
Sparse PCA through Low-rank Approximations

Dimitris S. Papailiopoulos dimitris@utexas.edu
Alexandros G. Dimakis dimakis@austin.utexas.edu

Department of Electrical and Computer Engineering, the University of Texas at Austin, TX, USA

Stavros Korokythakis stavros@stochastictechnologies.com

Stochastic Technologies

Abstract

We introduce a novel algorithm that com-
putes the k-sparse principal component of a
positive semidefinite matrix A. Our algo-
rithm is combinatorial and operates by ex-
amining a discrete set of special vectors ly-
ing in a low-dimensional eigen-subspace of
A. We obtain provable approximation guar-
antees that depend on the spectral profile of
the matrix: the faster the eigenvalue decay,
the better the quality of our approximation.
For example, if the eigenvalues of A follow
a power-law decay, we obtain a polynomial-
time approximation algorithm for any desired
accuracy. We implement our algorithm and
test it on multiple artificial and real data sets.
Due to a feature elimination step, it is possi-
ble to perform sparse PCA on data sets con-
sisting of millions of entries in a few minutes.
Our experimental evaluation shows that our
scheme is nearly optimal while finding very
sparse vectors. We compare to the prior
state of the art and show that our scheme
matches or outperforms previous algorithms
in all tested data sets.

1. Introduction

Principal component analysis (PCA) reduces the di-
mensionality of a data set by projecting it onto prin-
cipal subspaces spanned by the leading eigenvectors
of the sample covariance matrix. The statistical sig-
nificance of PCA partially lies in the fact that the
principal components capture the largest possible data
variance. The first principal component (i.e., the first

Proceedings of the 30 th International Conference on Ma-
chine Learning, Atlanta, Georgia, USA, 2013. JMLR:
W&CP volume 28. Copyright 2013 by the author(s).

eigenvector) of an n× n matrix A is the solution to

arg max
‖x‖2=1

xTAx

where A = SST and S is the n ×m data set matrix
consisting of m data-points, or entries, each evaluated
on n features, and ‖x‖2 is the `2-norm of x. PCA
can be efficiently computed using the singular value
decomposition (SVD). The statistical properties and
computational tractability of PCA renders it one of
the most used tools in data analysis and clustering
applications.

A drawback of PCA is that the generated vectors typ-
ically have very few zero entries, i.e., they are not
sparse. Sparsity is desirable when we aim for inter-
pretability in the analysis of principal components. An
example where sparsity implies interpretability is doc-
ument analysis, where principal components can be
used to cluster documents and detect trends. When
the principal components are sparse, they can be eas-
ily mapped to topics (e.g., newspaper article classifi-
cation into politics, sports, etc.) using the few key-
words in their support (Gawalt et al., 2010; Zhang &
El Ghaoui, 2011). For that reason it is desirable to
find sparse eigenvectors.

Sparse PCA. Sparsity can be directly enforced in
the principal components. The sparse principal com-
ponent x∗ is defined as

x∗ = arg max
‖x‖2=1,‖x‖0=k

xTAx. (1)

The `0 cardinality constraint limits the optimization
over vectors with k non-zero entries. As expected,
sparsity comes at a cost since the optimization in (1) is
NP-hard (Moghaddam et al., 2006a) and hence com-
putationally intractable in general.

Our Contribution. We introduce a novel algo-
rithm for sparse PCA that has a provable approxima-
tion guarantee. Our algorithm generates a k-sparse,



Sparse PCA through Low-rank Approximations

unit length vector xd that gives an objective provably
within a 1− εd factor from the optimal:

xTdAxd ≥ (1− εd)xT∗Ax∗

with

εd ≤ min

{
n

k
· λd+1

λ1
,
λd+1

λ
(1)
1

}
, (2)

where λi is the ith largest eigenvalue of A and λ
(1)
1

is the maximum diagonal element of A. For any de-
sired value of the parameter d, our algorithm runs in
time O(nd+1 log n). Our approximation guarantee is
directly related to the spectrum of A: the greater the
eigenvalue decay, the better the approximation. Equa-
tion (2) contains two bounds: one that uses the largest
eigenvalue λ1 and one that uses the largest diagonal

element of A, λ
(1)
1 . Either bound can be tighter, de-

pending on the structure of the A matrix.

We subsequently rely on our approximation result to
establish guarantees for considerably general families
of matrices.

Constant-factor approximation. If we only as-
sume that there is an arbitrary decay in the eigenvalues
of A, i.e., there exists a constant d = O(1) such that
λ1 > λd+1, then we can obtain a constant-factor ap-
proximation guarantee for the linear sparsity regime.
Specifically, we find a constant δ0 such that for all
sparsity levels k > δ0 n we obtain a constant approxi-
mation ratio for sparse PCA, partially solving the open
problem discussed in (Zhang et al., 2012; d’Aspremont
et al., 2012). This result easily follows from our main
theorem.

Eigenvalue Power-law Decay. When the data ma-
trix spectrum exhibits a power-law decay, we can ob-
tain a much stronger performance guarantee: we can
solve sparse PCA for any desired accuracy ε in time
polynomial in n, k (but not in 1

ε ). This is some-
times called a polynomial-time approximation scheme
(PTAS). Further, the power-law decay is not neces-
sary: the spectrum does not have to follow exactly
that decay, but only exhibit a substantial spectral drop
after a few eigenvalues.

