Safe Policy Iteration

Matteo Pirotta
Marcello Restelli
Alessio Pecorino
Daniele Calandriello

MATTEO.PIROTTA@QPOLIMI.IT
MARCELLO.RESTELLIQPOLIMI.IT
ALESSIO.PECORINO@QMAIL.POLIMI.IT
DANIELE.CALANDRIELLO@MAIL.POLIMI.IT

Dept. Elect., Inf., and Bioeng., Politecnico di Milano, piazza Leonardo da Vinci 32, 1-20133, Milan, ITALY

Abstract

This paper presents a study of the policy
improvement step that can be usefully ex-
ploited by approximate policy—iteration al-
gorithms. When either the policy evaluation
step or the policy improvement step returns
an approximated result, the sequence of poli-
cies produced by policy iteration may not
be monotonically increasing, and oscillations
may occur. To address this issue, we consider
safe policy improvements, i.e., at each itera-
tion we search for a policy that maximizes a
lower bound to the policy improvement w.r.t.
the current policy. When no improving pol-
icy can be found the algorithm stops. We
propose two safe policy—iteration algorithms
that differ in the way the next policy is chosen
w.r.t. the estimated greedy policy. Besides
being theoretically derived and discussed, the
proposed algorithms are empirically evalu-
ated and compared with state—of-the—art ap-
proaches on some chain-walk domains and on
the Blackjack card game.

1. Introduction

In this paper, we focus on approaches derived from
policy—iteration (Howard, 1960), one of the two main
classes of dynamic programming algorithms to solve
Markov Decision Processes (MDPs). Policy iteration
is an iterative algorithm that alternates between two
main steps: policy evaluation and policy improvement.
At each iteration, the current policy 7 is evaluated
estimating the action-value function @™ and the new
policy 741 is generated by taking the greedy policy
w.r.t. Q™ i.e., the policy that in each state takes

Proceedings of the 30" International Conference on Ma-
chine Learning, Atlanta, Georgia, USA, 2013. JMLR:
W&CP volume 28. Copyright 2013 by the author(s).

the best action according to Q™. If, for each k, Q™*
is computed exactly and 71 is the related greedy
policy, policy iteration generates a sequence of mono-
tonically improving policies that reaches the optimal
policy in a finite number of iterations (Ye, 2011).

When either Q™ or the corresponding greedy policy
Tr4+1 cannot be computed exactly, approzimate pol-
icy iteration (API) algorithms (refer to (Bertsekas,
2011) for a recent survey on API) need to be consid-
ered. Most API studies and algorithms focus on reduc-
ing the approximation error in the policy evaluation
step (Lagoudakis & Parr, 2003; Munos, 2005; Lazaric
et al., 2010; Gabillon et al., 2011), and then perform
policy improvement by taking the related greedy pol-
icy. However, when only an approximated value Q”k
of Q™ is available, and/or only a subspace II of the
policy space II is considered in the policy improve-
ment step, the greedy policy may perform worse than
7k, thus leading to policy oscillation phenomena (Bert-
sekas, 2011; Wagner, 2011).

A few approaches (Perkins & Precup, 2002; Kakade
& Langford, 2002; Wagner, 2011; Azar et al., 2012)
to this problem, instead of iterating on a sequence
of greedy policies computed on approximated action—
value functions, propose converging algorithms that
exploit smaller updates in the space of stochastic poli-
cies. The idea is that the action-value function of a
policy m can produce a good estimate of the perfor-
mance of another policy 7 when the two policies give
rise to similar state distributions, which can be guar-
anteed when the policies themselves are similar. In-
cremental policy updates are also considered in the re-
lated class of policy gradient algorithms (Sutton et al.,
2000; Kakade, 2001; Peters et al., 2005).

Following the approach of Conservative Policy Itera-
tion (CPI) (Kakade & Langford, 2002), we propose
new approximate policy—iteration algorithms (useful
both in model-free contexts and when a restricted sub-
set of policies is considered) that produce a sequence

Safe Policy Iteration

of monotonically improving policies and are character-
ized by a faster improving rate. The main contribu-
tions of this paper are:

1) The introduction of new, more general lower bounds
on the policy improvement.

2) The proposal of two approximate policy—iteration
algorithms whose policy improvement moves toward
the estimated greedy policy by maximizing the policy
improvement bounds.

3) An empirical evaluation and comparison of the pro-
posed algorithms with related approaches (as far as
we know, this is the first paper to present experimen-
tal results with CPI).

