rows of a matrix
W = (W1, ...,WK)T .

Let lt(W
t) = − logP (yt|xt;W t) denote the item-wise

log-loss of a model with coefficient matrix W t predict-
ing a data point (yt, xt) observed at time t. A typical
objective of an online learning system is to minimize
the total loss by updating its W t over time. However,
the resulting model will often be very complicated and
over-fitting. To achieve a parsimonious model, we ex-
press our a priori belief that most features are irrel-
evant or superfluous by introducing a regularization
term Ψ(W ) = λ

∑d
i

√
K||W·i||2, where ||W·i||2 denotes

the 2-norm of the ith column of W , and λ is a posi-
tive constant. This regularization is similar to that of
group lasso. It communicates the idea that it is likely
that a whole column of W has zero values (especially,
for large λ). A column of all zeros suggests that the
corresponding feature is not necessary for classifica-
tion.

The objective function can now be written as

L(T ) =

T∑
t=1

lt(W
t) + Ψ(W t)

=

T∑
t=1

− log
e

〈
W t

yt ,x
t
〉

∑
k e
〈W t

k,x
t〉 + λ

d∑
i

√
K||W t

·i||2,

where W t is the coefficient matrix learned using t− 1
previously observed data items. The quality of a se-
quence of parameter matrices W t, t ∈ (1, . . . , T ) with
respect to a fixed parameter matrix W can be mea-

sured by the amount of extra loss, or regret

RT (W ) = L(T )− LW (T )

=

T∑
t=1

(lt(W
t) + Ψ(W t))−

T∑
t=1

(lt(W ) + Ψ(W ))

We want to learn a series of parameters W t to achieve
small regret with respect to a good model W that has
a small loss LW (T ).

2.2.2. Online learning for regularized
multinomial logistic regression

We introduce an update function, mDAGL-update
(Algorithm 1) to extend the efficient dual averaging
method (Xiao, 2009) for solving lasso and group
lasso (Yang et al., 2010) logistic regression on binary
classification to the multi-class case.

Let h(W ) be a strongly convex function with modulus
1; W 0 = arg minW h(W ), and let W t=1 be initialized
to W 0. Let Gtki be the partial derivatives of function
lt(W ) with respect to Wki at W t (Gtki = ∂lt

∂Wki
(W t)).

We define Ḡt to be a matrix of average partial deriva-
tives, i.e., Ḡtki = 1

t

∑t
τ=1G

τ
ki, where

Gτki = −xτi (I(yτ = k)− P (k|xτ ;W τ )). (1)

For any data observed at time t, we update the coeffi-
cient matrix via

W t+1 = arg min
W

(〈
Ḡt,W

〉
+ Ψ(W ) +

βt
t
h(W )

)
,

(2)
where βt is a non-negative, non-decreasing constant
sequence, and 〈·, ·〉 denotes an inner product between
two matrices;

〈
Ḡt,W

〉
=
∑
k,i Ḡ

t
kiWki.

Theorem 1 (Update Rule) Given h(W ) =
1
2 ||W ||

2
2, a K × d average gradient matrix Ḡt, and a

regularization parameter λ > 0, the optimal solution
of (2) is achieved column-wise as follows

W t+1
·i =

{−→
0 if ||Ḡt·i||2 ≤ λ

√
K,

t
βt

(
λ
√
K

||Ḡt
·i||2
− 1
)
Ḡt·i otherwise.

(3)

This rule dictates that when the length of the aver-
age gradient matrix column is small enough, the cor-
responding parameter column should be truncated to
zero. This amounts to feature selection.