Our algorithm operates by scanning a low-dimensional
subspace of A. There, it examines a polynomial num-
ber of special vectors, that lead to a sparse principal
component which admits provable performance. A key
conceptual innovation that we employ is a hyperspher-
ical transformation on our problem space to reduce its
dimensionality. Another important component of our
scheme is a safe feature elimination step that allows the
scalability of our algorithm for data sets with millions
of entries. We introduce a test that discards features

that are provably not in the support of the sparse PC,
in a similar manner as (Zhang & El Ghaoui, 2011), but
using a different combinatorial criterion.

Experimental Evaluation. We evaluate and com-
pare our algorithm against state of the art sparse PCA
approaches on synthetic and real data sets. Our real
data set is a large Twitter collection of more than 10
million tweets spanning approximately six months. We
executed several experiments on various subsets of our
data set: collections of tweets during a specific time-
window, tweets that contained a specific word, etc.
Our implementation executes in less than one second
for 50k − 100k documents and in a few minutes for
millions of documents. Our scheme typically comes
closer than 90% of the optimal performance, even for
d ≤ 3, and empirically outperforms previously pro-
posed sparse PCA algorithms.

1.1. Related Work

There has been a substantial volume of prior work on
sparse PCA. Initial heuristic approaches used factor
rotation techniques and thresholding of eigenvectors
to obtain sparsity (Kaiser, 1958; Jolliffe, 1995; Cadima
& Jolliffe, 1995). Then, a modified PCA technique
based on the LASSO (SCoTLASS) was introduced in
(Jolliffe et al., 2003). In (Zou et al., 2006), a non-
convex regression-type approximation, penalized à la
LASSO was used to produce sparse PCs. A noncon-
vex technique was presented in (Sriperumbudur et al.,
2007). In (Moghaddam et al., 2006b), the authors
used spectral arguments to motivate a greedy branch-
and-bound approach, further explored in (Moghaddam
et al., 2007). In (Shen & Huang, 2008), a similar tech-
nique to SVD was used employing sparsity penalties
on each round of projections. A significant body of
work based on semidefinite programming (SDP) ap-
proaches was established in (d’Aspremont et al., 2007a;
Zhang et al., 2012; d’Aspremont et al., 2008). A vari-
ation of the power method was used in (Journée et al.,
2010). When computing multiple PCs, the issue of
deflation arises as discussed in (Mackey, 2009). In
(Amini & Wainwright, 2008), the first theoretical op-
timality guarantees were established for thresholding
and the SDP relaxation of (d’Aspremont et al., 2007a),
in the high-dimensional setting of a generative model
where the covariance has one sparse eigenvector. In
(Yuan & Zhang, 2011), the authors introduced a very
efficient sparse PCA approximation based on truncat-
ing the well-known power method to obtain the exact
level of sparsity desired, which came along with pefor-
mance guarantees for a specific data model. In (As-
teris et al., 2011), the authors present an algorithm
that solves sparse PCA exactly and in polynomial time



Sparse PCA through Low-rank Approximations

for matrices of constant rank. The main algorithmic
differences from (Asteris et al., 2011) are i) our solver
speeds up calculations for matrices with nonnegative
entries by a 2d−1 factor in running complexity and ii)
a safe feature elimination step is introduced that is
fundamental in implementing the algorithm for large
data sets. Despite this extensive literature, to the best
of our knowledge, there are very few provable approxi-
mation guarantees for sparse PCA algorithms and usu-
ally under limited data models (Amini & Wainwright,
2008; Yuan & Zhang, 2011; d’Aspremont et al., 2012;
Ma, 2011).

2. Sparse PCA through Low-rank
Approximations

2.1. Proposed Algorithm

Our algorithm is technically involved and for that rea-
son we start with a high-level informal description. For
any given accuracy parameter d we follow the following
steps:

Step 1: Obtain Ad, a rank-d approximation of A.
We obtain Ad, the best-fit rank-d approximation of A,
by keeping the first d terms in its eigen-decomposition:

Ad =

d∑
i=1

λiviv
T
i ,

where λi is the i-th largest eigenvalue of A and vi the
corresponding eigenvector.

Step 2: Use Ad to obtain O(nd) candidate supports.
For any matrix A, we can exhaustively search for the
optimal x∗ by checking all

(
n
k

)
possible k × k sub-

matrices of A: x∗ is the k-sparse vector with the same
support as the sub-matrix of A with the maximum
largest eigenvalue. However, we show how sparse PCA
can be efficiently solved on Ad if the rank d is constant
with respect to n. The key technical fact that we prove
is that there are only O(nd) candidate supports that
need to be examined. Specifically, we show that a set
of candidate supports Sd = {I1, . . . , IT }, where It is
a subset of k indices from {1, . . . , n}, contains the op-
timal support. We prove that the number of these
supports is1

|Sd| ≤ 22d
(
n

d

)
.

The above set Sd is efficiently created by our Spanno-
gram algorithm described in the next subsection.

Step 3: Check each candidate support from Sd on A.

1In fact, in our proof we show a better dependency on
d, which however has a more complicated expression.

