
Safe Policy Iteration – Supplementary Material

Matteo Pirotta matteo.pirotta@polimi.it

Marcello Restelli marcello.restelli@polimi.it

Alessio Pecorino alessio.pecorino@mail.polimi.it

Daniele Calandriello daniele.calandriello@mail.polimi.it

Dept. Elect., Inf., and Bioeng., Politecnico di Milano, piazza Leonardo da Vinci 32, I-20133, Milan, ITALY

Abstract

This document provides additional material
to the main paper. In particular, it pro-
vides: 1) the complete set of theorems, lem-
mas and corollaries with the relative proofs;
2) additional experiment in chain walk and
BlackJack domains; 3) a detailed analysis of
the performances in terms of computational
time.

1. Proofs

In this section, we will prove the lemmas, theorems,
and corollaries stated in our paper.

Lemma 3.1 Let π and π′ be two stationary poli-
cies for an infinite horizon MDP M with state tran-
sition matrix P. The L1–norm of the difference be-
tween their γ–discounted future state distributions un-
der starting state distribution µ can be upper bounded
as follows:

∥

∥

∥d
π′

µ − d
π
µ

∥

∥

∥

1
≤

γ

1− γ

∥

∥

∥P
π′

−P
π
∥

∥

∥

∞

∥

∥

∥

∥

(

I− γP
π′
)−1

∥

∥

∥

∥

∞

.

Proof To prove the lemma we rewrite the difference

dπ′

µ

T

− dπ
µ
T as follows:

d
π′

µ

T

− d
π
µ
T = γd

π′

µ

T

P
π′

− γd
π
µ
T
P

π

= γ
(

d
π′

µ

T

− d
π
µ
T

)

P
π′

+ γd
π
µ
T

(

P
π′

−P
π
)

= γd
π
µ
T

(

P
π′

−P
π
)(

I− γP
π′
)−1

,

where the last equality follows from the convergence of
Neumann series. It is worth to notice that the inverse

Proceedings of the 30 th International Conference on Ma-
chine Learning, Atlanta, Georgia, USA, 2013. JMLR:
W&CP volume 28. Copyright 2013 by the author(s).

of matrix I − γPπ′

exists for any γ < 1. From this
equation, the bound on the L1–norm follows:

∥

∥

∥
d
π′

µ − d
π
µ

∥

∥

∥

1
=

∥

∥

∥
d
π′

µ

T

− d
π
µ
T

∥

∥

∥

∞

≤ γ
∥

∥d
π
µ
T
∥

∥

∞

∥

∥

∥
P

π′

−P
π
∥

∥

∥

∞

∥

∥

∥

∥

(

I− γP
π′
)−1

∥

∥

∥

∥

∞

=
γ

1− γ

∥

∥

∥
P

π′

−P
π
∥

∥

∥

∞

∥

∥

∥

∥

(

I− γP
π′
)−1

∥

∥

∥

∥

∞

�

Remark 1 (Undiscounted case). When the MDP
is undiscounted (γ = 1), the γ-discounted future state
distributions are replaced by the steady–state distribu-
tions dπ and dπ

′

. The L1–norm bound between these
distributions can be derived in a similar way, but the
matrix I − γPπ′

is singular when γ = 1. To over-
come this problem, (I − Pπ′

)−1 can be replaced by
the fundamental matrix of the corresponding Markov

chain: (I −Pπ′

+Pπ′)−1, where Pπ′ = e · dπ′T

is the
long-term limiting matrix. An overview of bounds for
∥

∥

∥
dπ′

− dπ
∥

∥

∥
can be found in (?).

Corollary 3.2 Let π and π′ two stationary policies
for an infinite horizon MDP M . The L1–norm of the
difference between their γ–discounted future state dis-
tributions under starting state distribution µ can be
upper bounded as follows:

∥

∥

∥
d
π′

µ − d
π
µ

∥

∥

∥

1
≤

γ

(1− γ)2

∥

∥

∥
Π

π′

−Π
π
∥

∥

∥

∞

.

