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Abstract

We analyze ‘Distribution to Distribution re-
gression’ where one is regressing a mapping
where both the covariate (inputs) and re-
sponse (outputs) are distributions. No pa-
rameters on the input or output distributions
are assumed, nor are any strong assumptions
made on the measure from which input dis-
tributions are drawn from. We develop an
estimator and derive an upper bound for the
L2 risk; also, we show that when the effective
dimension is small enough (as measured by
the doubling dimension), then the risk con-
verges to zero with a polynomial rate.

1. Introduction

In standard regression analysis, one is concerned with
inferring a mapping of a real valued vector of covariates
(features) X ∈ Rd to a real valued vector response Y ∈
Rk. While such a model encompasses many real-world
problems, the restriction of finite dimensions on input
and output domains excludes the regression of more
complex objects. For example, in functional analysis
one considers regression where the input domain are
functions (Ferraty & Vieu, 2006).

Probability distributions are another infinite dimen-
sional domain of interest for regression. Recently,
(Poczos et al., 2012) considered regressing a mapping
of probability distributions to a real valued response.
Instead, in this paper we study distribution to distri-
bution regression, where both the input covariate and
the output response are probability distributions. Fur-
thermore, we take a nonparametric approach, making
as few and as weak assumptions as possible on the
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Figure 1. Model of dataset D = {(Xi,Yi)}Mi=1 of pairs of
sets where Pi and Qi = f(Pi) are unobserved, instead one
observes samples Xi ∼ Pi and Yi ∼ Qi. P0 is an unseen
query distribution, observed indirectly through X0. We
look to estimate the output distribution Q0 = f(P0).

nature of input/output distributions and the mapping
between them.

This framework is quite general and applicable to
many real-world problems. For instance, consider the
case where one collects samples at evenly spaced times
t1, . . . , tM , then given the probability distribution at
time ti it is natural to try to predict the distribution at
time ti+1. Furthermore, there are many more domain-
specific uses of distribution to distribution regression.
For example, in business one may consider the map-
ping of the distribution of some weather features to
the distribution of some shipping route features. Also,
in finance one may be interested in the mapping of the
distribution of one sector’s prices to the distribution
of prices for another sector.

Our main contributions are as follows. First, we de-
velop a nonparametric estimator for distribution to
distribution regression. Second, with weak assump-
tions on the nature of input/output distributions and
the measure that input distributions are sampled from,
we derive an upperbound on the rate of convergence
for the L2 risk. Lastly, we show that if the measure
that input distributions are sampled from is a doubling
measure, then the rate of convergence for the L2 risk
is polynomial.
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2. Model

Let I be a class of input distributions on Ψk ⊆ Rk
that have a density with respect to the Lebesgue mea-
sure. Similarly, let O be a class of output distributions
on Λl ⊆ Rl that have a density with respect to the
Lebesgue measure. We regress a functional f : I 7→ O.

Consider a set {(P1, Q1), . . . , (PM , QM )} where Pi ∈
I, Qi ∈ O, and Qi = f(Pi). Under the usual
regression setting one would observe pairs of vari-
ables directly, however, we shall not since typically
the true distribution of a real-world sample is un-
known. Instead, we will consider the case where
one only indirectly observes input/output distribu-
tions through i.i.d. samples (Xi,Yi) from Pi and
Qi respectively. That is, one has a dataset of in-
put/output samples D = {(X1,Y1), . . . , (XM ,YM )}
where Xi = {Xi1, . . . , Xini} with each Xij

iid∼ Pi and

Yi = {Yi1, . . . , Yimi} with Yij
iid∼ Qi (see Figure 1).

Furthermore, each input distribution is taken to be

sampled i.i.d. from a measure P on I: P1, . . . , PM
iid∼

P.

Let {pi}Mi=1∪{qi}Mi=1 be the pdfs corresponding to dis-
tributions {Pi}Mi=1 ∪ {Qi}Mi=1. Note, for ease of nota-
tion, we shall use Qi = f(Pi) and qi = f(pi), Pi and
pi interchangeably depending on whether speaking of a
distribution or its density. Using nonparametric den-
sity estimation, one may estimate the input/output
pdfs as {p̃i}Mi=1 ∪ {q̃i}Mi=1 where p̃i is estimated from
Xi and q̃i is estimated from Yi. We shall denote the
distributions correspond to pdfs {p̃i}Mi=1 ∪ {q̃i}Mi=1 as
{P̃i}Mi=1 ∪ {Q̃i}Mi=1; that is P̃i(A) =

∫
A
p̃i(x)dx, and

Q̃i(A) =
∫
A
q̃i(x)dx.