The following regret analysis confirms that the solu-
tion will converge and that the average maximal regret
asymptotically approaches zero with rate O( 1√

t
).
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Algorithm 1 The mDAGL update

Input: t, yt, xt,W t, Ḡt−1, λ, α
Gt ← use equation 1 with (yt, xt),W t

Ḡt ← t−1
t Ḡ

t−1 + 1
tG

t

W t+1 ← use equation 3 with Ḡt, βt = α
√
t, λ

return (W t+1, Ḡt)

Theorem 2 (Regret Bound) Let the sequence of
{W t}t≥1 be generated by the update rule (3), and as-
sume that there exists a constant G such that ||Ḡt||22 ≤
G2,∀t ≥ 1. If we choose βt = α

√
t where α > 0, then

for any t ≥ 1 and for any W that satisfies h(W ) ≤ D2

where D is a constant, the average regret is bounded
as

Rt(W )

t
≤ ∆√

t
, t = 1, 2, 3.., (4)

where ∆ =
(
αD2 + G2

α

)
.

[Proof Sketch ] The item-wise loss function lt(W )
of multinomial logistic regression is convex, thus the
techniques used for binary case (Xiao, 2009) can be
applied for multinomial case as well.

Since the average regret goes asymptotically to zero,
it may look very feasible that the sequence (W t) also
converges to some optimal W ∗. However, the regret
analysis is valid for any sequence of data, and with-
out additional assumptions about the data generating
process there may not be any asymptotically optimal
classifier W ∗, thus convergence is not meaningful. To
study convergence, we assume the data is to be sam-
pled independently from some joint distribution p for
data vector (y,x). In this case we try to find a W that
minimizes the expected loss Ep[l(W )] + Ψ(W ). Now
assuming that the optimal solution W ∗ is sparse, and
some other technical assumptions, it is indeed possible
to show that

P (||W t −W ∗||2 > ε) <

[
ε−1(ε−1 + r−1) +

2

c
∆

]
t−

1
4 ,

(5)
where r and c are constants (see Lemma 13 in (Lee &
Wright, 2012) for the result and its assumptions).

2.3. Model-based RL with feature selection

Our main task is to turn transition model learning
into the learning of conditional distributions P (E |
s, f(s), a) using multinomial logistic regression for
which attention to relevant features can be efficiently
implemented online via mDAGL.

The key steps of our method, called loreRL (RL with
regularized logistic regression), are presented in Al-

Algorithm 2 The loreRL algorithm

Input: mDAGL regularization parameters λ, α,
CMDP variables S, f,A,E,R, γ, exploration ε.
Let W = (W1,W2, . . . ,W|A|) = (W 0,W 0, . . . ,W 0)

Let Ḡ = (Ḡ1, Ḡ2, . . . , Ḡ|A|) = (~0,~0, . . . ,~0)
s0 ← random initial state
for t = 1, 2, 3, ... do
π ← Solve MDP using transition model T (W̄ )
a← π(st, ε) #ε-greedy action selection
Take action a yielding effect e, next state st+1

(Wa, Ḡa)← mDAGL(t, e, x(st),Wa, Ḡa, λ, α)
end for

gorithm 2. Inputs to loreRL are the CMDP compo-
nents (except the transition function), regularization
parameters λ and α of mDAGL algorithm, and the ε
that determines the probability of taking a random ac-
tion. We first initialize logistic regression parameters
Wa and the average gradient matrices Ḡa for each ac-
tion a ∈ A. We also randomly select a starting state
s0.

At each time step, a random action a is chosen with a
small probability ε, but otherwise we calculate the op-
timal policy π for an MDP with the transition model
T (W ) is based on the current effect predictors. While
we have used value iteration (like in Rmax) for finding
the optimal policy, any other model-based RL tech-
nique can be used as well. We do not focus on the
planning part of RL here, but Dyna-Q or Prioritized
Sweeping can be deployed for a more scalable algo-
rithm. After performing an action a in state st and
observing its effect e, the experience (e, st, f(st)) will
be presented to the mDAGL algorithm that updates
the parameter matrix Wa and the gradient matrix Ḡa.