Algorithm 1 Sparse PCA via a rank-d approximation

1: Input: k, d, A
2: p← 1 if A has nonnegative entries, 0 if mixed
3: Ad ←

∑d
i=1 λiviv

T
i

4: Âd ← feature elimination(Ad)

5: Sd ← Spannogram
(
k, p, Âd

)
6: for each I ∈ Sd do
7: Calculate λ1(AI)
8: end for
9: Ioptd = arg maxI∈Sd λ1(AI)

10: OPTd = λ1(AIoptd
)

11: xoptd ← the principal eigenvector of AIoptd
.

12: Output: xoptd

For a given support I it is easy to find the best vec-
tor supported on I: it is the leading eigenvector of
the principal sub-matrix of A, with rows and columns
indexed by I. In this step, we check all the supports
in Sd on the original matrix A and output the best.
Specifically, define AI to be the zeroed-out version of
A, except on the support I. That is, AI is an n × n
matrix with zeros everywhere except for the principal
sub-matrix indexed by I. If i ∈ I and j ∈ I, then
AI = Aij , else it is 0. Then, for any AI matrix, with
I ∈ Sd, we compute its largest eigenvalue and corre-
sponding eigenvector.

Output:
Finally, we output the k-sparse vector xd that is the
principal eigenvector of the AI matrix, I ∈ Sd, with
the largest maximum eigenvalue. We refer to this ap-
proximate sparse PC solution as the rank-d optimal
solution.

The exact steps of our algorithm are given in the
pseudo-code tables denoted as Algorithm 1 and 2. The
spannogram subroutine, i.e., Algorithm 2, computes
the T candidate supports in Sd, and is presented and
explained in Section 3. The complexity of our algo-
rithm is equal to calculating d leading eigenvectors
of A (O(dn2)), running our spannogram algorithm
(O(nd+1 log n)), and finding the leading eigenvector of
O(nd) matrices of size k × k (O(ndk2)). Hence, the
total complexity is O(nd+1 log n+ ndk2 + dn2).

Elimination Step:
By using a feature elimination subroutine we can iden-
tify that certain variables provably cannot be in the
support of xd, the rank-d optimal sparse PC. We have
a test which is related to the norms of the rows of Vd
that identifies which of the n rows cannot be in the op-
timal support. We use this step to further reduce the
number of candidate supports |Sd|. The elimination



Sparse PCA through Low-rank Approximations

algorithm is very important when it comes to large-
scale data sets. For example, for some of our Twit-
ter experiments, the elimination was reducing n from
100, 000 down to only 100, or fewer candidate features.
This subroutine is presented in detail in the extended
version of the manuscript (Papailiopoulos et al., 2013).

2.2. Approximation Guarantees

The desired sparse PC is x∗ = arg max
‖x‖2=1,‖x‖0=k

xTAx.

We instead obtain the k-sparse, unit length vector xd
which gives an objective

xTdAxd = max
I∈Sd

λ(AI).

We measure the quality of our approximation using
the standard approximation factor:

ρd =
xTdAxd
xT∗Ax∗

=
max
I∈Sd

λ(AI)

λ
(k)
1

,

where λ
(k)
1 = xT∗Ax∗ is the k-sparse largest eigenvalue

of A.2 Clearly, ρd ≤ 1 and as it approaches 1, the ap-
proximation becomes tighter. Our main result follows:

Theorem 1. For any d, our algorithm outputs xd,
where ||xd||0=k, ||xd||2=1 and

xTdAxd ≥ (1− ε)xT∗Ax∗,

with an error bound εd ≤ min

{
n
k
λd+1

λ1
, λd+1

λ
(1)
1

}
.

Proof. The proof can be found in (Papailiopoulos
et al., 2013). The main idea is that we obtain i) an
upper bound on the performance loss using Ad instead

of A and ii) a lower bound for λ
(k)
1 .

We now use our main theorem to provide the following
model specific approximation results.

Corollary 1. Assume that for some constant value d,
there is an eigenvalue decay λ1 > λd+1 in A. Then
there exists a constant δ0 such that for all sparsity lev-
els k > δ0n we obtain a constant approximation ratio.

Corollary 2. Assume that the first d+ 1 eigenvalues
of A follow a power-law decay, i.e., λi = Ci−α, for
some C,α > 0. Then, for any k = δn and any ε > 0
we can get a (1 − ε)-approximate solution xd in time
O
(
n1/(εδ)

α+1 log n
)
.

The above corollaries can be established by plugging
in the values for λi in the error bound. We find the

2Notice that the k-sparse largest eigenvalue of A for

k = 1, denoted by λ
(1)
1 , is simply the largest element on

the diagonal of A.

above families of matrices interesting, because in prac-
tical data sets (like the ones we tested), we observe a
significant decay in the first eigenvalues of A which in
many cases follows a power law. The main point of the
above approximability result is that any matrix with
decent decay in the spectrum endows a good sparse
PCA approximation.

3. The Spannogram Algorithm

In this section, we describe how to construct the can-
didate supports in Sd and explain why this set has
tractable size. We build up to the general algorithm
by explaining special cases that are easier to under-
stand.

3.1. Rank-1 case

Let us start with the rank 1 case, i.e., when d = 1. For
this case

A1 = λ1v1v
T
1 .