Often, nonparametric estimators for the real-valued re-
gression setting take the form of some linear smoother.
That is, to get an estimate at a new input query
point x0 ∈ Rd, the function g(x0) is estimated as
ĝ(x0) =

∑
i YiW (Xi, x0) where W (Xi, x0) ∈ R are

weights depending on input observation Xi ∈ Rd, and
Yi ∈ R is the (typically noisy) output observation of
g(Xi). Here, instead of a query point x0, we have a
query distribution P0 ∼ P; however, again we consider
the case when we are only given P0 indirectly through

a sample X0 = {X01, . . . , X0n0
} iid∼ P0. In order to con-

struct an estimate of f(p0), the pdf corresponding to
the output distribution for P0, we will apply a linear
smoother using estimates of pdfs obtained using the
observed input/output samples. That is our estimate
for the pdf of f(P0) will have the form:

f̂(p̃0) =

M∑
i=1

q̃iW (P̃i, P̃0), (1)

where P̃0 is the estimator of P0 estimated from X0.

We will use orthogonal series estimators for output
densities qi, kernel smoothers for weights W (P̃i, P̃0),
and kernel density estimators for input densities pi.
Clearly, other regression methods, and density estima-
tors may be used; we chose these methods primarily
for ease of analysis.

3. Related Work

Distribution to distribution regression is related to
the aforementioned functional analysis. However,
the objects this model works over–distributions and
their densities–are inferred through datasets of sam-
ples drawn from the objects, with varying finite sizes.
In functional analysis, the objects–functions–are in-
ferred through datasets of (X,Y ) pairs that are often
taken to be arbitrarily dense in the domain of the ob-
jects. For a comprehensive background in functional
analysis see (Ferraty & Vieu, 2006) and (Ramsay &
Silverman, 2002).

A common approach to working with distributions in
ML tasks is to embed the distributions in a Hilbert
space, then using kernels and kernel machines, solve
a learning problem. The most straight forward of
these methods is to fit a parametric model to distribu-
tions for estimating inner products (Jebara et al., 2004;
Jaakkola et al., 1999; Moreno et al., 2003). Kernels
have also been developed using nonparametric meth-
ods over distributions. For example, since distribu-
tions are observed only through finite sets, set ker-
nels may be applied (Smola et al., 2007). Moreover,
the representer theorem was recently generalized for
the space of probability distributions (Muandet et al.,
2012). Futhermore, kernels based nonparametric esti-
mators of divergences have also been explored (Póczos
et al., 2012a;b).

Recently, a non-Hilbert space approach was taken for
regression with distribution covariates and real-valued
response (Poczos et al., 2012), where an upper-bound
was provided in hopes of better understanding the ef-
fect of sample sizes and number of input/output pairs
on estimation risk. In this paper, we aim to provide a
similar understanding to an even richer model, which
spans a wider range of problems.

4. Orthogonal Series Estimator for
Output Density

As previously mentioned, we do not directly observe
qi = f(pi), instead we are only given a finite sample
drawn from qi. In order to provide a linearly smoothed
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estimate of f(p) for unseen p as (1), we must first make
an estimate of qi. We will consider the case where the
estimate q̃i is made using an orthogonal series estima-
tor (see e.g. Tsybakov (2008)).

Suppose that Λl ⊆ Rl, the domain of output densi-
ties is compact s.t. Λ = [a, b]. Let {ϕi}i∈Z be an or-
thonormal basis for L2(Λ). Then, the tensor product
of {ϕi}i∈Z serves as an orthonormal basis for L2(Λl);
that is,

{ϕα}α∈Zl where ϕα(x) =

l∏
i=1

ϕαi(xi), x ∈ Λl

serves as an orthonormal basis (so we have ∀α, γ ∈
Zl, 〈ϕα, ϕγ〉 = I{α=γ}).

Let Q ∈ O, then

q(x) =
∑
α∈Zl

aα(Q)ϕα(x) where (2)

aα(Q) = 〈ϕα, q〉 =

∫
Λl
ϕα(z)dQ(z) ∈ R.

We make an anisotropic Sobolev ellipsoid type as-
sumption about the projection coefficients a(Q) =
{aα(Q)}α∈Zl :

O = {Q : a(Q) ∈ Θ(ν, σ, Ā)} where (3)

Θ(ν, σ, Ā) =

{aα}α∈Zl :
∑
α∈Zl

a2
ακ

2
α(ν, σ) < Ā

 ,

κ2
α(ν, σ) =

l∑
i=1

(νi|αi|)2σi for νi, σi, Ā > 0.

