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Section 2

Lemma 1. No function can satisfy Uniform Convex-
ity for κ < 2, but they can be in Fκ for κ < 2.

Proof. If uniform convexity could be satisfied for (say)
κ = 1.5, then we have for all x, y ∈ S

f(y)− f(x)− g>x (y − x) ≥ λ

2
‖x− y‖1.52

Take x, y both on the positive x-axis. The Taylor ex-
pansion would require, for some c ∈ [x, y],

f(y)− f(x)− g>x (y − x) =
1

2
(x− y)>H(c)(x− y)

≤ ‖H(c)‖F
2

‖x− y‖22

Now, taking ‖x−y‖2 = ε→ 0 by choosing x closer to y,
the Taylor condition requires the residual to grow like
ε2 (going to zero fast), but the UC condition requires
the residual to grow at least as fast as ε1.5 (going to
zero slow). At some small enough value of ε, this would
not be possible. Since the definition of UC needs to
hold for all x, y ∈ S, this gives us a contradiction. So,
no f can be uniformly convex for any κ < 2

However, one can note that for f(x) = ‖x‖1.51.5 =∑
i |xi|1.5, we have x∗f = 0, and f(x) − f(x∗f ) =

‖x‖1.51.5 ≥ ‖x− x∗f‖1.52 , hence f ∈ F1.5.

Lemma 2. If f ∈ Fκ, then for any subgradient gx ∈
∂f(x), we have ‖gx‖2 ≥ λ‖x− x∗‖κ−12 .

Proof. By convexity, we have

f(x∗) ≥ f(x) + g>x (x∗ − x)

Rearranging terms and since f ∈ Fκ, we get

g>x (x− x∗) ≥ f(x)− f(x∗) ≥ λ‖x− x∗‖κ2

By Holder’s inequality,

‖gx‖2‖x− x∗‖2 ≥ g>x (x− x∗)

Putting them together, we have

‖gx‖2‖x− x∗‖2 ≥ λ‖x− x∗‖κ2

giving us our result.

Lemma 3. For a gaussian random variable z, ∀t <
σ, ∃a1, a2, a1t ≤ P (0 ≤ z ≤ t) ≤ a2t

Proof. We wish to characterize how the probability
mass of a gaussian random variable grows just around
its mean. Our claim is that it grows linearly with the
distance from the mean, and the following simple ar-
gument argues this neatly.

Consider a X ∼ N(0, σ2) random variable at a dis-

tance t from the mean 0. We want to bound
∫ t
−t dµ(X)

for very small t. The key idea in bounding this integral
is to approximate it by a smaller and larger rectangle,
each of the rectangles having a width 2t (from −t to
t).

The first one has a height equal to e−t
2/2σ2

σ
√
2π

, the small-

est value taken by the gaussian in [−t, t] achieved at
t, and the other with a height equal to the 1

σ
√
2π

, the

largest value of the gaussian in [−t, t] achieved at 1.

The smaller rectangle has area 2t e
−t2/2σ2

σ
√
2π

≥ 2t e
−1/2

σ
√
2π

when t < σ. The larger rectangle clearly has an area
of 2t 1

σ
√
2π

.

Hence we have A1t = 2t 1
σ
√
2πe

≤ P (|X| < t) ≤
2t 1
σ
√
2π

= A2t for t < σ. Similarly, for a one-sided

inequality, we have a1t = t 1
σ
√
2πe
≤ P (0 < X < t) ≤

t 1
σ
√
2π

= a2t for t < σ.

We note that the gaussian tail inequality P (X > t) ≤
1
t e
−t2/2σ2

really makes sense for large t > σ and we
are interested in t < σ. There are tighter inequalities,
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but for our purpose, this will suffice.

Lemma 4. If |η(x) − 1/2| ≥ λ, the midpoint x̂T of
the high-probability interval returned by BZ satisfies
E|x̂T − x∗| = O(e−Tλ

2/2). [CN07]

Proof. The BZ algorithm works by dividing [0, 1] into
a grid of m points (interval size 1/m) and makes T
queries (only at gridpoints) to return an interval ÎT
such that Pr(x∗ /∈ ÎT ) ≤ me−Tλ

2

[CN07]. We choose
x̂T to be the midpoint of this interval, and hence get

E|x̂T − x∗| =
∫ 1

0

Pr(|x̂T − x∗| > u)du

=

∫ 1/2m

0

Pr(|x̂T − x∗| > u)du

+

∫ 1

1/2m

Pr(|x̂T − x∗| > u)du

≤ 1

2m
+

(
1− 1

2m

)
Pr

(
|x̂T − x∗| >

1

2m

)
≤ 1

2m
+me−Tλ

2

= O
(
e−Tλ

2/2
)

for the choice of the number of gridpoints as m =
eTλ

2/2.

Lemma 5. If |η(x) − 1/2| ≥ λ|x − x∗|κ, the point
x̂T obtained from a modified version of BZ satisfies

E|x̂T − x∗| = O
(

( log T
T )

1
2κ−2

)
and E[|x̂T − x∗|κ] =

O
(

( log T
T )

κ
2κ−2

)
.