Assume, for now, that all the eigenvector entries are
unique. This simplifies tie-breaking issues that are for-
mally addressed by a perturbation lemma in (Papail-
iopoulos et al., 2013). For the rank-1 matrix A1, a sim-
ple thresholding procedure solves sparse PCA: Simply
keep the k largest entries of the eigenvector v1. Hence,
in this simple case S1 consists of only 1 set. To show
this, we can rewrite (1) as

max
x∈Sk

xTA1x = λ1 ·max
x∈Sk

(
vT1 x

)2
, (3)

where Sk is the set of all vectors x ∈ Rn with ||x||2 =
1 and ||x||0 = k. Thus, we are trying to find a k-
sparse vector x that maximizes the inner product with
a given vector v1. This problem is solved by sorting the
absolute elements of the eigenvector v1 and keeping the
support of the k entries in v1 with the largest absolute
value.

Definition 1. Let Ik(v) denote the set of indices of
the top k largest absolute entries of a vector v.

We can conclude that for the rank-1 case, the optimal
k-sparse PC for A1 will simply be the k-sparse vector
that is co-linear to the k-sparse vector induced on this
single candidate support: S1 = { Ik(v1) }.

3.2. Rank-2 case

Now we describe how to compute S2. This is the
first nontrivial d which exhibits the details of the
Spannogram algorithm. Here, we have the rank 2
matrix A2 =

∑2
i=1 λiviv

T
i = V2V

T
2 , where V2 =



Sparse PCA through Low-rank Approximations[√
λ1 · v1

√
λ2 · v2

]
. We can rewrite (1) on A2 as

max
x∈Sk

xTA2x = max
x∈Sk

∥∥V T2 x∥∥22. (4)

In the rank-1 case we could write the quadratic form
maximization as a simple maximization of a dot prod-

uct: maxx∈Sk x
TA1x = maxx∈Sk

(
vT1 x

)2
. Similarly, we

will prove that in the rank-2 case we can write

max
x∈Sk

xTA2x = max
x∈Sk

(
vTc x

)2
,

for some specific vector vc in the span of the eigen-
vectors v1, v2; this will be very helpful in solving the
problem efficiently.

To see this, let c be a 2 × 1 unit length vector,
i.e., ‖c‖2 = 1. Using the Cauchy-Schwartz inequal-
ity for the inner product of c and V T2 x we obtain(
cTV T2 x

)2 ≤ ‖V T2 x‖22, where equality holds, if and
only if, c is co-linear to V T2 x. By the previous fact,
we have a variational characterization of the `2-norm:

‖V T2 x‖22 = max
‖c‖2=1

(
cTV T2 x

)2
. (5)

We can use (5) to rewrite (4) as

max
x∈Sk

max
‖c‖2=1

(
cTV T2 x

)2
= max
‖c‖2=1

max
x∈Sk

(
vTc x

)2
, (6)

where vc = V2c. We would like to note two impor-
tant facts here. The first is that for all unit vectors c,
vc = V2c generates all vectors in the span of V2 (up
to scaling factors). The second fact is that if we fix

c, then the maximization maxx∈Sk
(
vTc x

)2
is a rank-1

instance, similar to (3). Therefore, for each fixed unit
vector c there will be one candidate support (denote
it by Ik(V2c)) to be added in S2.

If we could collect all possible candidate supports
Ik(V2c) in

S2 =
⋃

c∈R2×1,‖c‖2=1

{Ik(V2c)} , (7)

then we could solve exactly the sparse PCA problem
on A2: we would simply need to test all locally optimal
solutions obtained from each support in S2 and keep
the one with the maximum metric. The issue is that
there are infinitely many vc vectors to check. Naively,
one could think that all possible k-supports could ap-
pear for some vc vector. The key combinatorial fact
is that if a vector vc lives in a two dimensional sub-
space, there are tremendously fewer possible supports
3: |S2| ≤ 4

(
n
2

)
.

3This is a special case of our general d dimensional
lemma, but we prove the special case to simplify the pre-
sentation.

1.5 1 0.5 0 0.5 1 1.5

0.2

0.4

0.6

0.8

1

1.2

1.4

φ

 

 
| [v(φ) ]1|
| [v(φ) ]2|
| [v(φ) ]3|

Figure 1. A rank-2 spannogram for a V2 matrix with n = 3.

Spherical variables. Here we use a transformation
of our problem space into a 2-dimensional space. The
transformation is performed through spherical vari-
ables that enable us to visualize the 2-dimensional
span of V2. For the rank-2 case, we have a single phase
variable φ ∈ Φ =

(
−π2 ,

π
2

]
and use it to rewrite c,

without loss of generality, as

c =

[
sinφ
cosφ

]
,

which is again unit norm and for all φ it scans all4

2×1 unit vectors. Under this characterization, we can
express vc in terms of φ as

v(φ) = V2c = sinφ ·
√
λ1v1 + cosφ ·

√
λ2v2. (8)

Observe that each element of v(φ) is a contin-
uous curve in φ: [v(φ)]i =

[√
λ1v1

]
i
sin(φ) +[√

λ2v2
]
2

cos(φ), for all i = 1, . . . , n. Therefore, the
support set of the k largest absolute elements of v(φ)
(i.e., Ik(v(φ))) is itself a function of φ.

