
Appendix

1 The duality of relaxed EP energy functions

The primary energy function of relaxed EP is
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where c is the constant and ri is the relaxation factor.

Based on the KL duality bound, we obtain the dual energy function.
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Setting the gradient of the above function to zero gives us the fixed-point updates described in the Section
3 of the main text. The fixed-point updates, however, do not guarantee convergence. But because of the
relaxed KL minimization, REP always converges in our experiments (while EP can diverge when given many
outliers).

Now we prove the duality of the relaxed EP energy function. Applying the KL duality to the first term
in (1)produces
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This is because the maximum of the right side of (10) is achieved when (taking derivative to λi(w))
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which means
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Inserting exp(λi(w)) in (10) proves the KL duality for (10).
And from the stationary condition, we can assume w.l.o.g. that
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With the constraint ((n− 1)ν =
∑
i λi) and (2), we obtain the dual energy function:
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2 Choices of relaxation factors and the energy function

As discussed in Section 4.2 of the main text, we have multiple choices for the form of the relaxation factors.
To save the computational cost, we can parameterize ηi (the natural parameter of the relaxation message)
in a constrained form. For example, we can make ηi to be a scaled version of the natural parameters of the
old message t̃oldi , shown as follows.

ηi = ητ oldi (18)

With the restricted form (18) for the relaxation factor, the REP algorithm still finds a stationary point of
the energy function (1).

To see this, we first substitute λi = (n− 1)ν −
∑
k 6=i λi into (1). Then we compute the derivatives with

respect to ν and ηi, respectively. While the derivative with respect to ν remains the same as in the case
without the constraint (18), the derivative with respect to ηi is different. Zeroing this derivative we obtain:
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with the constraint
∑
i |ηi| < c′. This is achieved by minimizing the penalized KL divergence

KLr(tiriq
\i||qri) + c|ηi|1 . (20)

as used in the relaxed EP.
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3 Relaxed KL for GP classification

For GP classification, we minimize the relaxed KL divergence with l1 penalty over bi by line search. Here
we present how to compute the value of this cost function:

Q(bi) = KLr(tiriq
\i||riq) + c|bi| (21)

Following the notations in the main text (from equations (16) to (23)), we have Q(bi) as
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Ẑi
{[(1− ε) log(1− ε)− ε log ε]ψ(z) + ε log ε}+

1

2vi,b
(Fi,b − h̃imi,b)−

1

2
log

(
1 + (bi +

1

vi,b
)λ
\i
i

)
+

1

2
log(biλ

\i
i + 1)− 1

2
bi(m

2
i − 2mih̃i + Fi,b) +

1

2

(mi − h\ii )2

λ
\i
i + b−1i

− log Ẑi + c|bi| (22)
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Using the above equations, we can efficiently optimize Q(bi) over bi via line search.

4 Power EP for GP classification

In this section, we describe how to train GP classifiers by Power EP. The updates of Power EP are the same
as equations (5.64) to (5.74) in [1], except two critical modifications:

• Replace equation (5.67) in [1] by

αi =
1√
λi

[(1− ε)u − εu]N (z|0, 1)

εu + [(1− ε)u − εu]ψ(z)
(27)

where ψ(·) is the standard normal cumulative density function and u is the power used by Power EP.

• Moreover, after (5.70), scale vi by u:
vi ← uvi (28)
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