Proof. We again follow the same proof as in [CN07].
Initially, they assume that the grid points are not
aligned with x∗, ie ∀k ∈ {0, ...,m}, |x∗ − k/m| ≥
1/3m. This implies that for all gridpoints x, |η(x) −
1/2| ≥ λ(1/3m)κ−1. Following the exact same proof
above,

E[|x̂T − x∗|κ] =

∫ 1

0

Pr(|x̂T − x∗|κ > u)du

=

∫ (1/2m)κ

0

Pr(|x̂T − x∗| > u1/κ)du

+

∫ 1

(1/2m)κ
Pr(|x̂T − x∗| > u1/κ)du

≤
(

1

2m

)κ
+

(
1−

(
1

2m

)κ)
Pr

(
|x̂T − x∗| >

1

2m

)
≤

(
1

2m

)κ
+m exp(−Tλ2(1/3m)2κ−2)

= O

((
T

log T

) 1
2κ−2

)

on choosing m proportional to
(

T
log T

) 1
2κ−2

.

[CN07] elaborate in detail how to avoid the assumption
that the grid points don’t align with x∗. They use a
more complicated variant of BZ with three interlocked
grids, and gets the same rate as above without that
assumption. The reader is directed to their exposition
for clarification.

Section 3

Lemma 6. cκ‖x‖κκ = cκ
∑d
i=1 |xi|κ =: f0(x) ∈ Fκ,

for all κ > 1. Also, f1(x) as defined in Section 3 is
also in Fκ.

Proof. Firstly, this is clearly convex for κ > 1. Also,
f0(x∗f0) = 0 at x∗f0 = 0. So, all we need to show is that
for appropriate choice of cκ, f is indeed 1-Lipschitz and
that f0(x)− f0(x∗f0) ≥ λ‖x− x∗f0‖

κ
2 for some λ > 0, ie

cκ‖x‖κκ ≥ λ‖x‖κ2 , cκ(‖x‖κκ − ‖y‖κκ) ≤ ‖x− y‖2

Let us consider two cases, κ ≥ 2 and κ < 2. Note
that all norms are uniformly bounded with respect to
each other, upto constants depending on d. Precisely,
if κ < 2, then ‖x‖κ > ‖x‖2 and if κ ≥ 2, then ‖x‖κ ≥
d1/κ−1/2‖x‖2.

When κ ≥ 2, consider cκ = 1. Then

(‖x‖κκ − ‖y‖κκ) ≤ ‖x− y‖κκ ≤ ‖x− y‖κ2 ≤ ‖x− y‖2

because ‖z‖κ ≤ ‖z‖2 and ‖x − y‖ ≤ 1. Also, ‖x‖κκ ≥
d1−

κ
2 ‖x‖κ2 , so λ = d1−

κ
2 works.

When κ < 2, consider cκ = 1√
d
κ . Similarly

cκ(‖x‖κκ−‖y‖κκ) ≤
(
‖x− y‖κ√

d

)κ
≤ ‖x−y‖κ2 ≤ ‖x−y‖2

Also cκ‖x‖κκ ≥ cκ‖x‖κ2 , so λ = cκ works.

Hence f0(x) is 1-Lipschitz and in Fκ for appropriate
cκ.

Now, look at f1(x) for x1 ≤ 4a. It is actually just
f0(x), but translated by 2a in direction x1, with a con-
stant added, and hence has the same growth around
its minimum. Now, the part with x1 > 4a is just f0(x)
itself, which have the same growth parameters as the
part with x1 ≤ 4a. So f1(x) ∈ Fκ also.



Lemma 7. For all i = 1...d, let fi(x) be any one-
dimensional κ-uniformly convex function (κ ≥ 2) with
constant λi. For a d−dimensional function f(x) =∑d
i=1 fi(xi) that decomposes over dimensions, f(x) is

also κ-uniformly convex with constant λ = mini λi
d1/2−1/κ .

Proof.

f(x+ h) =
∑
i

fi(xi + hi)

≥
∑
i

(fi(xi) + gxihi + λi|hi|κ)

≥ f(x) + g>x h+ (min
i
λi)‖h‖κκ

≥ f(x) + g>x h+
(mini λi)

d1/2−1/κ
‖h‖κ2

(one can use h = y − x for the usual first-order defini-
tion)

Lemma 8. f(x) = |x|k is κ-uniformly convex i.e.

tf(x)+(1−t)f(y) ≥ f(tx+(1−t)y)+
λ

2
t(1−t)|x−y|k

for λ = 4/2k. Lemma 7 implies ‖x‖κκ is also κ-

uniformly convex with λ = 4/2k

d1/2−1/κ .

Proof. First we will show this for the special case of
t = 1/2. We need to argue that:

1

2
|x|k +

1

2
|y|k ≥ |x+ y

2
|k + λ

1

8
|x− y|k

Let λ = 4/2k. We will prove a stronger claim -

1

2
|x|k +

1

2
|y|k ≥ |x+ y

2
|k + 2λ

1

8
|x− y|k

Since k ≥ 2

RHS1/k = (|x+ y

2
|k + |x− y

2
|k)1/k

≤ (|x+ y

2
|2 + |x− y

2
|2)1/2

≤ (|x|2/2 + |y|2/2)1/2

≤ 1√
2

21/2−1/k(|x|k + |y|k)1/k

≤ (
1

2
|x|k +

1

2
|y|k)1/k = LHS1/k

Now, for the general case. We will argue that just
proving the above for t = 1/2 is actually sufficient.

f(tx+ (1− t)y) = f

(
2t

(
x+ y

2

)
+ (1− 2t)y

)
≤ 2tf

(
x+ y

2

)
+ (1− 2t)f(y)

≤ tf(x) + tf(y)− 2t
2λ

8
|x− y|k + (1− 2t)f(y)

≤ tf(x) + (1− t)f(y)− t(1− t)λ
2
|x− y|k