2. Preliminaries

A discrete-time finite Markov decision process (MDP)
is defined as a 6-tuple (S, A, P,R,~v, D), where § is
a finite set of states, A is a finite set of actions, P is
a Markovian transition model where P(s'|s,a) is the
probability of making a transition to state s’ when tak-
ing action a from state s, R : & x A — [0, 1] is the re-
ward function, such that R(s, a) is the expected imme-
diate reward for the state-action pair (s, a), v € [0,1) is
the discount factor for future rewards, and D is the ini-
tial state distribution. The policy of an agent is char-
acterized by a density distribution 7(a|s) that specifies
the probability of taking action a in state s. When the
policy is deterministic, with abuse of notation, we use
7w to denote the mapping between states and actions:
m:S — A. We consider infinite horizon problems
where the future rewards are exponentially discounted
with « (where possible, we will generalize our results
to the undiscounted case v = 1). For each state s, we
define the utility of following a stationary policy 7 as:

Vi$)=F 4 <= [Z ’th(st7at)|so = s:| .

st ~ P +=0

It is known that V7 solves the following recursive
(Bellman) equation:

VT(s) =Y m(als) (R(s,a) Dy P(s’|s,a)v’f(s’)> .

acA s'eS

Policies can be ranked by their expected discounted
reward starting from the state distribution D:

Jp = ZD(S)VW(S) = Zd%(s) Z m(a|s)R(s,a),

sES sES acA

where d7,(s) = >0y V' Pr(s; = s|m, D) is the unnor-
malized y—discounted future state distribution (with
normalizing factor 1 —) for a starting state distribu-
tion D (Sutton et al., 2000). In the undiscounted case,

such term is replaced by the stationary state distribu-
tion d7(s) = limy_,o, Pr(s; = s|m), that, for unichain
MDPs, is unique and independent from the initial state
distribution. Solving an MDP means to find a pol-
icy 7 that maximizes the expected long-term reward:
™ € argmax,cr J5. For any MDP there exists at
least one deterministic optimal policy that simultane-
ously maximizes V7 (s), Vs € S. For control purposes,
it is better to consider action values Q™ (s,a), i.e., the
value of taking action a in state s and following a pol-
icy m thereafter:

Q" (s,a) = R(s,a)+~ Z P(s']s,a) Z 7(a|s)Q™(s',a).

s'es a’€eA

Given the action-value function Q7 (s, a), we define the
greedy policy 7+ as: 77 (s) € argmaxq,e4 Q7 (s,a).
Furthermore, we define the advantage function:

A" (s,a) = Q" (s,a) — V" (s),

that quantifies the advantage (or disadvantage) of
taking action a in state s instead of following pol-
icy w. In particular, for each state s, we de-
fine the advantage of a policy 7’ over policy 7 as
AT (s) = Y aca ™ (als)A™(s,a) and, following what
done in (Kakade & Langford, 2002), we define its ex-
pected value w.r.t. an initial state distribution p as

A::u =2 ses dZ(S)A;r/ (s).

For sake of brevity, in the following we will use ma-
trix notation, where I denotes the identity matrix and
e is a column vector of all ones (with sizes appar-
ent from context). Given a vector v and a matrix
M, v and MT denote their transpose, and, given a
non-singular square matrix M, M~! denotes its in-
verse. The Li—norm || M||; of a matrix M is its maxi-
mum absolute column sum, while its Lo—norm || M||
is its maximum absolute row sum. It follows that
|M], = |IMT|,. Using matrix notation, we can
rewrite previous equations as follows:

VIi=II" (r+Pv") =" +P"v" = (I —4P") '™,
q" =r+~yPII"q" =r +Pv",
Jg = DTVTr = DT (I — 'VPW)_I rﬂ- = d‘IbTrﬂ'7
rp=dp'TI" AT = d}TAT,
where J7, and A;:# are scalars, v, r", D, d},, and
Af are vectors of size |S|, 9™, r, and A™ are vec-
tors of size |S||A|, P is a stochastic matrix of size
(IS]]A| % |S]) that contains the transition model of the
process P((s,a),s’) = P(s'|s,a), II" is a stochastic
matrix of size (|S| x |S]||.A|) that describes policy 7:
II™ (s, (s,a)) = w(a|s), and P™ = II"P is a stochastic
matrix |S| x |S| that represents the state transition
matrix under policy .

Safe Policy Iteration

3. Bound on Policy Improvement

In this section we want to lower bound the perfor-
mance improvement of a policy 7’ over a policy 7 given
the policy advantage function A;’. As we will see, A;l
can provide a good estimate of Jj / only when the two
policies m and 7’ visit all the states with similar prob-
abilities, i.e., dﬁ' ~ dj;. The following lemma provides
an upper bound to the difference between the two y—
discounted future state distributions.

Lemma 3.1. Let m and 7’ be two stationary policies
for an infinite horizon MDP M with state transition
matriz P. The Li—norm of the difference between their
y—discounted future state distributions under starting
state distribution p can be upper bounded as follows:

» ey

This bound needs knowledge of the transition model
P, but often such model is not available. Furthermore,
even when the state transition model is known, the
bound requires the inverse of a |S| x |S| matrix, which
in many applications is not practical. The following
Corollary provides a (looser) model-free version of the
bound, where the difference between the two distribu-
tions depends only on the discount factor v and the
difference between the two respective policies.

dr —dr

SLHPH*PTF
17 1=y

Corollary 3.2. Let m and 7’ two stationary policies
for an infinite horizon MDP M. The Li—norm of the
difference between their y—discounted future state dis-
tributions under starting state distribution p can be

upper bounded as follows:
Y H ! 1r
< —||I1T" —1II
7)?