See (Ingster & Stepanova, 2011; Laurent, 1996) for
other analysis with this type of assumption. The as-
sumption in (3) will control the tail-behavior of pro-
jection coefficients and allow us to effectively estimate
Q ∈ O using a finite number of projection coefficients
on the empirical distribution of a sample.

Given a sample Yi = {Yi1, . . . , Yimi} where Yij
iid∼ Qi ∈

O and Qi = f(Pi), let Q̂i be the empirical distribution

of Yi; i.e. Q̂i(Y = Yij) = 1
mi

. Our estimator for qi will
be:

q̃i(x) =
∑

α : κα(ν,σ)≤ti

aα(Q̂i)ϕα(x) where (4)

aα(Q̂i) =

∫
Λk
ϕα(z)dQ̂i(z) =

1

mi

mi∑
j=1

ϕα(Yij). (5)

Choosing ti optimally can be shown to lead to E[‖q̃i−

qi‖22] = O(m
− 2

2+σ−1

i ), where σ−1 =
∑l
j=1 σ

−1
j , mi →

∞ (Nussbaum, 1983).

5. Estimator of Output Density for
Unseen Input Density

As previously mentioned, the estimator of q = f(p0)
that we’ll use to estimate the output query distribution
when given a sample from a new input query distribu-
tion P0 is (1). Let

At = {α ∈ Zl : κα(ν, σ) ≤ t} (6)

Our estimator q̂0 = f̂(p̃0) will be as follows. Let all q̃i
(4) have coefficients α ∈ At, (1) may be written as:

q̂0(x) = [f̂(p̃0)](x) =

M∑
i=1

q̃i(x)W (P̃i, P̃0)

=

M∑
i=1

(∑
α∈At

aα(Q̂i)ϕα(x)

)
W (P̃i, P̃0)

=
∑
α∈At

(
M∑
i=1

aα(Q̂i)W (P̃i, P̃0)

)
ϕα(x)

=
∑
α∈At

âαϕα(x) (7)

where âα =
∑M
i=1 aα(Q̂i)W (P̃i, P̃0). That is, our esti-

mator can be interpreted as smoothing the projection
density estimates at each output density or, equiva-
lently, as building a new projection density estimate
using smoothed projection coefficients from each out-
put density.

With (7), (2) we can upperbound the L2 loss of f̂(p̃0):

‖f̂(p̃0)− f(p0)‖2 =

=

(∫
Λk

( ∑
α∈At

(âα − aα(f(P0)))ϕα(x)

−
∑
α∈Act

aα(f(P0))ϕα(x)

)2

dx

)1/2

=

√∑
α∈At

(âα − aα(f(P0)))
2

+
∑
α∈Act

a2
α(f(P0)) (8)

≤
∑
α∈At

|âα − aα(f(P0))|+

∑
α∈Act

a2
α(f(P0))

1/2

where (8) follows from orthonormality. Thus,

E[‖f̂(p̃0)− f(p0)‖2] ≤
∑
α∈At

E [|âα − aα(f(P0))|] (9)

+ E

√∑
α∈Act

a2
α(f(P0))

 .
(10)
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Thus, we may upperbound the absolute risk for each
projection coefficient in (9), and control (10) using
(3). Note, the risk for each projection coefficient is
akin to the distribution covariate/ real output prob-
lem studied in (Poczos et al., 2012). In fact, us-

ing a trivial rewrite: aα(Q̂i) = aα(Qi) + µ
(i)
α with,

µ
(i)
α = aα(Q̂i) − aα(Qi) where E[µ

(i)
α ] = 0, but unlike

in (Poczos et al., 2012) sample sizes will now play a

role in the nature of the ”noise” µ
(i)
α .

In order to make weights W (p̃i, p̃0) we will use kernel
smoothing. That is, W (P̃i, P̃0) =

K
(
D(P̃i,P̃0)

h

)
M∑
j=1

K

(
D(P̃j ,P̃0)

h

) if
M∑
j=1

K
(
D(P̃j ,P̃0)

h

)
> 0

0 else

(11)

where D is a metric and K is a kernel function satis-
fying assumption A2 below.

6. L2 Risk Analysis

We will analyze the L2 risk of the estimator f̂(p̃0) us-
ing the L1 metric for D and kernel density estimation
for {p̃i}Mi=0. That is, suppose that a kernel density
estimator is used to estimate input densities:

p̃i(x) =
1

ni

ni∑
j=1

1

bki
B

(
‖x−Xij‖

bi

)
, (12)

where bi > 0 is a bandwidth parameter, B is an ap-
propriate kernel function (see e.g. Tsybakov (2008)),
and ‖ · ‖ is the Euclidean norm. Furthermore, sup-
pose that D(P̃0, P̃i) = ‖p̃0 − p̃i‖1 is the L1 distance∫
|p̃0(x)− p̃i(x)|dx.