The Spannogram. In Fig. 1, we draw an example
plot of 3 (absolute) curves |[v(φ)]i|, i = 1, 2, 3, from a
randomly generated matrix V2. We call this a spanno-
gram, because at each φ, the values of curves corre-
spond to the absolute values of the elements in the
column span of V2. Computing [v(φ)]i for all i, φ is
equivalent to computing the span of V2. From the
spannogram in Fig. 1, we can see that the continu-
ity of the curves implies a local invariance property of

4Note that we restrict ourselves to
(
−π

2
, π

2

]
, instead

of the whole (−π, π] angle region. First observe that the
vectors in the complement of Φ are opposite to the ones
evaluated on Φ. Omitting the opposite vectors poses no
issue due to the squaring in (4), i.e., vectors c and −c map
to the same solutions.



Sparse PCA through Low-rank Approximations

the support sets I(v(φ)), around a given φ. That is,
we expect that Ik(v(φ ± ε)) = Ik(v(φ)), for a suffi-
ciently small ε > 0. As a matter of fact, a support set
Ik(v(φ)) changes, if and only if, the respective sorting
of two absolute elements |[v(φ)]i| and |[v(φ)]j | changes.
Finding these intersection points |[v(φ)]i| = |[v(φ)]j | is
the key to find all possible support sets.

There are n curves and each pair intersects on ex-
actly two points.5 Therefore, there are exactly 2

(
n
2

)
intersection points. The intersection of two absolute
curves are exactly two points φ that are a solution to
[v(φ)]i = [v(φ)]j and [v(φ)]i = −[v(φ)]j . These are
the only points where local support sets might change.
These 2

(
n
2

)
intersection points partition Φ in 2

(
n
2

)
+ 1

regions within which the top k support sets remain
invariant.

Building S2. To build S2, we need to i) determine
all c intersection vectors that are defined at intersec-
tion points on the φ-axis and ii) compute all distinct
locally optimal support sets Ik(vc). To determine an
intersection vector we need to solve all 2

(
n
2

)
equations

[v(φ)]i = ±[v(φ)]j for all pairs i, j ∈ [n]. This yields
[v(φ)]i = ±[v(φ)]j ⇒ eTi V c = ±eTj V c, that is(
eTi ± eTj

)
Vc=0⇒ c=nullspace

((
eTi ± eTj

)
V
)
. (9)

Since c needs to be unit norm, we simply need to nor-
malize the solution c. We will refer to the intersec-
tion vector calculated on the φ of the intersection of
two curves i and j as c+i,j and c−i,j , depending on the
corresponding sign in (9). For the intersection vec-
tors c+i,j and c−i,j we compute Ik(V2c

+
i,j) and Ik(V2c

−
i,j).

Observe that since the i and j curves are equal on
the intersection points, there is no prevailing sorting
among the two corresponding elements i and j of V2c

+
i,j

or V2c
−
i,j . Hence, for each intersection vector c+i,j and

c−i,j , we create two candidate support sets, one where
element i is larger than j, and vice versa. This is
done to secure that both support sets, left and right
of the φ of the intersection, are included in S2. With
the above methodology, we can compute all possible
Ik(V2c) rank-2 optimal candidate sets and we obtain

|S2| ≤ 4

(
n

2

)
= O(n2).

The time complexity to build S2 is then equal to sort-
ing

(
n
2

)
vectors and solving 2

(
n
2

)
equations in the 2

unknowns of c+i,j and c+i,j . That is, the total complex-

ity is equal to
(
n
2

)
n log n+

(
n
2

)
23 = O

(
n3 log n

)
.

5As we mentioned, we assume that the curves are in
“general position,” i.e., no three curves intersect at the
same point and this can be enforced by a small perturba-
tion argument.

Algorithm 2 Spannogram Algorithm for Sd.
1: Input: k, p, Vd =

[√
λ1v1 . . .

√
λ1v1

]
2: Initialize Sd ← ∅, B ← {b1, . . . , bd−1} ∈ {±1}d−1
3: if p = 1 then
4: B ← {1, . . . , 1}, Vd ← [V Td 0Td×1]T , n← n+ 1
5: end if
6: for all

(
n
d

)
subsets (i1, . . . , id) from {1, . . . , n} do

7: for all sequences (b1, . . . , bd−1) ∈ B do

8: c← nullspace

 eTi1 − b1 · eTi2
...

eTi1 − bd−1 · eTid

Vd


9: if p = 1 then
10: I ← {indices of the k-top elements of V c}∪

{indices of the k-top elements of − V c}
11: else
12: I ← indices of the k-top elements of abs(V c)
13: end if
14: l← 1
15: J1 ← I1:k
16: r ← |J1 ∩ (i1, . . . , id)|
17: if r < d then
18: for all r-subsets M from (i1, . . . , id) do
19: l← l + 1
20: Jl ← I1:k−r ∪M
21: end for
22: end if
23: Sd ← Sd ∪ J1 . . . ∪ Jl.
24: end for
25: end for
26: Output: Sd.