‘ 1~ (1—
As a further step to prove the main theorem, it is useful
to rewrite the difference between the performance of
policy ' and the one of policy 7 as a function of the
policy advantage function A’;/.

Lemma 3.3. (Kakade & Langford, 2002)

For any stationary policies m and ' and any starting
state distribution u: .

Jp —J;=d; A%.

Unfortunately, computing the improvement of policy
7’ w.r.t. to 7 using the previous lemma is really expen-
sive, since it requires to estimate d;‘l for each candidate
7’. In the following, we will provide a bound to the
policy improvement and we will show how it is possible
to find a policy 7’ that optimizes its value, but first
we need to introduce the following lemma:

Lemma 3.4. (Haviv & Heyden, 1984, Corollary 2.4)
For any vector d and any vector ¢ such that cTe = 0,

Ad
7] < lell, 5

dr —dr

n

(oo}

where Ad = max; ; |d; — d;|.

We can now state the theorem that bounds the policy
improvement between policy n’ and policy .

Theorem 3.5. For any stationary policies m and '
and any starting state distribution u, given any base-
line policy m, the difference between the performance
of ™ and the one of w can be lower bounded as follows:
7 AAT

(1-9)2 o 2
The bound is the sum of two terms': the advantage of
policy 7’ over policy 7 averaged according to the dis-
tribution induced by policy m, and a penalization term
that is a function of the discrepancy between policy 7’
and policy m, and the range of variability of the ad-
vantage function A;r,. In the following section we will
show that this bound is tight. Finally we introduce a
looser, but simplified version of bound in Theorem 3.5
that will be useful later:

JT = Jr > d AT — o — I

Corollary 3.6. For any stationary policies m and w'
and any starting state distribution p, the difference
between the performance of ' and the one of m can be
lower bounded as follows:

-
(1—=7)2

4. Exact Safe Policy Iteration

’ ’ / 2 ﬂ

At each iteration 4, the policy improvement step of
policy iteration selects the greedy policy w.r.t. Q™
as the new policy for the next iteration: m; 1 = m;™
This choice is guaranteed to improve the performance
at each iteration until convergence to the optimal pol-
icy. Nonetheless, it may not correspond to the safest
choice, since there may be other policies that are
guaranteed to perform better. Things get more com-
plex when approximations or restrictions to the policy
space are involved, since the greedy policy may be even
worse than the current policy. To avoid this problem,
following the approach of CPI, we consider the class
of safe policy—iteration (SPI) algorithms. These algo-
rithms produce a sequence of monotonically improving
policies and stop when no improvement can be guar-
anteed. The idea is to implement the policy improve-
ment step as the maximization of a lower bound to the
policy improvement (like the ones in Theorem 3.5 and
Corollary 3.6). In the following, we propose two safe
policy—iteration algorithms for the exact case (value
functions are known without approximation): unique—
parameter safe policy improvement (USPI) and multi-
ple—parameter safe policy improvement (MSPI). The
two algorithms differ in the set of policies that they

consider in the policy improvement step.

We tried to keep Theorem 3.5 as general as possible,
to favor its reuse in different contexts. Nonetheless, in the
following we will consider 7, equal to 7.

Safe Policy Iteration

4.1. Unique—parameter Safe Policy
Improvement

Following the approach proposed in CPI (Kakade &
Langford, 2002), given the current policy (7) and a
target policy 7 (in CPI 7 is the greedy policy), we
define the policy improvement update rule step as:

7 =am+ (1 - a)m,

where « € [0, 1]. It can be easily shown that if AT (s) >
0 for all s, then 7’ is not worse than 7 for any « (such
condition always holds when 7 = 7). By taking 7, =
7, the value of o that maximizes the lower bound in
Theorem 3.5 is provided by the following Corollary.

Corollary 4.1. If A?# > 0, then, using o =
(1—9)%AT
AT I~ AAT >
a* < 1 the following policy improvement is guaranteed:

we set a = min(1, a*), so that when

/ 1 —~)2AT 2
J: _ J;'r > (7 7) T .
I SV

and when o* > 1, we perform a full update towards
the target policy T with a policy improvement equal to
the one specified in Theorem 3.5.