Proof This Corollary follows from Lemma 3.1, from
Neumann series expansion of the inverse and from
‖P‖∞ = 1.
∥

∥

∥
d
π′

µ − d
π
µ

∥

∥

∥

1
≤

γ

1− γ

∥

∥

∥
P

π′

−P
π
∥

∥

∥

∞

∥

∥

∥

∥

(

I− γP
π′
)−1

∥

∥

∥

∥

∞

≤
γ

1− γ

∥

∥

∥Π
π′

−Π
π
∥

∥

∥

∞

‖P‖
∞

∞
∑

t=0

γ
t
∥

∥

∥P
π′
∥

∥

∥

t

∞

=
γ

(1− γ)2

∥

∥

∥
Π

π′

−Π
π
∥

∥

∥

∞

Safe Policy Iteration – Supplementary Material

�

Lemma 3.3 (?)
For any stationary policies π and π′ and any starting
state distribution µ:

J
π′

µ − J
π
µ = d

π′

µ

T

A
π′

π .

Proof

J
π′

µ = µ
T
v
π′

= d
π′

µ

T

r
π′

= d
π′

µ

T

r
π′

+ d
π′

µ

T

v
π − d

π′

µ

T

v
π

= d
π′

µ

T

r
π′

+
(

µ
T + γd

π′

µ

T

P
π′
)

v
π − d

π′

µ

T

v
π

= d
π′

µ

T
(

r
π′

+ γP
π′

v
π − v

π
)

+ µ
T
v
π

= d
π′

µ

T

A
π′

π + J
π
µ

�

Theorem 3.5 For any stationary policies π and π′

and any starting state distribution µ, given any base-
line policy πb, the difference between the performance
of π′ and the one of π can be lower bounded as follows:

J
π′

µ − J
π
µ ≥ d

πb
µ

T
A

π′

π −
γ

(1− γ)2

∥

∥

∥
Π

π′

−Π
πb

∥

∥

∥

∞

∆Aπ′

π

2
.

Proof The proof can be easily obtained from
Lemma 3.1:

J
π′

µ − J
π
µ = d

π′

µ

T

A
π′

π

= d
πb
µ

T
A

π′

π +
(

d
π′

µ

T

− d
πb
µ

T

)

A
π′

π

≥ d
πb
µ

T
A

π′

π −
∥

∥

∥
d
π′

µ − d
πb
µ

∥

∥

∥

1

∆Aπ′

π

2
,

where the last inequality follows from Lemma 3.4 since
dπ′

µ −dπb
µ is a zero–mean vector. The theorem is proved

by replacing
∥

∥

∥
dπ′

µ − dπb
µ

∥

∥

∥

1
with the bound in Corol-

lary 3.2. �

Corollary 3.6 For any stationary policies π and π′

and any starting state distribution µ, the difference
between the performance of π′ and the one of π can
be lower bounded as follows:

J
π′

µ − J
π
µ ≥ d

π
µ
T
A

π′

π −
γ

(1− γ)2

∥

∥

∥
Π

π′

−Π
π
∥

∥

∥

2

∞

‖qπ‖
∞

2
.

Proof The proof comes from a lower bound to the
bound in Theorem 1 when πb = π. Such lower bound

involves the upper bound of
∆A

π′

π

2 :

∆Aπ′

π

2
≤

∥

∥

∥
A

π′

π

∥

∥

∥

∞

=
∥

∥

∥

(

Π
π′

−Π
π
)

Q
π
∥

∥

∥

∞

= max
s

(

(π′(·|s) − π(·|s)) ·Qπ(s, ·)
)

≤ max
s

(

∥

∥π
′(·|s)− π(·|s)

∥

∥

1

∆Qπ(s, ·)

2

)

≤
∥

∥

∥Π
π′

−Π
π
∥

∥

∥

∞

‖qπ‖
∞

2

�

Corollary 4.1 If Aπ
π,µ ≥ 0, then, using

α∗ =
(1−γ)2Aπ

π,µ

γ‖Ππ−Ππ‖
∞

∆Aπ
π
, we set α = min(1, α∗), so that

when α∗ ≤ 1 we can guarantee the following policy
improvement:

J
π′

µ − J
π
µ ≥

(1− γ)2Aπ
π,µ

2

2γ ‖Ππ −Ππ‖
∞

∆Aπ
π

,

and when α∗ > 1, we perform a full update towards
the target policy π with a policy improvement equal
to the one specified in Theorem 1.