Remark 1. The spannogram algorithm operates by
simply solving systems of equations and sorting vec-
tors. It is not iterative nor does it attempt to solve
a convex optimization problem. Further, it computes
solutions that are exactly k-sparse, where the desired
sparsity can be set a-priori.

The spannogram algorithm presented here is a sub-
routine that can be used to find the leading sparse PC
of Ad in polynomial time. The general rank-d case is
given as Algorithm 2. The details of our algorithm,
the elimination step, and tune-ups for matrices with
non-negative entries can be found in (Papailiopoulos
et al., 2013).

4. Experimental Evaluation and
Conclusions

We now empirically evaluate the performance of our
algorithm and compare it to the full regularization
path greedy approach (FullPath) of (d’Aspremont
et al., 2007b), the generalized power method (GPower)



Sparse PCA through Low-rank Approximations

of (Journée et al., 2010), and the truncated power
method (TPower) of (Yuan & Zhang, 2011). We
omit the DSPCA semidefinite approximation of
(d’Aspremont et al., 2007a), since the FullPath algo-
rithm is experimentally shown to have similar or bet-
ter performance (d’Aspremont et al., 2008). We begin
with a synthetic experiment: we seek to estimate the
support of the first two sparse eigenvectors of a covari-
ance matrix from sample vectors. We continue with
testing our algorithm on gene expression data sets. Fi-
nally, we run experiments on a large-scale document-
term data set, comprising of millions of Twitter posts.

4.1. Spiked Covariance Recovery

We first test our approximation algorithm on an artifi-
cial data set generated in the same manner as in (Shen
& Huang, 2008; Yuan & Zhang, 2011). We consider a
covariance matrix Σ, which has two sparse eigenvec-
tors with large eigenvalues; the remaining eigenvec-
tors correspond to small eigenvalues. Here, we con-
sider Σ =

∑n
i=1 λiviv

T
i with λ1 = 400, λ2 = 300, λ3 =

1, . . . , λ500 = 1, where v1, v2 are sparse and each has
10 nonzero entries and non-overlapping supports.

We have two sets of experiments, one for few samples
and one for extremely few. First, we generate m = 50
samples of length n = 500, distributed as zero mean
Gaussian with covariance matrix Σ and repeat the ex-
periment 5000 times. We repeat the same experiment
for m = 5. We compare our rank-1 and rank-2 algo-
rithms against FullPath, GPower with `1 penalization
and `0 penalization, and TPower. After estimating
the first eigenvector with ṽ1, we deflate A to obtain
A′. We use the projection deflation method (Mackey,
2009) to obtain A′ = (I − ṽ1ṽT1 )A(I − ṽ1ṽT1 ) and work
on it to obtain ṽ2, the second estimated eigenvector of
Σ. In the following table, we report the probability of
correctly recovering the supports of v1 and v2: if both
estimates ṽ1 and ṽ2 have matching supports with the
true eigenvectors, then the recovery is considered suc-
cessful. In our experiments for m = 50, all algorithms

500 × 50 500 × 5
k prec. prec.

PCA+thresh. 10 .98 0.85
GPower-`0 (γ = 0.8) 10 1 0.33
GPower-`1 (γ = 0.8) 10 1 0.33

FullPath 10 1 0.96
TPower 10 1 0.96

Rank-2 approx. 10 1 0.96

were comparable and performed near-optimally, apart
from the rank-1 approximation (PCA+thresholding).
For m = 5 samples we observe that the performance
of the rank-1 and GPower methods decay and Full-

Path, TPower, and rank-2 find the correct support
with probability approximately equal to 96%. This
overall decay in performance of all schemes is due to
the fact that 5 samples are not sufficient for a perfect
estimate.

4.2. Gene Expression Data Set

0 100 200 300 400 500
0

0.5

1
Lymphoma data set

o
p
ti
m
a
li
ty

ra
ti
o

k spars ity

0 100 200 300 400 500
0

0.5

1
Colon cancer data set

o
p
ti
m
a
li
ty

ra
ti
o

k spars ity

 

 

Performance bound
PCA+thresholding
Rank-2 Approxmation
TPower
FullPath

Figure 2. Results on gene expression data sets.

In the same manner as in the relevant sparse PCA lit-
erature, we evaluate our approximation on two gene
expression data sets used in (d’Aspremont et al.,
2007b; 2008; Yuan & Zhang, 2011). We plot the ratio
of the explained variance coming from the first sparse
PC to the explained variance of the first eigenvector
(which is equal to the first eigenvalue). We also plot
the performance outer bound derived in (d’Aspremont
et al., 2008). We observe that our approximation fol-
lows the same optimality pattern as most previous
methods, for many values of sparsity k. In these exper-
iments we did not test the GPower method since the
output sparsity cannot be explicitly predetermined.
However, previous literature indicates that GPower is
also near-optimal in this scenario.