Remark 1 (Comparison with the policy im-
provement guaranteed in CPI.) Using the nota-
tion introduced in this paper, a slightly improved ver-
sion of the bound on the guaranteed policy improve-
ment of CPT (refer to Corollary 4.2 in (Kakade & Lang-
ford, 2002) or Corollary 7.2.3 in (Kakade, 2003)) can
be rewritten as:
, 1—~)2A7 2
Jr = JT > A=) Arw SV)LW .
1—v

The only difference between such bound and the one of
USPI (see Corollary 4.1) is in the denominator. Since
|7 — H”HOC AAT < ﬁ, the improvement guaran-
teed by USPI is no worse than the one of CPI. From
the tightness of CPI bound, it follows that also USPI
bound is tight. In general, the difference between the
two approaches can be much larger whenever 7 is not
completely different from 7 (i.e., HHF— H”Hoo < 2)
and/or the values of the advantage function are not
spread from the theoretical minimum to theoretical
maximum (i.e., AAT < %) In particular, using pol-
icy iteration algorithms without approximation, where
7 is the greedy policy m+, as the sequence of poli-
cies approaches the optimal policy, the discrepancy
between the current policy m and the greedy policy
7T decreases and so happens for the advantage val-
ues A;r+, thus allowing USPI to guarantee much larger
improvements than CPI (whose convergence is asymp-
totic, being its coefficient o = (1 — 437" /2y < 1).

4.2. Multiple-parameter Safe Policy
Improvement

The USPI approach aims at finding the convex combi-
nation between a starting policy 7 and a target policy
7 that maximizes the bound on the policy improve-
ment. In this section, we consider a more general kind
of update, where the new policy is generated using dif-
ferent convex combination coefficients for each state:
' (als) = a(s)T(als) + (1 — a(s))w(als), Vs, a, where
a(s) € [0,1],Vs. When per-state parameters are ex-
ploited, the bound in Theorem 3.5 requires to solve
two dependent maximization problems over the state
space that do not admit simple solution. Therefore, to
compute the values a(s) that maximize the policy im-
provement in the worst case, we consider the simplified
bound from Corollary 3.6.

Corollary 4.2. Let ST be the subset of states where
the advantage of policy ™ over policy m is positive:
ST = {s € S|AT(s) > 0}.

The bound in Corollary 3.6 is optimized by taking
a(s) =0,Vs ¢ ST and a(s) = min (17 m),
Vs € 87, where |[T(|s) —7(|s)lly = Yo m(als) —
m(als)| and T is the value that mazimizes the follow-
ing function:

r—_r
(I—-7)2 2

Remark 2 (Computing 7") Differently from USPI,
the coefficients of MSPI cannot be computed in closed
form due to their dependency from T*, whose value
requires the maximization of a function with discon-
tinuous derivative. However, the maximization of B
can be computed using an iterative algorithm like the
one proposed in Algorithm 1. To illustrate how the
algorithm works, we consider the graph in Figure 1,
where we can see that the function B is a continu-
ous quadratic piecewise function, whose derivative is
a discontinuous linear piecewise function (notice that
all the pieces have the same slope). Since the deriva-
tive is non negative at 7 = 0, and it is monotonically
decreasing, B is guaranteed to have a unique maxi-
mum. The discontinuity points corresponds to values
of T for which some state 5 saturates its coefficient to
1, so that, for larger values 7', the coefficient a(3) does
not depend on 7" anymore, thus disappearing from the
derivative whose value changes discontinuously with a
jump equal to %. The idea of Algorithm 1

is to start from 7 = 0 and to search for the zero—

Safe Policy Iteration

Algorithm 1 Computing T for MSPI
input: v, m, 7, dj,, AT, [|4" |,

initialize: T + 0,4 < 1, m < — <H1q7;”)g°,
9o < D iesr %, sort states in S7 so that
i< j=|7(]si) —w(ls)lly < I7Cls5) — m(-]s5)]l;
repeat

T, e [7(1s0) - n(lsll,

gi < gi—1 +m(¥i —Ti1)

if g; <0 then

return 1; — %

end if AT (o1
d7 (s;) A% (s;
9i < 9 ~ TRho—=(loT
if g; <0 then
return 7
end if
i1+ 1

until i > |S7|
return 7'jsm

crossing value of the derivative of B by running over
the values that lead to coefficient saturation. The al-
gorithm stops when either the derivative of B becomes
negative or all the coefficients are saturated to 1 (the
last return in Algorithm 1). When the derivative be-
comes negative, two different cases may happen: (1)
the derivative equals zero at some value of T (as it hap-
pens in Figure 1), which is the case of the first return
in Algorithm 1; (2) the derivative becomes negative in
correspondence of a discontinuity without taking the
value of zero (the second return in Algorithm 1), i.e
the maximum falls on an angular point of B.

The computational complexity of Algorithm 1 is dom-
inated by the cost of sorting the states according to
the discrepancy between the current policy m and the
target policy 7, that is O (|S|(|A| + log|S))).