Proof Setting πb = π and π′ = απ+(1−α)π, we can
rewrite the bound in Theorem 1 as:

J
π′

µ − J
π
µ ≥ αA

π
π,µ − α

2 γ

(1− γ)2

∥

∥

∥
Π

π −Π
π
∥

∥

∥

∞

∆Aπ
π

2
.

α∗ is the value of α that maximizes this bound. �

Corollary 4.2 Let Sπ
π be the subset of states where

the advantage of policy π over policy π is positive:
Sπ
π = {s ∈ S|Aπ

π(s) > 0}.
The bound in Corollary 3.6 is optimized by taking

α(s) = 0, ∀s /∈ Sπ
π and α(s) = min

(

1, Υ
∗

‖π(·|s)−π(·|s)‖
1

)

,

∀s ∈ Sπ
π , where ‖π(·|s)− π(·|s)‖1 =

∑

a∈A |π(a|s) −

π(a|s)| and Υ
∗
is the value that maximizes the follow-

ing function:

B(Υ) =
∑

s∈Sπ
π

min

(

1,
Υ

‖π(·|s)− π(·|s)‖1

)

d
π
µA

π
π

− Υ
2 γ

(1− γ)2
‖qπ‖

∞

2

Proof Given a state s with negative advantage, the
larger is α(s) the lower will be the bound on the policy
improvement as stated in Corollary 3.6, so the optimal
choice for these states is to set α(s) = 0. Given the
set of states with positive advantages Sπ

π , we intro-
duce Υ = maxs∈Sπ

π
α(s) ‖π(·|s)− π(·|s)‖1. For all the

states in Sπ
π , the first term of the bound from Corol-

lary 3.6 would be maximized by setting α(s) = 1. On
the other hand, from the definition of Υ , we have the

following constraint: α(s) ≤ Υ
‖π(·|s)−π(·|s)‖

1

. So, given

Safe Policy Iteration – Supplementary Material

a value of Υ the optimal value for the coefficient of

any state s ∈ Sπ
π is min

(

1, Υ
‖π(·|s)−π(·|s)‖

1

)

. Function

B(Υ) is obtained by using the previous definitions in
the bound from Corollary 3.6. As a result, the opti-
mization of the bound over the set of |S| coefficients
α(s) has been translated into the maximization of the
univariate function B(Υ). �

Theorem 5.1 If the same target policy π is used at
each iteration, aUSPI and aMSPI terminates after

O
(

1
(1−γ)2ǫ

)

.

Proof At each iteration of aUSPI Âπ
π,µ > 2ǫ

3(1−γ) , that

(since Â
π
π,µ is an ǫ

3(1−γ)–accurate estimate of Aπ
π) im-

plies that Aπ
π,µ > ǫ

3(1−γ) . From Corollary 4.1, it is ease

to derive a lower bound to the policy improvement for
the i–th iteration of the aUSPI algorithm:

Jπ′

µ − Jπ
µ ≥

(1− γ)ǫ2

18γ ‖Ππ −Ππi‖
2
∞

.