As we just do ε-greedy random sampling, it is im-
possible to guarantee PAC convergence to an optimal
policy. Assuming that observed data is i.i.d, we can
prove that difference in optimal value functions of two
CMDPs with different logistic regression based tran-
sition functions is bounded by the difference in their
parameters. This leads to a corollary for convergence
to near optimal policy.

Theorem 3 (Difference in Value Function)
Let M1 = (S, f,A, T (WM1), E,R, γ) and
M2 = (S, f,A, T (WM2), E,R, γ) be two CMDPs
with optimal policies π1 and π2 respectively. Let
us denote by VMπ the value function for policy π in
CMDP M . Let

ε1 = 2

√
max

a∈A,e∈E
||W (a),M1

e −W (a),M2
e ||1 sup

s
||x(s)||1,
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then maxs∈S
(
VM2
π1

(s)− VM2
π2

(s)
)
≤ 2γVmaxε1

1−γ ,

where W
(a),M1
e and W

(a),M2
e refer to the vector of co-

efficients corresponding to class E = e under action a
in model M1 and M2 respectively, || · ||1 is the 1-norm
of vector, and Vmax is the maximum value of any state
for any policy in either of the CMDPs.

By taking M2 to be an CMDP based on the optimal
W ∗ and M1 an estimated CMDP based on mDAGL,
the vanishing bound given in equation (5) can be trans-
lated into a vanishing bound for value difference of
policies. In case the true transition model is repre-
sentable by a sparse W ∗, we would most probably con-
verge to a near optimal policy.

When we cannot express the true transition dynamics
as logistic regression based on available state features,
it is hard to give guarantees of performance. However,
we can still have some confidence in doing well. The lo-
gistic regression model P ∗l closest (in Kullback-Leibler
distance) to the true model Ptrue (possibly not a logis-
tic regression model) is the one1 that has the smallest
expected log-loss. While our optimality criterion is the
expected regularized log-loss, we expect the regular-
ized log-loss optimal model P ∗Ψ to be close to P ∗l thus
almost as close to Ptrue as we can get. This relatively
small KL-distance can be converted to relatively small
distances in actual transition probabilities, which can
then further be converted to a relatively small bound
on value differences by the same arguments used in
proving Theorem 3. Therefore, since our model would
very likely converge close to P ∗Ψ, we can expect to do
almost as well as P ∗Ψ.

3. Related work

DBN has been a popular choice for factoring and ap-
proximating transition models. In DBN learning fea-
ture selection is equivalent to picking the parents of
the state variables from the previous time slice. Re-
cent studies have led to improvements in sample com-
plexity for learning optimal policy. Those studies as-
sume maximum number of possible parents for a node
(Strehl et al., 2007), (Diuk et al., 2009), or knowledge
of a planning horizon that satisfies certain conditions
(Chakraborty & Stone, 2011). However, the improve-
ments in sample complexity are achieved at the ex-
pense of actual computational complexity since these
methods have to search through a large number of par-
ent sets. Hence, these methods appear feasible only in

1Such model may not always exist since the parameter
set is open. However, for our argument, any model with
almost infimum distance to the true model will do.

manually designed, low-dimensional state-spaces.

Instead of searching for an optimal model with a mini-
mal number of samples at almost any cost, our method
attempts to save costs from early on, and gradually
improve the model acknowledging that the true model
may actually be unattainable. In this spirit the struc-
ture learning study by Degris et al. (Degris et al., 2006)
resembles our work, but they do not address online
learning with large feature sets. Ross et al. (Ross &
Pineau, 2008) have used Markov chain Monte Carlo
to sample from all possible DBN structures. However,
the Markov Chain used has a very long burn-in period
and slow mixing time, making sampling computation-
ally prohibitive in large problems.

Kroon and Whiteson (2009) present a feature selec-
tion method for learning state values. This method,
however, assumes that the DBN structures of transi-
tion and reward models are known. Our work, on the
other hand, does not make such assumptions.