Remark 3 (Comparing USPI and MSPI). Al-
though MSPI maximizes over a set of policies that
is a very large superset of the policies considered by
USPI, it may happen that the policy improvement
bound found by MSPI is smaller than the one of USPI.
The reason is that the former optimizes the bound in
Corollary 3.6 that is looser than the bound in Theo-
rem 3.5 optimized by the latter. Finally, notice that,
following the same procedure described in Remark 1
and constraining MSPI to use a single « for all the
states (so that the MSPI improvement is bounded by
(1-7)%AT 2
29| T —T17 |12 lla™ ||
that the improvement of MSPI is never worse than the
one of CPIL.

), we can prove, as done with USPI,

1.5 . . - 0.2

’—._&.5'\ B —_—

= 40 A N { 015
® 9k~ _ @ N\, T
5 /. N, 1 0.1 3
o L7~ Ko
S 057 /e \.\ 1005 o
R ey
£ ! S~ \ =
S 0 ~\\\~\ \ 0 8
(O] = \ o
3 . v 1-005 3
£ 057 Tl \ =
S Y401 0§
! R =

“\4 -0.15

15 : -0.2

0.1300.252 0.399 0.588 0.752
T

Figure 1. Bound B and its derivative. Circles are set in
correspondence of the discontinuities whereas the triangle
represents the maximum value of B. The gradient of B is
depicted by the dashed red piecewise linear function where
the square represents go, its evaluation in 7 = 0.

5. Approximate Safe Policy Iteration

The exact algorithms proposed in the previous section
cannot be exploited when the state-transition model is
unknown. In these cases, sample-based versions of the
previous algorithms need to be considered in order to
estimate the terms that appear in the bounds. Since
accurate estimates of Lo,—norms (AA for USPI and
la™|| ., for MSPI) need many samples, for approxi-
mate settings we consider the following simplification
of the bound in Corollary 3.6:

T —JT ZA;’“_Z(THHW —ar oo7 (1)
that is obtained by maximizing ||q"||,, with =. In

this way, the only value that needs to be estlmated
is A7 . Following the sampling procedure described

n (Kakade, 2003), LI

that is an e-accurate estimate of ATH The gen-
eral algorithm for the approximated versions of USPI
(aUSPI) and MSPI (aMSPI) is similar to the one for
CPI (see (Kakade, 2003, Algorithm 13): (1) Choose
an initial policy at random. (2) Select the target
policy ™ € I CII through the maximization of a
sample based version of the @-function. (3) Produce

an m —accurate estimate of the average advantage:

AT (4) If AT is larger than 3(1 =y then compute (ac-
cording to the USPI or the MSPI approach) the new
policy for the next iteration using the bound in Eq. 1.
For instance, in the case of aUSPI, the value of the
parameter «, to take into account the approximation

(1_7)3(Af_ (i)) T
'YI\H7—1'I§H1§J . (5) When AT <

the algorithm stops returning the current policy.

it is possible to compute A™

error, 18 & = 1 ’y)

Safe Policy Iteration

Given that aMSPI and aUSPI optimize the same per-
formance improvement bound, since aMSPI optimizes
over a set of policies larger than the one considered
by aUSPI, the improvement rate of the former is al-
ways faster than the one of the latter. Furthermore,
since the bound in Eq. 1 is never worse than the one
optimized by CPI, the number of iterations of aMSPI
and aUSPI are no more than the one of CPI, that

is O (ﬁ)(refer to Theorem 7.3.2 in (Kakade,

2003)). Currently, we are not able to theoretically
prove that our approximated SPI algorithms terminate
in a number of iterations that is significantly less than
the one of CPI, but we can state the following theorem
that provides interesting insights into the converging
properties of the proposed algorithms.

Theorem 5.1. If the same target policy T is used at
each iteration, aUSPI and aMSPI terminate after

0 ().
(1—v)2e

If the set of target policies used by SPI algorithms
were “small” w.r.t. the number of iterations of CPI
(this may always happen by choosing small enough
€ values), we could prove that the number of itera-
tions grows linearly with the accuracy (1) instead of
quadratically as in the case of CPI. Next section pro-
vides empirical evidence to support such conjecture.

6. Experiments

In this section, we empirically test the algorithms pro-
posed in this paper into two different domains: some
chain-walk problems and the Blackjack card game.

6.1. Chain-walk domains

We have chosen the simple chain walk prob-
lem (Lagoudakis & Parr, 2003) for its simplicity that
makes the comparison with other approaches straight-
forward and particular instructional. Chain walk do-
main is modeled as an N-state chain (numbered from
1 to N). Chain is traversed performing two actions,
“left” (L) and “right” (R). Each action induces a tran-
sition into the associated direction and to the opposite
one with probability p and 1 — p (in the following ex-
periments p is set to 0.9), respectively. Reward +1
is assigned only when the agent enters one of the two
states located at a distance of N/4 from the bound-
aries, otherwise the reward is 0. The starting state
distribution D is assumed uniform over state space.