Since policy performances range in the interval
[0, 1

1−γ
], an upper bound to the number N of itera-

tions of aUSPI can be computed from the following
inequality:

(1 − γ)ǫ2

18γ

N
∑

i=0

1

‖Ππ −Ππi‖
2
∞

≤
1

1− γ
(1)

To solve such inequality for N , we need to analyze the
value of

∥

∥Ππ −Ππi

∥

∥

∞
, that in aUSPI can be rewrit-

ten as follows:

∥

∥Ππ −Ππi
∥

∥

∞

=
∥

∥Ππ −
(

αi−1Π
π + (1− αi−1)Π

πi−1

)
∥

∥

∞

= (1− αi−1)
∥

∥Ππ −Ππi−1

∥

∥

∞
,

where αi−1 = (1−γ)2ǫ

3γ‖Ππ−Π
πi−1‖2

∞

. By replacing the value

of αi−1 in the previous equation, we get the following
recursive equation:

∥

∥Ππ −Ππi
∥

∥

∞
=

∥

∥Ππ −Ππi−1

∥

∥

∞

−
(1− γ)2ǫ

3γ ‖Ππ −Ππi−1‖∞
,

where we pessimistically assume that
∥

∥Ππ −Ππ0

∥

∥

∞
= 2. Unfortunately, the above

equation does not have closed-form solution. How-
ever, we can consider the following upper bound:

∥

∥Ππ −Ππi
∥

∥

∞
≤ 2−

(1− γ)2ǫ

6γ
(i− 1).

Such upper bound allows us to lower bound the sum-
mation in inequality 1:

N
∑

i=0

1

‖Ππ −Ππi‖2
∞

≥

∫ N

0

1

(2− (1−γ)2ǫ
6γ

(x− 1))2
dx

=
36γ2(1− γ)N

(12γ + ǫ(1− γ)2)(12γ + (1−N)ǫ(1− γ)2)
.

Replacing the above expression in inequality 1 and
solving for N we get:

N ≤
(12γ + (1− γ)2ǫ)2

(1− γ)2ǫ(12γ + (1− γ2)ǫ)
= O

(

1

(1− γ)2ǫ

)

.

The proof is completed by observing that aMSPI pro-
duces improvements that are never worse than aUSPI.
�

2. Additional Experiments

2.1. Chain Walk Domain

It is interesting to compare the performance of the dif-
ferent algorithms using as benchmark the environment
defined by (?). Such MDP is defined as chain walk do-
main which is modeled as a N -state chain (numbered
from 1 to N). Chain is traversed performing two ac-
tions, “left” (L) and “right” (R). Each action induces
a transition into the associated direction and to the
opposite one with probability p and 1 − p (in this ex-
periments p is set to 0.9). Reward +1 is assigned only
when the agent enters one of the two states located
at a distance of N/4 from the boundaries, otherwise
the reward is 0. The starting state distribution D is
assumed uniform over state space in any configuration.

2.1.1. Exact Settings

In this model-based domain, we have analyzed the
performance of the proposed algorithms w.r.t. the
CPI approach. The analysis is performed for differ-
ent state space dimensions and for different values of
the discount factor γ. Algorithms are tested over mul-
tiple runs, in particular 10 runs are performed starting
from random policies. Figure 1 shows the behavior of
the algorithms in term of distance between the per-
formance of the policy at iteration i and the optimal
performance. It can be seen that the CPI is always
outperformed by the MSPI and USPI. At the same
time the USPI achieves a significant higher learning
behavior than MSPI, that leads to faster convergence
to the optimal performance.

Safe Policy Iteration – Supplementary Material

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 100 200 300 400 500

E
rr
o
r
[%
]

Iterations

USPI
MSPI
CPI

(a) (N, γ) = (10, 0.50)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 100 200 300 400 500

E
rr

or
 [%

]

Iterations

(b) (N, γ) = (20, 0.50)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 100 200 300 400 500

E
rr

or
 [%

]

Iterations

(c) (N, γ) = (50, 0.50)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 100 200 300 400 500

E
rr

or
 [%

]

Iterations

(d) (N, γ) = (10, 0.75)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 100 200 300 400 500

E
rr

or
 [%

]

Iterations

(e) (N, γ) = (20, 0.75)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 100 200 300 400 500