6.1. Assumptions

We shall assume A1 through A6:

• (A1) L∞ Hölder continuous functional. The un-
known functional f is in a class M =M(L, β):

M =

{
f : ∀P, P ′ ∈ I,max

α∈Zk
|aα(f(P ))− aα(f(P ′))|

≤ LD(P, P ′)β
}
. (13)

• (A2) Asymmetric boxed and Lipschitz kernel. The
kernel K satisfies the following properties: K :
[0,∞] → R] is nonnegative and Lipschitz con-
tinuous with Lipschitz constant LK . Further-
more, there exist constants 0 < K < 1 and
0 < r < R <∞ such that:

∀x > 0, KI{x≤r} ≤ K(x) ≤ I{x≤R}

• (A3) Class of input/output distributions. The
class I is the set of distribution Hk(1) with den-
sities that are 1-smooth Hölder functions, as in
(Rigollet & Vert, 2009). Furthermore, the domain
of distributions in I, Ψk ⊆ Rk, is assumed to be
compact. Also, it is assumed O is as (3) and Sec-
tion 4.

• (A4) Bounded basis. Assume maxα∈Z ‖ϕα‖∞ <
ϕmax for some 0 < ϕmax < ∞. Furthermore,
clearly ∀i ∈ {1, . . . ,M}, ∀α ∈ Zl, aα(Q̂i) < ϕmax.
Moreover, it is assumed that ni and mi are in-
dependent of Pi. By (3), we know that ∀α 6= 0,
aα(Qi) < Ā; assume further that a0(Qi) < Ā.

• (A5) Lower bound on sample sizes. Assume that
min

(
{ni}Mi=0

)
= n, min

(
{mi}Mi=1

)
= m and

en
1

2+k
/M →∞ as M →∞.

• (A6) Relation between n and h. Assume that

C∗n
− 1

2+k ≤ rh/4

6.2. Lemmas

Before deriving upper bounds, we state several Lem-
mas. For proofs, please refer to the Appendix sec-
tion. Let BD(P, h) ≡ {P ′ ∈ I : D(P, P ′) ≤ h},
ΦP (h) ≡ P(BD(P, h)), where P is a fixed distribution.

Also let Kj ≡ K
(
D(P0,Pj)

h

)
and K̃j ≡ K

(
D(P̃0,P̃j)

h

)
.

Lemma 1 P
(∑M

i=1Ki = 0
)
≤ P

(∑M
i=1Ki ≤ K

)
≤

1
eME

[
1

ΦP (rh)

]
.

Let ζ(n,M) ≡ 1
eME

[
1

ΦP (rh/2)

]
+ (M + 1)e−

1
2n

k
2+k

.

Lemma 2 P
(∑M

i=1 K̃i = 0
)
≤ P

(∑M
i=1 K̃i ≤ K

)
≤

ζ(n,M).

Lemma 3 E
[
I{
∑
i Ki≤K}∑
iKi

]
≤ 1+1/K

MK E
[

1
ΦP (rh)

]
.

6.3. Upper bound

We look to analyze the L2 risk of our estimator
(9),(10). As previously mentioned, (10) can be upper-
bounded using (3).

Let Rα(M,n,m) ≡ E [|âα − aα(f(P0))|] , where ar-
guments M,n,m emphasize the dependence on the
respective sample size bounds. We look to find
R(M,n,m) s.t. ∀α ∈ Zl Rα(M,n,m) ≤ R(M,n,m).

Hence, using (9) and (10): E[‖f̂(p̃0)− f(p0)‖2] ≤

|At|R(M,n,m) +

√√√√√E

 ∑
α∈Act

a2
α(f(P0))

 (14)
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where |At| is the cardinality of set At as in (6). In
order to derive a bound for R(M,n,m), we will use
some similar arguments in (Poczos et al., 2012). For
analysis purposes let āα ≡

M∑
i=1

aα(Q̂i)K
(
D(P0,Pi)

h

)
M∑
j=1

K
(
D(P0,Pi)

h

) if
∑
j K

(
D(P0,Pi)

h

)
> 0,

0 else

.

(15)

That is, āα is the kernel regression estimator using
the true input distribution {Pi}Mi=0 instead of the es-
timated distributions {P̃i}Mi=0. We upper-bound the
pointwise risk as:

Rα(M,n,m) ≤ E[|âα − āα|] (16)

+ E[|āα − aα(f(P0))|] (17)

For our bounds, we shall take bi = n−
1

2+k the asymp-
totically optimal bandwidths (up to constants) for ker-
nel density estimation under MSE loss.