We start the analysis by considering the case in which
no approximation is involved (so that # = ™). To
give an idea of how the two SPI algorithms work, in
Figure 2 we compare their performance with the ones
of policy iteration (PI), conservative policy iteration

3
25 I o T ;B: ;;A;L;jﬂg
' -) D,,B‘/ﬂ:a_,., —
o 27 / ,a"’D.‘/‘/ 1
s ! o Pl - - -
s | C NPG =
E151 ,/,)z/ gpl — |
8 . o/ MSPl — - —
d._) 1 4I (E'//'/ USPI - 4
y A
05 ¢ 47 1
06 274
Iterations

Figure 2. Score J; as a function of iterations. Data are
drawn up to convergence for PI and USPI whereas are
cutoff at the maximum number of iterations allowed for
the others. The underline domain consists of a discounted
(0.9) chain with 50 states.

1 [CPli—— : [
wMsPl—— | :
08 - USPI:-_-:- i: I R
06 | L
s : : : b
‘ L f |
04 | L
. |
02t 'l C
f L e /
0 ;_.-(-J-*\j- Lo, \J At N T A
06 274
Iterations

Figure 3. Parameter « as a function of the iteration, for
each a-based algorithms in the discounted (0.9) chain with
50 states. For MSPI, the average value of a(s) is plotted.
Vertical dotted lines denote changes in the target policy 7
for the USPI. Each change of 7 is associated to a drop of
the coefficient and a variation in the improvement rate.

(CPI) and natural policy gradient (NPG) on a single
run using a chain with 50 states and v = 0.9. All the
algorithms have been initialized with the same starting
policy. The graph shows, for each algorithm, the value
of J7, as a function of the number of iterations. As ex-
pected (since there is no approximation), PI converges
to the optimal policy in only 5 iterations. At the oppo-
site end, CPI (whose convergence to the optimal policy
is asymptotic) has a very slow performance improving
rate when compared to the other algorithms. Both SPI
algorithms converge to the optimal policy in a finite
number of iterations: USPI reaches the optimal policy
in 274 iterations, while MSPI takes more than 1,000
iterations. The improving rate of NPG with a hand—

Safe Policy Iteration

tuned (with a line-search strategy) learning rate equal
to 0.1 is similar to the one of USPI. Figure 3 displays
how the values of the convex combination coefficients
change over the iterations for CPI, USPI, and MSPI
(since MSPT has different « for each state, we plot the
average of a(s)). As expected, the value of o for CPI
is always very low and decreases with iterations. On
the other hand, the coefficients for the SPI algorithms
start to increase when the current policy approaches
the greedy one. Considering Figures 2 and 3, we can
notice that the value of a for USPI suddenly drops
twice. Such phenomena are due to a change in the
greedy policy and can also being observed as a change
in the performance improving rate. The faster conver-
gence of USPI w.r.t. MSPI, although not theoretically
proved, has been empirically verified in many different
versions of the chain-walk domain obtained by vary-
ing the discount factor and the number of states. We
can explain this behavior by considering that USPI ex-
ploits a better bound w.r.t. the one of MSPI, and, in
the exact context, the advantage of choosing different
convex combination coeflicients for each state is not
enough for MSPI (at least in this domain) to attain
the same improving rate of USPI.

Things change when approximate versions of the algo-
rithms are considered. Figure 4 shows a comparison
between aCPI, aUSPI, and aMSPI in the same 4-state
chain—walk domain presented in (Koller & Parr, 2000),
where, assuming a uniform starting distribution, the
optimal policy is RRLL. Koller and Parr (Koller &
Parr, 2000) showed that policy iteration, when the
state-value function is approximated with a second or-
der polynomial and starts from policy RRRR, oscil-
lates between non—optimal policies: RRRR and LLLL.
Figure 4 confirms that policy iteration oscillates be-
tween RRRR and LLLL which both have the same
suboptimal performance. Conservative policy itera-
tion (Kakade & Langford, 2002) does not suffer the
approximation and slowly converges (at infinity) to
the optimal policy. On the other side, the proposed
algorithms aUSPI and aMSPI are able to reach the
optimal policy in a finite number of iterations, 49 and
61 respectively.

In Tables 1(a) and 1(b) we compare (in 4-state and
10-state chain walks respectively) the performance of
the tabular versions of aCPI, aUSPI, and aMSPI us-
ing two different values for the approximation error e:
0.1 and 0.2, and for the discount factor v: 0.5 and
0.65. As expected, the higher is the accuracy required
(small values of €), the larger is the number of itera-
tions needed by the algorithms to converge. Nonethe-
less, it can be shown that the rate of improvement
is higher for smaller values of e. The reason is that

9 ,,, 4

8 4

7 K i
3
c6 Pl ---- A
g CPl -------
55 MSPI - —--
K USPI ——
g 4]

3 4

3

1 1 1 1 1 1

0 500 1000 1500 2000 2500

Iterations

Figure 4. Score J;; as a function of iterations. The un-
derline domain consists of a discounted (0.9) chain with
4 states with fixed initial policy RRRR. A dotted line is
drawn in correspondence of the value of the optimal policy.

