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Section 2

Lemma 1. No function can satisfy Uniform Convez-
ity for k < 2, but they can be in F" for k < 2.

Proof. If uniform convexity could be satisfied for (say)
k = 1.5, then we have for all z,y € S

1) - 1(@) = g1 (=) = e — yl}*

Take x,y both on the positive x-axis. The Taylor ex-
pansion would require, for some ¢ € [z,y],
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Now, taking ||z—yl||2 = € — 0 by choosing x closer to y,
the Taylor condition requires the residual to grow like
€2 (going to zero fast), but the UC condition requires
the residual to grow at least as fast as !® (going to
zero slow). At some small enough value of ¢, this would
not be possible. Since the definition of UC needs to
hold for all x,y € S, this gives us a contradiction. So,
no f can be uniformly convex for any k < 2

lz =3

However, one can note that for f(z) = |=[]i:3
Zi |.’E7;‘1.5, we have 1’? = O’ and f(fE) o f(x;)
|2][}3 > ||lz — 23[|5%, hence f € FLO.
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Lemma 2. If f € F*, then for any subgradient g, €
Of (x), we have ||gz|l2 > N — z*|57".

Proof. By convexity, we have

fa*) 2 f(2) + g (a* —x)

1

Rearranging terms and since f € F*, we get
g: (x—a*) > fla) = f(&") = Mz —2*||5
By Holder’s inequality,
lgalzllz — 2|2 = g; (z — z*)
Putting them together, we have
9z2ll2llz — 2% (l2 = Al — 2[5

giving us our result.
O

Lemma 3. For a gaussian random variable z, ¥Vt <
o, Jaj,az, at < P0<z<t)<ast

Proof. We wish to characterize how the probability
mass of a gaussian random variable grows just around
its mean. Our claim is that it grows linearly with the
distance from the mean, and the following simple ar-
gument argues this neatly.

Consider a X ~ N(0,0?%) random variable at a dis-
tance ¢ from the mean 0. We want to bound fit du(X)
for very small t. The key idea in bounding this integral
is to approximate it by a smaller and larger rectangle,
each of the rectangles having a width 2¢ (from —¢ to

).
t2 /202

. o—t2/2
The first one has a height equal to o

est value taken by the gaussian in [—t,t] achieved at

. . 1
t, and the other with a height equal to the o the

largest value of the gaussian in [—t,t] achieved at 1.

, the small-

The smaller rectangle h gpe 20 5 gpe i
e smaller rectangle has area A 2 2o

when t < o. The larger rectangle clearly has an area

1

of 2t o

Hence we have At = Qtﬁ < P(X| < t) <

2150\}ﬂ = At for ¢t < o. Similarly, for a one-sided

inequality, we have a1t = tm/ﬁ <PO<X<t)<

t— = =ast fort <o.

We note that the gaussian tail inequality P(X > t) <
%e‘t2/ 20 really makes sense for large ¢t > o and we

are interested in ¢t < 0. There are tighter inequalities,



but for our purpose, this will suffice.
O

Lemma 4. If |n(x) — 1/2] > A, the midpoint &1 of
the high-probability igterval returned by BZ satisfies
E|zp — x*| = O(e=T2/2). [CNO7]

Proof. The BZ algorithm works by dividing [0, 1] into

a grid of m points (interval size 1/m) and makes T'
queries (only at gridpoints) to return an interval It

such that Pr(z* ¢ Ir) < me=TA* [CNO7]. We choose
Z7 to be the midpoint of this interval, and hence get

1
E|or — 2*| = / Pr(|ir — 2| > w)du
0
1/2m
= / Pr(|zr — z*| > w)du
0

1
+/ Pr(|gr — z*| > u)du
1/2m

1 1 1
< — 1-— | P rr —x* —
- 2m + ( 2m> g (|$T | > 2m>
< = +me TN =0 (e’TAQ/Q)
2m

for the choice of the number of gridpoints as m =
TN /2.
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Lemma 5. If |n(z) — 1/2| > Ma — a*|%, the point
T obtained from a modified version of BZ satisfies
Blor — o*| = O ((%45)7=) and Bllar - 2°|"] =

0 ((55)==).