6.3.1. Bound on Eq. 16

Let ∆âα = |âα − āα|, we look to upperbound E[∆âα].

Define the following six events E0, E1, E2 Ẽ0, Ẽ1, Ẽ2

as: E0 = {
∑
iKi = 0}, E1 = {0 <

∑
iKi ≤ K},

E2 = {K <
∑
iKi}, Ẽ0 = {

∑
i K̃i = 0}, Ẽ1 =

{0 <
∑
i K̃i ≤ K}, and Ẽ2 = {K <

∑
i K̃i}. Clearly,

E[∆âα] =
∑2
i=0

∑2
j=0 E[∆âαIEiIẼj ].

If 0 <
∑
iKi, then clearly ∀α |āα| =

∣∣∣∑i
aα(Q̂i)Ki∑

iKi

∣∣∣ <
ϕmax. Thus, E

[∣∣∣∑i
aα(Q̂i)Ki∑

iKi

∣∣∣ IẼ0
(IE1

+ IE2
)
]

≤ ϕmaxE
[
I{
∑
iKi>0∧

∑
i K̃i=0}

]
= ϕmaxP

(∑
i

Ki > 0,
∑
i

K̃i = 0

)

≤ ϕmaxP

(∑
i

K̃i = 0

)
≤ ϕmaxζ(m,M), (18)

with (18) following from Lemma 2.

Similarly, E
[∣∣∣∑i aα(Q̂i)K̃i∑

i K̃i

∣∣∣ IE0
(IẼ1

+ IẼ2
)
]

≤
ϕmax

eM E
[

1
ΦP (rh)

]
, by Lemma 1.

Furthermore, E
[
∆âαIE1(IẼ1

+ IẼ2
)
]

≤ E
[(∣∣∣∣∣

∑
i aα(Q̂i)Ki∑

iKi

∣∣∣∣∣+

∣∣∣∣∣
∑
i aα(Q̂i)K̃i∑

i K̃i

∣∣∣∣∣
)

× IE1(IẼ1
+ IẼ2

)

]
≤ 2ϕmaxE

[
IE1(IẼ1

+ IẼ2
)
]
≤ 2ϕmaxE [IE1 ]

= 2ϕmaxP(0 <
∑
i

Ki ≤ K) ≤ 2ϕmax

eM
E
[

1

ΦP (rh)

]
by Lemma 1; likewise E

[
∆âαIẼ1

(IE1 + IE2)
]

≤ 2ϕmaxP(0 <
∑
i

K̃i ≤ K) ≤ 2ϕmaxζ(m,M).

by Lemma 2.

Lemma 4 E
[
∆âαIẼ2

IE2

]
≤ C1

h E
[

1
ΦP (rh)

]
n−1/(2+k)

(for C1 > 0 specified in proof, see Appendix).

Hence, combining: E[∆âα] ≤ C1
n
− 1

2+k

h E
[

1
ΦP (rh/2)

]
+

C2

M E
[

1
ΦP (rh/2)

]
+ (M + 1)e−

1
2n

k
2+k

, with Ci > 0.

6.3.2. Bound on Eq. 17

Note that E|āα − aα(f(P0))| =

E

∣∣∣∣∣
∑
i aα(Q̂i)Ki∑

iKi
I{
∑
iKi>0} − aα(f(P0))

∣∣∣∣∣
= E

∣∣∣∣∣
∑
i(aα(Qi) + µ

(i)
α )Ki∑

iKi
I{
∑
iKi>0} − aα(f(P0))

∣∣∣∣∣
≤ E

∣∣∣∣∑i(aα(f(Pi))− aα(f(P0)))Ki∑
iKi

I{
∑
iKi>0}

∣∣∣∣ (19)

+ E

∣∣∣∣∣
∑
i µ

(i)
α Ki∑
iKi

I{
∑
iKi>0}

∣∣∣∣∣ (20)

+ E
∣∣aα(f(P0))I{

∑
iKi=0}

∣∣ , (21)

We bound the three terms in (19), (20), and (21).

To bound (19), let I = I{
∑
iKi>0}. Using A1,

E
[∑

i |aα(f(Pi))− aα(f(P0))|Ki∑
iKi

I

]
≤E

[∑
i LD(Pi, P0)βKi∑

iKi
I

]
≤ L(hR)β ,

since by A2 supp(K) ⊆ [0, R] so LD(Pi, P0)βKi ≤
L(hR)βKi. To bound (20), first we bound E[|µ(i)

α |]

and

√
E[|µ(i)

α |2].