Table 1. Algorithm iterations (sample mean + standard de-
viation of the mean estimation) in approximate settings in
4-states (a) and 10-states chain walk (b). Results have been
average over 30 runs for all the algorithms. Initial policies
have been chosen at random.

(a)

o € aCPI aUSPI aMSPI
0.5 0.1]280.233 +3.347 10.933 £0.616 4.200 £ 0.285
0.5 0.2]112.633 £3.368 10.533 +0.704 3.567 + 0.278

0.65 0.1 | 498.067 £ 1.553 34.700 4+ 1.630 18.833 £ 3.013
0.65 0.2 | 235.233 +£6.241 27.433 +1.667 13.433 £ 1.017
(b)

0 € aCPI aUSPI aMSPI
0.5 0.1] 226.900 £ 4.878 29.800 £+ 1.425 2.933 £ 0.126
0.5 0.2 56.533 £ 5.265 15.667 & 1.284 1.800 + 0.188
0.65 0.1 | 455.733 £8.777 78.333 £ 3.588 10.367 £+ 0.625
0.65 0.2 | 135.233 £+ 10.438 39.633 + 3.343 74 0.762

low values of € imply a more accurate estimate of the
advantage function, thus allowing the algorithms to
take larger update steps. This advantage comes at the
price of significantly increasing the number of samples
that at each iteration are used to obtain more accu-
rate estimates of the @Q—function (see (Kakade, 2003,
Lemma 7.3.4)). aCPI takes much longer to converge
w.r.t. both the approximated SPI algorithms and this
difference gets more sensible as e decreases (as conjec-
tured in the previous section). aMSPI is faster than
aUSPI and such advantage increases with the number
of states, since aMSPI may better exploit its possibility
of choosing convex coeflicients independently for each
state. For what concerns computational times, the dif-
ference between aMSPI and aUSPI grows as the size
of the problem increases. Nonetheless the complexity
is dominated by the sampling procedure; in fact, in
all our experiments the improvement step requires less
than 1% of the per—iteration time.

Safe Policy Iteration

0.29 —
aMSP| - —--
: aUSPl ——
028 + | aCP| ------- 1
; aPl - - - -
o 027 | I |
o .
=
©
E 026 [! o ieaiemraeae e S |
o}
o 025 1
0.24 yf 1
et e i oo TH
023 1 1 1 1 1 1 1 S\
0 500 1000 1500 2000 2500 3000 3500 4000 4500

Iterations

Figure 5. Score J|; as a function of iterations in a Blackjack
game with discount factor of 0.8. aPI oscillates between
policy mx and policy 7s (figure reports only the perfor-
mance of the two policies for seek of clarity).

6.2. BlackJack card game

Blackjack is a card game where the player attempts to
beat the dealer by obtaining a total score greater than
the dealer’s one without exceeding 21. In this work, we
consider the simplified version of the blackjack game
usually used as RL benchmark (refer to (Dutech et al.,
2005) for more details). The state of the game is de-
fined by the sum of the cards of the player (2 to 20), the
dealer’s faced-up card (1 to 10) and the soft hand flag
(that is irrelevant when player’s value is greater than
11), for a total of 260 states. The player can choose
between two actions: to receiver a new card (hit) or to
stop (stand). The rewards are +1 for winning (+1.5
for blackjack), —1 for loosing and 0 for every hit. Re-
wards have been scaled to fit the interval [0,1] and the
discount factor has been set to 0.8.

In this experiment we want to analyze the effect of
searching the greedy policy within a subset II of the
set of determinstic policies. In particular, we consider
only two policies: II = {ms, 7 }. Both policies select
the best action (H) when player’s value is greater than
19 and opposite actions for the other states (7g selects
S and 7y selects H). States with dealer’s values equal
to 9 and 10 are treated in a complementary way: policy
wg selects H and policy wy chooses S. Policy 7y has
been chosen as initial policy. Figure 5 reports the per-
formance of the policies obtained by aPI, aCPI, aUSPI
and aMSPI algorithms using an approximation error e
of 0.01 and an estimation probability ¢ of 0.1. While
aPl oscillates between 7y and mg, other algorithms
do not get stuck and converge to policies that perform
better than both 7y and 7wg. Notice that aMSPI, ex-
ploiting the flexibility given by the multiple convex co-
efficients, converges faster and to a significantly better
policy than both aUSPI and aCPI.

7. Discussion

In this section we will discuss the contributions of this
paper and we will propose directions for future studies
to overcome some limitations of the current approach.

This paper provides three types of contributions: the-
oretical, algorithmic, and empirical. The main contri-
bution is the theoretical one, that consists in the intro-
duction of new lower bounds to the performance differ-
ence between two policies. Such results are of general
interest since they can be exploited in many different
contexts. Starting from these bounds we have derived
some policy iteration algorithms that are of particular
interest in approximate settings. Finally, through em-
pirical validation we have shown how such approaches
lead to significantly better performance than CPI.