4.3. Large-scale Twitter data set

Here, we evaluate our algorithm on a large-scale data
set. Our data set comprises of millions of tweets com-
ing from Greek Twitter users. Each tweet corresponds
to a list of words and has a character limit of 140 per
tweet. Although each tweet was associated with meta-
data, such us hyperlinks, user id, hash tags etc, we
strip these features out and just use the word list. We
use a simple Python script to normalize each Tweet.
Words that are not contextual are discarded in an ad-



Sparse PCA through Low-rank Approximations

Rank-1 TPower Rank-2 Rank-3 fullPath
sparse PC-1

skype eurovision skype skype eurovision
microsoft skype microsoft microsoft finalG

billion microsoft billion acquisitionG greeceG
acquisitionG billion acquisitionG billion greece
eurovision acquisitionG acquiredG acquiredG lucasG
acquiredG buying acquiresG acquiresG semifinalG
acquiresG acquiredG buying buying final

buying acquiresG dollarsG dollarsG contest
google dollarsG acquisition acquisition stereo

dollarsG acquisition google google watching
var./OPT

0.9863 0.9861 0.9870 0.9870 0.9283
sparse PC-2

greece greece eurovision eurovision skype
greeceG greeceG greece greece microsoft

love love greeceG lucasG billion
lucasG loukas finalG finalG acquisitionG
final finalsG lucasG final acquiresG
greek athens final stereo acquiredG

athens final stereo semifinalG buying
finalG stereo semifinalG contest dollarsG
stereo country contest greeceG official

country sailing songG watching google
var./OPT

0.8851 0.8850 0.9850 0.9852 0.9852

Rank-1 TPower Rank-2 Rank-3 fullPath
sparse PC-3

downtownG twitter love love love
censusG censusG received received received
athensG homeG greek twitter damon
homeG google know know greek
twitter yearG damon greek hate
yearG greek amazing damon know

murderG mayG hate hate amazing
songG facebook twitter amazing sweet
mayG startsG great great great
yearsG populationG sweet sweet songs

var./OPT
0.7875 0.7877 0.8993 0.8994 0.8994

sparse PC-4
thanouG downtownG downtownG downtownG twitter
kenterisG athensG athensG athensG facebook
guiltyG yearG murderG murderG welcome
kenteris year’sG yearsG yearsG account
tzekosG murderG brutalG brutalG goodG
monthsG cameraG stabbedG stabbedG followers

tzekos crimeG bad eventsG bad eventsG censusG
facebook crime yearG cameraG populationG

imprisonmentG stabbedG turmoilG yearG homeG
penaltiesG brutalG cameraG crimeG startsG

var./OPT
0.7174 0.7520 0.8419 0.8420 0.8412

Table 1. The first 4 sparse PCs for a data set consisting of 65k Tweets and 64k unique words.

hoc way. We also discard all words that are less than
three characters, or words that appear once in the cor-
pus. We represent each tweet as a long vector consist-
ing of n words, with a 1 whenever a word appears.6 In
the following tests, we compare against TPower and
FullPath. TPower is run for 10k iterations, and is
initialized with a vector having 1s on the k words of
highest variance. For FullPath we restrict the covari-
ance to its first 5k words of highest variance.7 In our
experiments, we use a simpler deflation method: once
k words appear in the first k-sparse PC, we strip them
from the data set, recompute the new convariance, and
then run all algorithms. The performance metric here
is again the explained variance over its maximum pos-
sible value.

In Table 2, we show our results for all tweets that con-
tain the word Japan, for a 5-day and then a month-
length time window. In all these tests, our rank-3 ap-
proximation consistently captured more variance than
all other compared methods. In Table 1, we show a
day-length experiment and report the first 4 sparse
PCs of all methods. The average computation times
for this time-window where less than 1 second for the
rank-1 approximation, less than 5 seconds for rank-2,
and less than 2 minutes for the rank-3 approximation
on a Macbook Pro 5.1 running MATLAB 7. The main

6Further details about our data set, and the observed
power-law decays of the spectrum, can be found in (Pa-
pailiopoulos et al., 2013).

7For n = 30k, FullPAth’s running time on a dual-core
machine was 3 hours (for 5 PCs) and followed a cubic
growth in n, as expected. For a month length data set
with n = 220k and no truncation, FullPath did not termi-
nate after 20 hours.

reason for these tractable running times is the use of
our elimination scheme which left only around 40− 80
rows of the initial matrix of 64k rows. In terms of
running speed, we empirically observed that our algo-
rithm is slower than Tpower but faster than FullPath
for the values of d tested. In Table 1, words with
strike-through are what we consider non-matching to
the “main topic” of that PC. Words marked with G
are translated from Greek. From the PCs we see that
the main topics are about Skype’s acquisition by Mi-
crosoft, the European Music Contest “Eurovision”, a
crime that occurred in the downtown of Athens.

We conclude that our algorithm can efficiently provide
interpretable sparse PCs and matches or outperforms
the accuracy of previous methods. In terms of run-
ning speed, our algorithm is slower compared to the
Tpower method and faster than FullPath for d ≤ 3. A
parallel implementation in the MapReduce framework
and larger data studies are exciting future directions.

5. Acknowledgments
This work was supported by NSF Awards 1055099,
1218235 and research gifts by Google, Intel, and Mi-
crosoft.

*japan 1-5 May 2011 May 2011
m× n 12k × 15k 267k × 148k 1.9mil × 222k
k k = 10 k = 4 k = 5

#PCs 5 7 3

Rank-1 0.600 0.815 0.885
TPower 0.595 0.869 0.915
Rank-2 0.940 0.934 0.885
Rank-3 0.940 0.936 0.954

FullPath 0.935 0.886 0.953

Table 2. Performance comparison on the Twitter data set.