Leffler et al. (2007) also suggest to predict relative
changes in states, which corresponds to the action ef-
fects in our formulation. However, they manually se-
lect important features to aggregate information from
similar states for action effect predicting. Our work
focuses on learning those features automatically. Hes-
ter and Stone (2009; 2012) later employ Quinlan’s
C4.5 (Quinlan, 1993) to learn a decision tree for pre-
dicting relative changes of every state variable. This
works better than the method by Degris et al. Despite
adapting C4.5 for online learning, the method is still
very slow as a costly tree induction procedure has to
be repeated many times in a large feature space. In ad-
dition, all the data needs to be stored for the purpose,
which is undesirable in some applications.

Strehl and Littman (2007), and Walsh et al. (2009)
have also proposed an online linear regression method
with L2-regularization to approximate the transition
model in continuous MDP. L2, however, does not im-
plement feature selection.

4. Experiments

We present empirical evaluation of loreRL on both sim-
ulated and real robotic domains. The experiments aim
to demonstrate that loreRL can a) generalize and ap-
proximate the transition model to achieve fast con-
vergence to near optimal policy, and b) with feature
selection, perform well in complex, feature rich envi-
ronments. We also want to see if theoretical promises
derived under assumption of i.i.d sampling can be real-
ized in practice. We compare accumulated rewards of
loreRL with factored Rmax (fRmax), in which the net-
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work structures of transition models are known (Strehl
et al., 2007), and with factored ε-greedy (fEpsG), in
which the optimistic Rmax exploration of fRmax is
replaced by ε-greedy strategy. We also compare our
method with RL-DT (Hester & Stone, 2009) and LSE-
Rmax (Chakraborty & Stone, 2011), which are the
state of the art model-based RL algorithms for learn-
ing transition models.

4.1. Grid-world domain

In this domain, the agent tries to reach its goal in the
grid-world world consuming as little energy as possi-
ble. Each cell in the world has one of five surface ma-
terials: sand, soil, water, brick, and fire; there may be
walls between cells. Surface and walls are features that
determine the stochastic dynamics of the world. In ad-
dition, to test the variable selection aspect, we attach
hundreds of random binary features to the environ-
ment; it has to learn to focus on the relevant features
to quickly achieve its goal. The agent can perform four
actions (move up, down, left, right), which will lead it
to one of the four states around it or leave it to its cur-
rent state. Effects of the actions are captured in five
outcomes (moved up, left, down, right, did not move).
The states are defined by the (x,y)-coordinates of the
agent. To perform an action, agent will spend 0.01
units of energy. It loses 1 unit if falling into a state
of fire, but gains 1 unit when successfully reaching an
exit door. A task ends when agent reaches a terminal
state, i.e., any exit door or state with fire.

We generated the environment transition models from
four random multinomial logistic distributions (one for
each action); every different combination of cell sur-
faces and walls around the cell will lead to different
transition dynamics at the cell. The probability of go-
ing through a wall is rounded to zero and the freed
probability mass is evenly distributed to other effects.
The agent’s starting position is randomly picked in
each episode.

We ran the experiments with loreRL having α = 1.5,
λ = 0.05, γ = 0.95, exploration ε = 0.05, parameter
m = 10 for fRmax, m = 5 for Rmax (m = 5 is small
for Rmax, but increasing it did not yield better result),
fixed m = 10, σ = 0.99 for LSE-Rmax (similar to the
author’s report). All results are averaged over 20 runs,
and we report the 95% confidence intervals.

Generalization and convergence. We first show
that when the feature space is small, loreRL performs
as efficiently as the state of the art methods. RL-DT
employs a decision tree to generalize transition dynam-
ics knowledge over states, but it is implemented with ε-
greedy exploration strategy. LSE-Rmax appears to be

the best structure learning in ergodic factored MDPs
(Chakraborty & Stone, 2011). fRmax and fEpsG have
correct DBN structures provided by an oracle. All the
methods are implemented with our customized DBN
to utilize domain knowledge. Rmax is included as a
reference to show the effect of knowledge generaliza-
tion.