The proposed SPI algorithms have also some limita-
tions that make their use in complex domains (very
large or continuous state spaces) quite impractical. In
fact, if, at each iteration, we choose as target policy
the greedy policy, the algorithms need to enumerate all
the states. When state enumeration is prohibitive, it
is possible to restrict the search for the target policy to
a subset of the policy space (as suggested in (Kakade,
2003)). Another interesting direction to address this
problem consists in considering a parameterized sub-
space of policies and use the bounds provided in this
paper to compute a safe value for the step size to be
used in a policy gradient algorithm. We are currently
developing such approach for multivariate Gaussian
policies in the natural policy gradient algorithm.

Domains with large number of states can rise problems
especially in the case of aMSPI, since, as described in
this paper, it requires to compute a convex combina-
tion coefficient for each state. To alleviate this issue,
it is possible to consider a slightly modified version
of aMSPI, where the state space is split into subre-
gions (using state aggregation) and all the states in
a region share the same coefficient. By changing the
size of these subregions, we can generate several dif-
ferent situations that range from the original aMSPI
approach (no aggregation) to the aUSPI one (where
all the states are associated to the same coefficient).

A further research direction is to exploit the proposed
bounds to perform approximate policy iteration in the
off-policy case, that is when the samples have been
initially collected (once for all) following some explo-
ration strategy. In this case, we can use the bound in
Theorem 3.5 where 7, is the exploration strategy.

Finally, it will be interesting to theoretical prove that
SPI algorithms halt after a number of iterations that
is significantly less than the one needed by CPI.

Safe Policy Iteration

References

Azar, M. Gheshlaghi, Gémez, V., and Kappen, H. J.
Dynamic policy programming. Journal of Machine
Learning Research, 13(Nov):3207-3245, 2012.

Bertsekas, D.P. Approximate policy iteration: A sur-
vey and some new methods. Journal of Control The-
ory and Applications, 9(3):310-335, 2011.

Dutech, A., Edmunds, T., Kok, J., Lagoudakis, M.,
Littman, M., Riedmiller, M., Russell, B., Scherrer,
B., Sutton, R., Timmer, S., et al. Reinforcement
learning benchmarks and bake-offs ii. In Workshop
at advances in neural information processing sys-
tems conference. Citeseer, 2005.

Gabillon, V., Lazaric, A., Ghavamzadeh, M., and
Scherrer, B. Classication-based policy iteration with
a critic. In Proceedings of ICML, pp. 1049-1056,
2011.

Haviv, Moshe and Heyden, Ludo Van Der. Pertur-
bation bounds for the stationary probabilities of a
finite markov chain. Advances in Applied Probabil-
ity, 16(4):pp. 804-818, 1984. ISSN 00018678. URL
http://www. jstor.org/stable/1427341.

Howard, R.A. Dynamic programming and Markov
processes. 1960.

Kakade, S.M. A natural policy gradient. NIPS, 14:
1531-1538, 2001.

Kakade, S.M. On the sample complexity of reinforce-
ment learning. PhD thesis, PhD thesis, University
College London, 2003.

Kakade, S.M. and Langford, J. Approximately optimal
approximate reinforcement learning. In Proceedings
of ICML, pp. 267-274, 2002.

Koller, Daphne and Parr, Ronald. Policy Iteration for
Factored MDPs. In Proceedings of the 16th Con-
ference on Uncertainty in Artificial Intelligence, pp.
326-334, San Francisco, CA, USA, 2000. Morgan
Kaufmann Publishers Inc. ISBN 1-55860-709-9.

Lagoudakis, M.G. and Parr, R. Least-squares policy
iteration. Journal of Machine Learning Research, 4:
1107-1149, 2003.

Lazaric, A., Ghavamzadeh, M., and Munos, R. Analy-
sis of a classication-based policy iteration algorithm.
In Proceedings of ICML, pp. 607-614, 2010.

Munos, R. Error bounds for approximate value itera-
tion. In Proceedings of AAAI volume 20, pp. 1006,
2005.

Perkins, T.J. and Precup, D. A convergent form of
approximate policy iteration. NIPS, 15:1595-1602,
2002.

Peters, J., Vijayakumar, S., and Schaal, S. Natural
actor-critic. In Proceedings of ECML, volume 3720,
pp- 280-291. Springer, 2005.

Sutton, R.S., McAllester, D., Singh, S., and Man-
sour, Y. Policy gradient methods for reinforcement
learning with function approximation. In NIPS, vol-
ume 12, pp. 1057-1063. MIT Press, 2000.

Wagner, P. A reinterpretation of the policy oscilla-
tion phenomenon in approximate policy iteration.
In NIPS, 2011.

Ye, Y. The simplex and policy-iteration methods are
strongly polynomial for the markov decision prob-
lem with a fixed discount rate. Mathematics of Op-
erations Research, 36(4):593-603, 2011.

http://www.jstor.org/stable/1427341