Proof. We again follow the same proof as in [CNOT].
Initially, they assume that the grid points are not
aligned with z*, ie Vk € {0,...,m}, [|z* —k/m| >
1/3m. This implies that for all gridpoints z, |n(z) —
1/2] > A(1/3m)*~L. Following the exact same proof
above,

1

E[|Zr — z*|"] = / Pr(|zp — z*|™ > u)du

0
(1/2m)~
= / Pr(|zp — z*| > u!/*)du
0
1
+/ Pr(|ir — 2| > u!/")du
(1/2m)*=

= <271n> +(1- (Qin)) P (jor - ') > o)

<1> T mexp(_TA(1L/3m)* )
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on choosing m proportional to (@) .

[CNO07] elaborate in detail how to avoid the assumption
that the grid points don’t align with x*. They use a
more complicated variant of BZ with three interlocked
grids, and gets the same rate as above without that
assumption. The reader is directed to their exposition
for clarification.
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Section 3

Lemma 6. c.||z||f = ¢, Zle |z;|® =: fo(z) € F",
for all & > 1. Also, fi(x) as defined in Section 8 is
also in F*.

Proof. Firstly, this is clearly convex for £ > 1. Also,
fo(z},) = 0at 23, = 0. So, all we need to show is that
for appropriate choice of ¢, f isindeed 1-Lipschitz and
that fo(z) — fo(z},) > Allz — 2%, [|5 for some A > 0, ie
cellzlls = Mlzlly 5 exlll=llE = wllR) < llz =yl
Let us consider two cases, k > 2 and k < 2. Note
that all norms are uniformly bounded with respect to
each other, upto constants depending on d. Precisely,

if kK < 2, then ||z|, > ||z]|2 and if & > 2, then ||z||,, >
dl/n_1/2||$“2-

When k > 2, consider ¢, = 1. Then

(Ul = NwllR) < lle = yllE < lle=yllz <z -yl

because ||z]|x < ||z|l2 and ||z — y|| < 1. Also, ||z||% >
d'=%||x||5, so A = d' =% works.

When « < 2, consider ¢, = ﬁ. Similarly

, , lz —ylle\"
en(llelE—ll) < ( < le—yll5 < lle—y:

Vd

Also ¢ ||z|| > cxllz]l5, so A = ¢, works.

Hence fo(z) is 1-Lipschitz and in F* for appropriate
Cr-

Now, look at fi(x) for 1 < 4a. It is actually just
fo(x), but translated by 2a in direction z, with a con-
stant added, and hence has the same growth around
its minimum. Now, the part with 2y > 4a is just fo(x)
itself, which have the same growth parameters as the
part with z; <4a. So fi1(z) € F"* also.

O



Lemma 7. For all i = 1...d, let f;(z) be any one-
dimensional k-uniformly convex function (k > 2) with
constant A\;. For a d—dimensional function f(x) =
Zle fi(x;) that decomposes over dimensions, f(x) is

also k-uniformly convexr with constant A\ = %

Proof.

flx+h)=

Zfz I7,+h

> EXMMHWMM+MMH
> f(@) + g h+ (min )|

min; K
> o)+ glh B

(one can use h = y — x for the usual first-order defini-
tion)
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Lemma 8. f(z) = |z|* is k-uniformly convez i.e.

(@) +(1-1)1() > fltz+(1-1)y) + 500y

Lemma 7 implies ||x||f is also k-

for X = 4/2%.
4/2%

uniformly conver with A = 5=/

Proof. First we will show this for the special case of
t =1/2. We need to argue that:

1 :z:+y 1
sl + 3 Lyl > |2y Agle—yl*

Let A = 4/2%. We will prove a stronger claim -

1 x-+—y 1
e
Since k > 2
r+vy =Y L
RHS'* = (=, W++a;46”k
Tty
< 2+ I)l/2
< (jaf?/2+ |yl /2)1/2
1
< 9l/2=1/k(p1k 4 |y |k)L/k
< 5 (Jz[* + [yI")
1 1
< (§\x|k+§|y\k)1/k = LHS'*

Now, for the general case.

We will argue that just

proving the above for ¢t = 1/2 is actually sufficient.
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flte+(1—t)y) = f <2t (I ; y) +(1- 2t)y>
2t (Z52) + - 2010

+(1=2t)f(y)
ﬁ@%ﬂl—wﬂw—ﬂl—ﬂjx—mk

o —y|* +

(@) + 1) — 22