E
rr

or
 [%

]

Iterations

(f) (N, γ) = (50, 0.75)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 100 200 300 400 500

E
rr

or
 [%

]

Iterations

(g) (N, γ) = (10, 0.85)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 100 200 300 400 500

E
rr

or
 [%

]

Iterations

(h) (N, γ) = (20, 0.85)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 100 200 300 400 500

E
rr

or
 [%

]

Iterations

(i) (N, γ) = (50, 0.85)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 100 200 300 400 500

E
rr

or
 [%

]

Iterations

(j) (N, γ) = (10, 0.90)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 100 200 300 400 500

E
rr

or
 [%

]

Iterations

(k) (N, γ) = (20, 0.90)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 100 200 300 400 500

E
rr

or
 [%

]

Iterations

(l) (N, γ) = (50, 0.90)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 100 200 300 400 500

E
rr

or
 [%

]

Iterations

(m) (N, γ) = (10, 0.95)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 100 200 300 400 500

E
rr

or
 [%

]

Iterations

(n) (N, γ) = (20, 0.95)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 100 200 300 400 500

E
rr

or
 [%

]

Iterations

(o) (N, γ) = (50, 0.95)

Figure 1. Error trend of policy Ππ
i w.r.t. the optimal performance Jπ∗

µ in different N-states chain walk domains. 99%
confidence interval bars are shown.

Safe Policy Iteration – Supplementary Material

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 1 10 100

P
er

fo
rm

an
ce

 (
J)

Iterations

aCPI ε=0.2
aCPI ε=0.3

aUSPI ε=0.2
aUSPI ε=0.3
aMSPI ε=0.2
aMSPI ε=0.3

Figure 2. Approximate policy performance Jπ
µ of aCPI,

aMSPI and aUSPI in a 4-states chain walks with ǫ equals
to 0.2 and 0.3.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1 10 100 1000

A
ve

ra
ge

 A
dv

an
ta

ge

Iterations

aCPI ε=0.2
aCPI ε=0.3

aUSPI ε=0.2
aUSPI ε=0.3
aMSPI ε=0.2
aMSPI ε=0.3

Figure 3. Approximate average advantage A
π′

π,µ of aCPI,
aMSPI and aUSPI in a 4-states chain walks with ǫ equals
to 0.2 and 0.3.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 1 10 100

P
er

fo
rm

an
ce

 (
J)

Iterations

aCPI ε=0.1
aCPI ε=0.3

aUSPI ε=0.1
aUSPI ε=0.3
aMSPI ε=0.1
aMSPI ε=0.3

Figure 4. Approximate policy performance Jπ
µ of aCPI,

aMSPI and aUSPI in a 10-states chain walks with ǫ equals
to 0.1 and 0.3.

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 1 10 100 1000

A
ve

ra
ge

 A
dv

an
ta

ge

Iterations

aCPI ε=0.1
aCPI ε=0.3

aUSPI ε=0.1
aUSPI ε=0.3
aMSPI ε=0.1
aMSPI ε=0.3

Figure 5. Approximate average advantage A
π′

π,µ of aCPI,
aMSPI and aUSPI in a 10-states chain walks with ǫ equals
to 0.1 and 0.3.

2.1.2. Approximate Settings

The analysis in exact environments is not of practical
interest. To give a complete overview of the perfor-
mance of the algorithms, we have moved to an approxi-
mate framework. We consider the error induced by the
estimation of the value function via a set of samples
{

si, ai, Q
π
i

}

i=1...Ns
. The experiments reported in the

article are here extended in the scenario of 4-states and
10–states chain walk with approximation error ǫ equal
to 0.1, 0.2 and 0.3. Results in the 4-states chain walk
are reported in Figure 2 with the corresponding av-
erage advantage per iteration (see Figure 3), whereas
Figure 5 and 4 show the average advantage Aπ′

π,µ es-
timated at each iteration and the performance of the
new policy π′ in a 10–states chain walk, respectively.
It is notable that aUSPI and aMSPI perform similarly,
whereas aCPI shows a low learning trend.