Lemma 51 E[|µ(i)
α |] ≤

√
E[|µ(i)

α |2] ≤ Cm− 1
2

Let I = I{K>
∑
iKi>0} and Ī = I{

∑
iKi>K}, hence

1see Appendix, C > 0.
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I = Ī + I. To bound (20):

E

∣∣∣∣∣
∑
i µ

(i)
α Ki∑
iKi

I

∣∣∣∣∣ = E

∣∣∣∣∣
∑
i µ

(i)
α Ki∑
iKi

(Ī + I)

∣∣∣∣∣
≤ E

[∣∣∣∣∣
∑
i µ

(i)
α Ki∑
iKi

Ī

∣∣∣∣∣
]

+ E

[∣∣∣∣∣
∑
i µ

(i)
α Ki∑
iKi

I

∣∣∣∣∣
]

≤ E

[∣∣∣∣∣
∑
i µ

(i)
α Ki∑
iKi

∣∣∣∣∣ Ī
]

+ c1m
− 1

2P

(∑
i

Ki < K

)

≤ E

[∣∣∣∣∣
∑
i µ

(i)
α Ki∑
iKi

∣∣∣∣∣ Ī
]

+
c1m

− 1
2

eM
E
[

1

ΦP (rh)

]
,

second last line by Lemma 5, and last by Lemma 1.

Lemma 61 E
[∣∣∣∑i µ

(i)
α Ki∑
iKi

∣∣∣ Ī] ≤ C√ 1
mME

[
1

ΦP (rh)

]
Lastly, using Lemma 1, a bound on (21):

E
∣∣aα(f(P0))I{

∑
iKi=0}

∣∣ ≤ Ā

eM
E
[

1

ΦP (rh)

]

Combining the above we have that E|āα − aα(f(P0))|

≤ C3h
β + C4

√
1

mM
E
[

1

ΦP (rh/2)

]
+

C5√
mM

E
[

1

ΦP (rh/2)

]
+
C6

M
E
[

1

ΦP (rh/2)

]
.

6.3.3. Projection Coefficient Regression
Convergence Rate

Synthesizing, ∀α ∈ Zl Rα(M,n,m) ≤ R(M,n,m),
where: R(M,n,m) ≡

C1
n−

1
2+k

h
E
[

1

ΦP (rh/2)

]
+
C2

M
E
[

1

ΦP (rh/2)

]
+ C3h

β + C4

√
1

mM
E
[

1

ΦP (rh/2)

]
+

C5√
mM

E
[

1

ΦP (rh/2)

]
+ (M + 1)e−

1
2n

k
2+k

. (22)

6.3.4. Convergence Rate for Distribution to
Distribution Regression

Note that
√∑

α∈Act
a2
α(f(P0))

=
1

t

√∑
α∈Act

t2a2
α(f(p0)) ≤ 1

t

√∑
α∈Act

κ2
α(ν, σ)a2

α(f(P0))

≤ 1

t

√∑
α∈Zl

κ2
α(ν, σ)a2

α(f(P0)) ≤
√
Ā

t
.

Furthermore, note that if we have a bound ∀α ∈
At, c ≥ |αi| then (2c+ 1)l ≥ |At|, by a simple count-
ing argument. Let λ = argminiν

2σi
i . We have α ∈ At

iff t2

ν
2σλ
λ

≥ 1

ν
2σλ
λ

∑l
i=1(νi|αi|)2σi ≥

∑l
i=1 |αi|2σi , so

ν
−σλσi
λ t

1
σi ≥ |αi|. Thus, |At| ≤

∏l
i=1(2ν

−σλσi
λ t

1
σi + 1).

Thus, asymptotically |At| = O(tσ
−1

) where σ−1 =∑l
j=1 σ

−1
j ; and, as M,n,m→∞ and with appropriate

h, by (14) we have:

E[‖f̂(p̃0)− f(p0)‖2] ≤ CR(M,n,m)tσ
−1

+

√
Ā

t
.

Choosing t ∼ R(M,n,m)−1/(σ−1+1) leads to our first
major result, a bound on the L2 risk.

Theorem 7

E[‖f̂(p̃0)− f(p0)‖2] ≤ C ′R(M,n,m)1/(σ−1+1) (23)

As a corollary, if σi = ρ > 0, then clearly:

E[‖f̂(p̃0)− f(p0)‖2] ≤ C ′R(M,n,m)ρ/(k+ρ)

6.3.5. Doubling Dimension

Clearly, the bounds on R(M,n,m) and

E[‖f̂(p̃0)− f(p0)‖2] depend on the quantity
E
[
(ΦP (rh/2))−1

]
. It can be shown that with-

out further assumptions the quantity can be relatively
large, leading to slow rates. However, here we will
focus on the case when we may control the effective
dimension of the support of P.

