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Supplementary Material

A. Proofs

Below are proofs for the regret bounds from Sections 5
and 6.

A.1. Proof of Theorem 2
First, we bound E[|lw71|?]:
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The first line utilizes the update rule from algorithm
2. The second line follows from ||¢(x,y)|| < R and
repeating the inequality for t =T — 1,--- ;1. The last
inequality uses the premise on affirmativeness.

Using the update rule again, we get:
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where the last line uses Eq. (4). Using the Cauchy-
Schwarz inequality and concavity of +/z, we get

Ewq W < [[Wa|[Eflwrll] < [[w.|vE[[wri]?]

from which the claimed result follows.

A.2. Proof of Corollary 3
Note that:
§+ = argmax, wy ¢(x¢,y)
Therefore:
V5w o(xe, §1) < Wi (xi,91)

Hence:

Vit : E{W:qb(xt,?t)} — E[wM(Xt,yt)]

< w/ o(xt,91) — E[WtTéb(XtaYt)} (10)

Given the condition of the corollary, and the above
Equation 10, we get that:

;ZT:E{Wt o(

Xhi’t)} - E|:W;r¢(xtaYt):| <0

which using Theorem 2 gives us the corresponding
regret bound.
A.3. Proof of Theorem 4

This proof is very similar to the one in (Raman et al.,
2012), though it solves a different problem. In particu-
lar since:

Vit : E[wg—gb(xt,yt)] >(1- ﬂ)w;'—d)(xt,yt)
we have that:

E[w;r((b(xtv}_’t) - ¢(Xt7Yt))] < BW;I—QS(Xt,yt)

From here on, the proof from (Raman et al., 2012)
can be used, to prove the corresponding regret bound.
Thus in other words, the perturbation can be thought
of as a way to produce an (1 — 3)-approzimate solution
to the argmax problem.

A.4. Proof of Proposition 5

Consider the case when documents in positions 7 and
i+ 1 (call them d; and d; 1) are swapped?:

w, (i — Yit1) (0(xe, di) — (%, dis1))
< (1 - W:f1>w:(%¢(xt,di) +Yit10(xt, div1))
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Note that this factor 1 — 7;“ is largest for 4 = 1. Thus
we can state for every swapped pair:

Wi (i — Yir1)(D(xe, di) — d(x¢, dit1))
< (1= )W/ (adlxe,di) + 11651, diy1))
Ba!

Summing this over all swapped pairs, and using the fact
that each pair has some probability p to be swapped:

W;(¢(Xt75’t) — E[p(xt,y1)])
< p(l - %)‘Mj‘?(xt’yt)

A.5. Proof of Proposition 6

We prove a more general proposition here:

Proposition 7 For A > 0, dynamically setting the
swap prob. of 3PR to be

pe < maaz(O,min(l,c(A-t—Rt))>, (11)

2This holds assuming the inner products with docu-
ments are non-negative. Thus algorithmically this can be
implemented by only ranking documents with non-negative
scores.
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for some positive constant ¢, has regret

IRZ+2A
AR? + 2A+(71—72)R\/T+.

Proof We prove this by using Theorem 2. In particu-
lar, we show:

a RZ42A
23 w60, 30) ol yo) <Ay HEEE (19
t=1

where T' = (71 — 72)R. We will show this holds by
induction on 7. Note that this condition trivially holds
for T = 0 (base case). Now assume it holds for T' =
k — 1. We will show it is true for T' = k. Consider the
cumulative affirmativeness Ry = Zf;ll w, d(x;,¥:) —
w, ¢(x;,y:). There are 2 cases to consider:

e Ri > kA: If this is the case pr = 0 i.e., no
perturbation is performed for iteration k and
hence yi = y5 = argmauxyw,;'—(;5(xk;7 y). Therefore
Wi (0(Xk, ¥k) — (X, yk)) < 0; thus Ry < Ry,
and hence the induction hypothesis is satisfied.

e R < kA: We have |wi| < VE(AR?+2A) as
shown in the proof of Thm 2. As per the
perturbation, for all yx we have ||¢(xk,¥r) —
d(xk,yx)|| < T3, Next by Cauchy-Schwarz we
get Wy (0(xXk, §x) — ¢(xk, yx)) < Wi Thus
Ri11 < Rip+T\/k(4R?+2A); hence satisfying the

induction hypothesis.

1wl
<= G+—r
QT;& o T

Thus the induction holds for T" = k. Since equation
(12) holds for all y;, ¥+, this condition is also satisfied
under expectation (over y;:,¥:). Hence the condition
for Theorem 2 is satisfied, thus giving us the bound.
Note that the second term on the RHS of Eq. (12)
asymptotically disappears. |

B. Additional Details of User Study

The ranking function in the ArXiv search engine used
1000 features which can be categorized into the follow-
ing three groups.

e Features the corresponded to rank as per query
similarity with different components of the docu-
ment (authors, abstract, article etc..). We used
different similarity measures. For each of these
document-components and similarity measures, we

3This assumes that the document feature vectors are
component-wise non-negative. If this is not true, then the
bound still holds but with I' = 2R

had multiple features of the form rank < a, where
a was a value we varied to create multiple features
(we used 2, 5,10, 15, 25, 30, 50, 100, 200).

e Second-order features the represented pairwise
combinations of rank (for the default similarity
measure) for 2 different document-components.

e Query-independent features representing the doc-
ument age and the document category (e.g. Al,
NLP, ML, Statistics etc..).

Our baseline, was a hand-coded solution using 35 fea-
tures considered the most important by us.