2.2. BlackJack Domain

The BlackJack is a card game where the player attends
to beat the dealer by obtaining a total score greater
than the dealer’s one without exceeding 21. Each card
counts as its numerical value (2 through 10) except
for aces and figures. The Jack, Queen and King are
worth 10, whereas the ace may value as either 1 or
11. The value of the ace is hand such that it produces
the highest value equal to or less than 21. An hand is
called soft when the ace is counted as 11. The set of
cards is composed by 6 decks each one is a standard
52–cards deck.

At the beginning of the game the dealer deals two cards
to each player, including himself. One card is faced up
and the other is faced down. The player checks his
two cards and chooses to receiver a new card (hit) or
to stop (stand). The player may ask for more cards

Safe Policy Iteration – Supplementary Material

0.23

0.24

0.25

0.26

0.27

0.28

0.29

0 500 1000 1500 2000 2500 3000 3500 4000 4500

P
e
rf

o
rm

a
n
c
e

Iterations

aMSPI

aUSPI

aCPI

aPI

(a)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

A
ve

ra
ge

 A
dv

an
ta

ge

Iterations

aMSPI
aUSPI

aCPI

(b)

Figure 6. BlackJack performances. The underling domain consists in a BlackJack game with discount factor of 0.8.
Figure (a) shows the performance of the algorithms. While aPI oscillates between policy πH and policy πS (figure reports
only the performance of the two policies for seek of clarity), aMSPI, aUSPI and aCPI converge towards policies that
outperform both πH and πS . Figure (b) reports the average advantage A

π
π, µ observed by the algorithms.

as long as he does not bust, i.e., the sum of the card
values does not overcome 21. When all the players go
bust or stops, is the turn of the dealer.

In this work, we consider a simplified version of the
blackjack game by removing advanced actions as “dou-
bling”, “splitting”, etc. The game is composed by a
player and a dealer. The state of the game is defined by
three components: the sum of the cards of the player
(2 to 20), the dealer’s faced-up card (1 to 10) and the
soft hand flag. The player is forced to play “stand” ac-
tion on blackjack and on 21. Moreover the soft hand
flag is irrelevant when player’s value is greater than 11.
As a consequence, the cardinality of the state space is
260. The rewards assigned to the player are +1 for
winning (+1.5 for blackjack), −1 for loosing and 0 for
every hit. Rewards have been scaled to fit the interval
[0, 1].

To evaluate the performance of the algorithms we have
exploited the simplified BlackJackmodel with discount
factor equal to 0.8 and “stands on soft 17” strategy for
the dealer. The evaluation measure is the estimated
player edge, i.e., the average reward over multiple runs.
We have been able to define a configuration where
an approximate policy iteration, using a sample–based
policy evaluation step and an exact improvement, os-
cillates between two non optimal policies. This con-
figuration has been obtained by limit the policy space
to two policies: both the policies select the best action
(H) when player’s value is equal to 20 and opposite ac-
tions for the other states (πS selects S and πH selects
H). States with dealer’s values equal to 9 and 10 are

treated in an opposite way: policy πS selects H and
policy πH chooses S. To summarize, the policies are
defined according to the following rules:

πS =

H, if player’s value is 20

S, if player’s value is less than 20

H, if dealer’s value is 9 or 10

πH =

H, if player’s value is 20

H, if player’s value is less than 20

S, if dealer’s value is 9 or 10

Policy πH has been chosen as initial policy. Figure 6
reports the performance of the policies obtained by
aPI, aCPI, aUSPI and aMSPI algorithms using an ap-
proximation error ǫ of 0.01 and a estimation proba-
bility δ of 0.1. While aPI oscillates between πH and
πS , other algorithms do not get stuck and converge to-
wards better policies. aMSPI outperforms both aUSPI
and aCPI.