Following (Kpotufe, 2011), we look to control the ef-
fective dimension through the doubling dimension. We
say that P is a doubling measure, with effective di-
mension d, if ∃c > 0 for all u > 0 and 1 > ε > 0:
P(BD(S,u))
P(BD(S,εu)) <

(
c
ε

)d
. Hence, E

[
1

ΦP (rh/2)

]
= E

[
ΦP (1)

ΦP (1)

1

ΦP ( rh2 )

]
≤ ( rh2 )−dCE

[
1

ΦP (1)

]
≤ C ′h−d

Clearly, 1
M = Ω( 1√

mM
), as M,m → ∞. To further

simplify, assume that n = Θ(m). Then, R(M,n,m) ≤

R(M,n) ≡ C1
n−

1
2+k

hd+1
+

C2

Mhd
+ C3h

β + C4

√
1

nMhd
.

We will analyze R(M,n) depending on the dominating
term, and choosing the bandwidth h optimally. Fur-

thermore, in order to assure that the (M + 1)e−
1
2n

k
2+k

term in (22) does not dominate we slightly extend as-

sumption A5 as follows: M = O(n−
β

(k+2)(β+d+1) en
k
k+2

).

Lemma 82 (Case 1) If 1
Mhd

= Ω(
√

1
nMhd

) and 1
Mhd

=

2see Appendix.
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(a) Input Distribution
M,η = 10000
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(b) Output Distribution
M,η = 10000
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Figure 2. (a) Example unseen input distribution p0 shown in solid red, p̃0 in dashed blue using M,η = 10000. (b)
Corresponding output distribution, f(p0) shown in solid red, f̂(p̃0) in dashed blue using M,η = 10000. (c),(d) Different
true and estimated output distributions using other M,η (corresponding input distributions not shown).

Ω(n
− 1

2+k

hd+1 ), then R(M,n) = O(hβ+ 1
Mhd

) and choosing

h optimally leads to R(M,n) = O(M−
β
β+d ).

Hence, R(M,n,m) = O(M
−β
β+d ). Note this case im-

plies n = Ω(M
(β+d+1)(k+2)

β+d ); since M is slow growing,
it makes sense that the rate be driven by it.

Lemma 92 (Case 2) If n
− 1

2+k

hd+1 = Ω(
√

1
nMhd

)

and n
− 1

2+k

hd+1 = Ω( 1
Mhd

), then R(M,n) = O(hβ +

n
−1
2+k h−(d+1)) and choosing h optimally leads to

R(M,n) = O(n−
β

(k+2)(β+d+1) ).

Thus, R(M,n,m) = O(n−
β

(k+2)(β+d+1) ). This case im-

plies M = Ω(n
β+d

(k+2)(β+d+1) ); thus, the rate is again in-
tuitive since n is slow growing in this case.

Lastly, it can be shown that if one choose h optimally
then (nMhd)−1/2 cannot dominate.

Lemma 102 If one chooses h optimally it can not be

that
√

1
nMhd

= Ω(n
− 1

2+k

hd+1 ) and
√

1
nMhd

= Ω( 1
Mhd

).

Hence we have that in any case, if P is a doubling mea-
sure then we have a polynomial rate on R(M,n,m).
Hence by (23), we have our second major result:

Theorem 11 If P is a doubling dimension, then the
rate of convergence for E[‖f̂(p̃0)− f(p0)‖2] is polyno-
mial in M,n,m.

6.3.6. Different Distances, Estimators

We note that a very similar analysis may be employed
when using the L2 metric as the distance D, and using
projection series estimators for {p̃i}Mi=0. On a practi-
cal note, in this case the L2 distance among the es-
timated input distribution and the estimated query
distribution is just the `2 distance of their projection
coefficients. Due to space constraints, further details
are omitted.

7. Experiments

In order to assess the empirical performance of dis-
tribution to distribution estimation, we performed
experiments on both synthetic and real data. In
both cases, the dataset we are operating on is of
the form {(X1,Y1), . . . , (XM ,YM )}, where (Xi,Yi) is
a pair of samples drawn from input/output distribu-

tions: Xi
iid∼ Pi, Yi

iid∼ Qi. The estimated input/output
densities pi, qi, were estimated using projection series
estimators with the cosine basis: ψ0(x) ≡ 1, ψj(x) =√

2 cos(jπx), j ≥ 1. The kernel used for the regression
weights was the triangle kernel: (1−|x|)+. Parameters
were selected by cross validating log likelihoods.

7.1. Synthetic Dataset
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Figure 3. Grid of estimated L2 risks for varying values of
M,η.