As seen in Figure 2a, loreRL can approximate the
world dynamics using samples in all the states, thus it
converges as fast as fEpsG, and RL-DT to near optimal
policy. Although fRmax is provided with the correct
DBN structure, its accumulated reward is lower due
to aggressive exploration to find the optimal model.
After exploration the policy is guaranteed to be near
optimal, but it may still take a long time (or forever)
to catch up with loreRL. While LSE-Rmax follows the
Rmax scheme, it starts with a simple model and ex-
plores a bit less aggressively than fRmax, gaining some
advantage in early episodes. However, LSE-Rmax ap-
pears to require much more data to choose a more
complex model. Its accumulated reward drops below
fRmax after 150 episodes, and the angle of the curve
suggests that its DBN structure is still not correct. We
did not run LSE-Rmax for more episodes, as the algo-
rithm has very high computational demand (Table 1).

When the feature set has many irrelevant features
(Figure 2b), loreRL is able to learn the relevant ones
and still gain nearly as high accumulated reward as
fEpsG which has relevant features provided by oracle.
Also loreRL’s running time is not much longer than
fRmax’s or fEpsG’s (Table 1). Other methods are too
slow to be run in this high-dimensional environment.

These results also suggest that with ε-greedy explo-
ration and random restarts, near optimal policy can
be found even without i.i.d data sampling.

Table 1. Average running time per episode in 800 episodes
when acting in an environment with 210 features. (Slow
RL-DT, LSE-Rmax could only be run with 10 features.)
Run on Intel Xeon CPU 2.13GHz, 32GB RAM.

Algorithm fRmax fEpsG RL-DT LSE-R. bloreRL loreRL
Time (sec.) 0.26 0.25 9.09 67.53 4.3 0.55

Feature selection. To model real-life situations, the
feature space is usually exponentially large. The abil-
ity to focus only on the (most) relevant features is
required to achieve effective learning. To understand
the role of feature selection, we focus on comparing
loreRL with a bloreRL that is based on multinomial
logistic regression without feature selection (without
the regularization term). fEpsG and fRmax are base
lines.
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Figure 2. Accumulated rewards in a 900 state CMDP for various model-based RL-methods.

Figure 2b shows the accumulated reward when the en-
vironment has 200 irrelevant binary features. As seen,
loreRL is still able to converge fast to optimal pol-
icy, and outperforms fRmax and bloreRL. Figure 2c
shows performances of loreRL and bloreRL after 800
episodes as a function of the number of irrelevant fea-
tures. Only minimally affected by the actual number
of irrelevant features, loreRL can quickly select the rel-
evant features and outperform bloreRL. loreRL does
not lose much to fEpsG either. While fRmax may find
an optimal policy before loreRL due to agressive ex-
ploration, its accumulated reward is still lower than
loreRL’s. In our experiments, we also observed that
loreRL, that selects a small set of features, is much
faster than bloreRL (Table 1).

4.2. Robotics domain

Our second experiment is conducted in a real environ-
ment where we cannot expect the effect of the actions
to follow logistic regression model. The domain (Fig-
ure 3) consists of a 5 × 5-feet environment made of
various materials such as beans, soil, hay, leaves, and
carpet that cause agent’s actions, move-forward, turn-
left, and turn-right, to have different effects at different
locations. The environment also contains a blue tar-
get ball, and there are marks painted in green, blue,
and red colors on cardboard surface. The three wheel
robot was built with LEGO Mindstorms NXT kit and
a camera was installed above the area so that the robot
can fully observe the environment.