It is worth to underline that, in this highly stochas-
tic domain, the aMSPI is able to exploit the flexibility
given by the multiple convex coefficients and to con-
verge faster than aUSPI and aCPI.

3. Time Data

In the paper we have stated a brief comment about
the execution times of our algorithms. Here, it can
be found more details. Algorithms with single learn-
ing parameter (aCPI and aUSPI) share the same per–
iteration computational complexity but the learning

Safe Policy Iteration – Supplementary Material

Table 1. Per–iteration time complexity (sample mean ± standard deviation of the mean estimation) in approximate
settings in 4-states (a) and 10-states chain walk (b). The time required for the improvement step is shown, the rightmost
column (ts) reports the time required for the generation of the samples (more than 99% of the overall time). Results have
been averaged over 20 runs for all the algorithms. Initial policies have been chosen at random. Tests have been performed
using single threaded algorithms on an Intel®Xeon®Processor E5345@2.33GHz. Table (c) presents the computational
time (averaged over more than 300 samples) required by experiments in the BlackJack domain. Tests have been performed
using 2 threads on a server architecture composed by 4 Intel®Xeon®Processor E5345@2.33GHz. The evaluation time
dominates the improvement time, the time required for the samples generation is more than the 99% of the overall time.

(a)

γ ǫ aCPI [ms] aUSPI [ms] aMSPI [ms] ts [ms]
0.5 0.1 3.50 ± 0.01 3.58 ± 0.03 3.57 ± 0.02 562.03 ± 0.59
0.5 0.2 0.92 ± 0.01 0.95 ± 0.01 0.99 ± 0.02 116.04 ± 0.08
0.65 0.1 3.68 ± 0.01 3.70 ± 0.01 3.76 ± 0.03 927.08 ± 0.99
0.65 0.2 1.00 ± 0.01 1.03 ± 0.01 1.05 ± 0.01 180.40 ± 0.30

(b)

γ ǫ aCPI [ms] aUSPI [ms] aMSPI [ms] ts [ms]
0.5 0.1 5.35 ± 0.04 5.38 ± 0.04 5.50 ± 0.04 826.74 ± 0.91
0.5 0.2 1.40 ± 0.02 1.42 ± 0.02 1.46 ± 0.03 173.42 ± 0.15
0.65 0.1 5.28 ± 0.37 4.98 ± 0.07 5.93 ± 0.88 1342.85 ± 1.27
0.65 0.2 2.18 ± 0.77 1.43 ± 0.02 1.46 ± 0.02 268.72 ± 0.36

(c)

γ ǫ aCPI [ms] aUSPI [ms] aMSPI [ms] ts [s]
0.8 0.01 11.19 ± 0.14 9.88 ± 0.19 17.08 ± 0.15 75.09 ± 0.13

rate of the aCPI is sensibly lower than the aUSPI one.
As a consequence, the aCPI requires, in general, a
higher number of iterations to converge resulting in
a higher overall computational time (refer to Section 6
in the article). The aMSPI algorithm has a higher per–
iteration computational complexity w.r.t. aUSPI and
aCPI. However, the time needed for the improvement
step is dominated by the time required for the sample–
based evaluation. As a consequence, the additional
computational effort required by aMSPI in not signif-
icant when an approximate scenario in faced. This
considerations are supported by the experiments (see
Table 1).

References

Cho, G.E. and Meyer, C.D. Comparison of pertur-
bation bounds for the stationary distribution of a
Markov chain. Linear Algebra and its Applications,
335(1-3):137–150, 2001.

Kakade, S.M. and Langford, J. Approximately optimal
approximate reinforcement learning. In Proceedings

of ICML, pp. 267–274, 2002.

Koller, Daphne and Parr, Ronald. Policy Iteration for
Factored MDPs. In Proceedings of the 16th Con-

ference on Uncertainty in Artificial Intelligence, pp.
326–334, San Francisco, CA, USA, 2000. Morgan
Kaufmann Publishers Inc. ISBN 1-55860-709-9.