To better understand the effects of sample size quan-
tities n, m and M , we generated synthetic datasets
with varying sizes and tested the effectiveness of our
estimator. The input/output distribution were cre-
ated as follows: First we draw µ1, µ2 ∼ Unif[0, 1]
and σ1, σ2 ∼ Unif[.05, .1], then pdfs are p(x) =
1
2g(x;µ1, σ1)+ 1

2g(x;µ2, σ2), q(x) = 1
2g(x; 1−µ1, σ1)+
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(a) Frame 1 (b) Frame 50 (c) Frame 100

Figure 4. Cell images at different time frames.

1
2g(x; 1−µ2, σ2) where g is the truncated normal pdf on

[0, 1]: g(x;µ, σ) = 1
σφ(x−µσ )/(Φ( 1−µ

σ )− Φ(−µσ )) with
φ and Φ being the standard normal pdf and cdf (see
Figures 2(a) and 2(b)).

A grid was populated evaluating our estimator by
generating M pairs of (pi, qi) input/output densi-
ties as described above. Then from each (pi, qi), η
points are drawn: |Xi| = η, and |Yi| = η. That
is, mi = ni = η. M and η were chosen to be in
{100, 300, 600, 1000, 3000, 6000, 10000}. For each con-
figuration of M,η the L2-risk is reported as the aver-
age L2-loss calculated for a separate test set of 5000
input/output sample pairs of η points (Figure 3). Not
surprisingly the fastest direction to decrease the L2
risk is by increasing M , η simultaneously. It is also in-
teresting to note that holding either M or η fixed and
increasing the other decreases the risk, but eventually
levels off. This is exactly predicted by our theory, since
once either size M or η get much bigger than the other
size, the smaller size drives the rate. Furthermore, one
may see in Figures 2(c) and 2(d), that even for smaller
sample sizes, the estimator still produces useful esti-
mates.

7.2. Cell Dataset

Next, we used a dataset of a time-series of images of
HeLa cells (Buck et al., 2009). A total of 100 time-
frames were used, containing from 53 to 149 cells each.
In each time-frame 49 image nuclear features were ex-
tracted from each cell. All features were rescaled to
lie within [0, 1] (see Figure 4). At each time-frame, we
look to regress the distribution of one of the nuclear
features (e.g. short-axis length) when given the dis-
tribution of another nuclear feature in the time-frame
(e.g. long-axis length). That is, we use {(Xi,Yi)}100

i=1,
where (Xi,Yi) are samples of the input/output feature
at the ith time-frame.

In addition to a distribution to distribution estimator
(DDE), one may use a conditional distribution based
estimator (CDE). That is, estimate the output distri-
bution as follows: estimate the conditional distribution
of a cell’s output feature given the input feature, then
when given a frame, estimate the output distribution
as the average of the conditional distribution given the
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(c) DDE {f̂(p̃i)}

Figure 5. Densities at different time frames, lighter lines
correspond to later time-frames. (a) Estimated output
densities for a short-axis length feature with projection se-
ries estimators on each Yi. (b) CDE estimated output
densities for frame i, f̂(p̃i), holding out (Xi,Yi). (c) DDE
estimated output densities for frame i holding out (Xi,Yi).

input feature values for each cell in the time-frame.
Note that this CDE requires much more knowledge
and special conditions than the DDE since a one to
one mapping between input/output samples must ex-
ist3, and one needs to know the mapping.

Since now we are estimating over a real-world dataset,
no longer do we know the true density for samples. In-
stead, we compare the cross-validated log-likelihoods
(CVLL) (using a holdout input/output sample pair)
of the CDE to the DDE. We regress the mapping of
the distribution of cell long-axis length to the distri-
bution of cell short-axis length, where CDE yields a
CVLL 6657.09 and DDE yields 6714.95 (see Figure
5). We note that although the CDE uses much more
information, the DDE yields a better likelihood for
estimated output distributions for unseen input distri-
butions. Also, the DDE is able to capture change in
distributions than CDE, which stays much more sta-
tionary. It may be of scientific interest to consider
conditions under which one expects DDE to outper-
form CDE.

8. Discussion and Conclusion

In conclusion, we have provided an estimator for per-
forming regression when both covariates and responses
are distributions; also, upper bounds were derived for
the risk of the estimator. No parametric assumptions
were made on the input/output distribution, nor on
the measure from which input distributions are drawn
from in the estimator or upper bound results. Further-
more, if an assumption is made on the doubling dimen-
sion of the measure of input distributions P, then we
show that the L2 risk of the estimated output den-
sity converges at a polynomial rate. In future work
we will derive lower bounds for the risk. Furthermore,
we will test the performance of the estimator on other
real-world datasets.

3E.g., this was not the case with the synthetic dataset.
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