To learn the transition function for the robot, we dis-
cretized the environment into a state space of 8 × 8
(x,y)-locations and 8 different orientations of a robot,
which yields a state space of 512 states. The actions
may change robot’s relative location in four different
ways and orientation in five different ways resulting
in total of 20 different effects. However, in different
states the actions’ tendency to produce effects may
be different due to the differences in surface mate-

rials. To capture this variation, the agent describes
each state with a long vector of binary features. The
“green” binary indicator fGi (s) of a state s is set to 1
iff there is a green mark that is further than i units but
closer than i+ 1 units from the xy-center of the state
s (i ∈ {0, . . . , 99}). Similar features are defined for
blue marks and to the blue target ball yielding 300 bi-
nary features. Eight indicators for different robot ori-
entations are also included in the feature-base together
with four intentionally redundant “there is/is-not a
green/blue mark in the state grid”-bits. All together
these yield 312 binary features per state. The intu-
ition behind these features is that they serve as proxies
to surface materials, slopes on the surfaces, obstacles,
etc., which are likely to be important factors deter-
mining the dynamics in the environments, but which
the robots sensors cannot capture. Although only few
among these 312 features are important for modeling
robots actions, the robot does not know those critical
features. The robot has to learn to select them based
on feedback while interacting with the environment.

The robot’s task is to travel in the environment from
a random start and reach the blue ball, which will earn
it a reward of 2 points. The robot will receive −1
point if it falls out of the area or into the death places
marked with orange rectangles, and −0.05 points for
an action at any other states. An episode ends if the
robot reaches a terminal state, or gets stuck for four
consecutive actions.

The robot battery did not allow us to compare our
algorithm with the slow RL-DT and LSE-Rmax; we
could only compare with the fine-tuned fRmax, fEpsG,
and man-loreRL algorithms in which we manually
selected important features and specified the DBN-
structures for the transition models. man-loreRL is
based on multinomial logistic regression models with
12 manually selected features. We ran the experiments
with loreRL and man-loreRL having α = 0.5, λ = 0.05,
γ = 0.95, exploration ε = 0.05, parameter m = 10 for
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fRmax. All results are averaged over 10 runs, and we
report the 95% confidence intervals.

Figure 3. A real environment.
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Figure 4. Accumulated rewards of various methods.

In Figure 4, loreRL appears to quickly capture the
environment dynamics and outperform other meth-
ods. Even with manually selected features, fRmax and
fEpsG require more exploration to learn the dynamics.
man-loreRL gains rewards a bit faster, but in the end
it slightly loses to loreRL possibly due to the (unfore-
seen) insufficiency of the manually selected features.
Table 2 further shows that loreRL is fast. Its aver-
age running time per episode with 312-features is only
slightly slower than with 12 manually selected features.

Table 2. Average running time per episode in 50 episodes.
Run on Intel Centrino Duo T2400 (1.83GHz), 1GB RAM.

Algorithm fRmax fEpsG man-loreRL loreRL
Time (sec.) 134.37 127.69 93.54 108.10

5. Conclusions

We have demonstrated how online multinomial logistic
regression with group lasso can be used to quickly ob-
tain a parsimonious transition model in model based
RL. The method leads to fast learning since a single
transition model can be learnt using samples from all
the states with a small set of features.

The efficiency is gained, however, at the expense of
losing generality. Not all transition functions can be
accurately represented as predicting action effects us-
ing state features via logistic regression. Nevertheless,
we believe that this compromise between scalability
and generality is often a useful one. The generality
problem may also be alleviated by introducing non-
linear features that are combinations of the original
ones.

Other generalizations such as stochastic features and
vector valued effects are also possible but are left for
future work. The proposed framework also opens an
opportunity for knowledge transfer. While different
environments often have different states, the effects of
actions are likely to persist from environment to en-
vironment. mDAGL would allow an agent to learn
transferrable sparse action models. For instance, this
method could be incorporated into the TES framework
(Nguyen et al., 2012) to implement an intelligent agent
that can learn, accumulate and transfer knowledge au-
tomatically between environments.
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