Sparse PCA through Low-rank Approximations

References

Amini, A.A. and Wainwright, M.J. High-dimensional
analysis of semidefinite relaxations for sparse princi-
pal components. In Information Theory, 2008. ISIT
2008. IEEE International Symposium on, pp. 2454–
2458. IEEE, 2008.

Asteris, M., Papailiopoulos, D.S., and Karystinos,
G.N. Sparse principal component of a rank-deficient
matrix. In Information Theory Proceedings (ISIT),
2011 IEEE International Symposium on, pp. 673–
677. IEEE, 2011.

Cadima, J. and Jolliffe, I.T. Loading and correlations
in the interpretation of principle compenents. Jour-
nal of Applied Statistics, 22(2):203–214, 1995.

d’Aspremont, A., El Ghaoui, L., Jordan, M.I., and
Lanckriet, G.R.G. A direct formulation for sparse
pca using semidefinite programming. SIAM review,
49(3):434–448, 2007a.

d’Aspremont, A., Bach, F., and Ghaoui, L.E. Optimal
solutions for sparse principal component analysis.
The Journal of Machine Learning Research, 9:1269–
1294, 2008.

d’Aspremont, A., Bach, F., and Ghaoui, L.E. Ap-
proximation bounds for sparse principal component
analysis. arXiv preprint arXiv:1205.0121, 2012.

d’Aspremont, Alexandre, Bach, Francis R., and
Ghaoui, Laurent El. Full regularization path for
sparse principal component analysis. In Proceed-
ings of the 24th international conference on Machine
learning, ICML ’07, pp. 177–184, 2007b.

Gawalt, B., Zhang, Y., and El Ghaoui, L. Sparse
pca for text corpus summarization and exploration.
NIPS 2010 Workshop on Low-Rank Matrix Approx-
imation, 2010.

Jolliffe, I.T. Rotation of principal components: choice
of normalization constraints. Journal of Applied
Statistics, 22(1):29–35, 1995.

Jolliffe, I.T., Trendafilov, N.T., and Uddin, M. A
modified principal component technique based on
the lasso. Journal of Computational and Graphical
Statistics, 12(3):531–547, 2003.

Journée, M., Nesterov, Y., Richtárik, P., and Sepul-
chre, R. Generalized power method for sparse prin-
cipal component analysis. The Journal of Machine
Learning Research, 11:517–553, 2010.

Kaiser, H.F. The varimax criterion for analytic rota-
tion in factor analysis. Psychometrika, 23(3):187–
200, 1958.

Ma, Zongming. Sparse principal component anal-
ysis and iterative thresholding. arXiv preprint
arXiv:1112.2432, 2011.

Mackey, L. Deflation methods for sparse pca. Advances
in neural information processing systems, 21:1017–
1024, 2009.

Moghaddam, B., Weiss, Y., and Avidan, S. General-
ized spectral bounds for sparse lda. In Proceedings of
the 23rd international conference on Machine learn-
ing, pp. 641–648. ACM, 2006a.

Moghaddam, B., Weiss, Y., and Avidan, S. Spectral
bounds for sparse pca: Exact and greedy algorithms.
Advances in neural information processing systems,
18:915, 2006b.

Moghaddam, B., Weiss, Y., and Avidan, S. Fast
pixel/part selection with sparse eigenvectors. In
Computer Vision, 2007. ICCV 2007. IEEE 11th In-
ternational Conference on, pp. 1–8. IEEE, 2007.

Papailiopoulos, D. S., Dimakis, A. G., and Ko-
rokythakis, S. Sparse pca through low-rank approx-
imations. arXiv preprint arXiv:1303.0551, 2013.

Shen, H. and Huang, J.Z. Sparse principal component
analysis via regularized low rank matrix approxima-
tion. Journal of multivariate analysis, 99(6):1015–
1034, 2008.

Sriperumbudur, B.K., Torres, D.A., and Lanckriet,
G.R.G. Sparse eigen methods by dc programming.
In Proceedings of the 24th international conference
on Machine learning, pp. 831–838. ACM, 2007.

Yuan, X.T. and Zhang, T. Truncated power method
for sparse eigenvalue problems. arXiv preprint
arXiv:1112.2679, 2011.

Zhang, Y. and El Ghaoui, L. Large-scale sparse prin-
cipal component analysis with application to text
data. Advances in Neural Information Processing
Systems, 2011.

Zhang, Y., d’Aspremont, A., and Ghaoui, L.E. Sparse
pca: Convex relaxations, algorithms and applica-
tions. Handbook on Semidefinite, Conic and Poly-
nomial Optimization, pp. 915–940, 2012.

Zou, H., Hastie, T., and Tibshirani, R. Sparse prin-
cipal component analysis. Journal of computational
and graphical statistics, 15(2):265–286, 2006.


	Introduction
	Related Work

	Sparse PCA through Low-rank Approximations
	Proposed Algorithm
	Approximation Guarantees

	The Spannogram Algorithm
	Rank-1 case
	Rank-2 case

	Experimental Evaluation and Conclusions
	Spiked Covariance Recovery
	Gene Expression Data Set
	Large-scale Twitter data set

	Acknowledgments

