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1. Theoretical guarantees for lifted
trace norm regularized estimation

We reformulated the “trace + 1” penalty using a linear
mapping Π and introduced a new penalty, the block
norm, using Φ. Using the general formalism of lifted
trace norms we state theoretical results that help us
better understand the behaviour of each of the two
norms and compare them more easily. Due to space
constraints, all proofs are postponed to appendices
available as supplementary materials.

1.1. Lifted trace norms

We call lifting a linear mapping Λ : Rn×m → Rn′×m′

and call the penalty induced by ‖Λ(X)‖∗ on the ma-
trix X the Λ-trace or lifted trace norm. Such penalties
have been used in compressed sensing (Hosseini Ka-
mal & Vandergheynst, 2013), in statistics (Grave
et al., 2011), and have similarities with fused spar-
sity inducing type of penalties ‖Λ(X)‖1 studied for
instance by Dalalyan & Chen (2012); Vert & Bleak-
ley (2010); Vaiter et al. (2012). Note that a lifted
trace norm is not necessarily a norm. It verifies tri-
angle inequality and positive homogeneity, but only
separates points so becomes a norm if Λ is injec-
tive (i.e., Λ(X) = 0 ⇒ X = 0). We denote by
‖Λ‖ = max‖X‖F≤1 ‖Λ(X)‖F the operator norm of the
linear map Λ. The mapping Λ∗ denotes the adjoint
operator of Λ. If Λ(X) = UΛ(X)ΣΛ(X)V

>
Λ(X) is the sin-

gular value decomposition of Λ(X), the subgradient of
the Λ-trace at X is given by

∂‖Λ(X)‖∗ =

{
Λ∗
(
UΛ(X)V

>
Λ(X) + P⊥Λ(X)(Z)

)
where

Z ∈ RN×M and ‖Z‖op ≤ 1

}
.

From this expression one can see that when Λ(X) is
rank deficient then ‖Λ(X)‖∗ is nondifferentiable, in
cases where the image of Λ∗ is the whole space Rn×m.
This makes the rank of Λ(X) a particularly interesting
quantity in this context.

In the following X? denotes the target matrix to be
estimated and ω : Rn×m → Rd a set of linear mea-
surements:

ω(X) =
(
〈Ω1, X〉, · · · , 〈Ωd, X〉

)>

.

We call the Ωis design matrices and we will be inter-
ested in the estimation procedures (i) minimizing the
least squares loss `(X) = 1

d‖ω(X)−y‖22 penalized with
lifted trace norm and (ii) minimizing the Λ-trace sub-
ject to ω(X) = ω(X?).

1.2. Least squares regression with lifted
trace-norm penalty

We consider linear regression and prove oracle inequal-
ities for the estimation procedure using techniques in-
troduced by Koltchinskii et al. (2011). That is, we
consider the model

y = ω(X?) + ε ∈ Rd

where ε ∈ Rd having i.i.d zero mean entries.

Assumption 1 We assume that the lifting Λ is or-
thogonal, that is Λ∗Λ = ‖Λ‖2Id, which is for instance
the case of Φ and Π.

For the two orthogonal liftings of interest Π and
Φ, the operator norms respectively are given by
‖Π‖2 = (1−β)2 +β2 and ‖Φ‖2 = (n+m)(1−β)2 +β2.

Definition 1 The cone of restriction C(X,κ,Λ) is the
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set of matrices B ∈ Rn×m satisfying

‖P⊥Λ(X)(Λ(B))‖∗ ≤ κ‖PΛ(X)(Λ(B))‖∗ . (1)

The restricted eigenvalue of ω at X is

µκ,Λ(X) = inf

{
µ > 0 such that

‖PΛ(X)(Λ(B))‖F ≤
µ√
d
‖ω(B)‖2 , ∀B ∈ C(X,κ,Λ)

}
.

Define the objective

L(X) =
1

d
‖ω(X)− y‖22 + λ‖Λ(X)‖∗ , (2)

and consider the following estimation procedure

X̂ = arg min
X∈S

L(X) , (3)

where S ⊂ Rn×m is the convex cone of admissible
solutions. We can state the following oracle inequality
on the estimate X̂.

Proposition 1 Under Assumption 1, for
λ ≥ 3

d‖Λ(M)‖op/‖Λ‖2, where M =
∑d
i=1 εiΩi,

the following holds:

‖ω(X̂ −X?)‖22 ≤

inf
X∈S

{
‖ω(X −X?)‖22 + λ2µ5,Λ(X)2 rank(Λ(X))

}
.

Note that as (see the proof) X̂ − X? ∈ C(X?, 5,Λ)
and by orthogonality of Λ, we bound the
estimation error by the prediction error

‖X̂ −X?‖2F ≤
36µ5,Λ(X)2 rank(Λ(X?)

‖Λ‖2d ‖ω(X̂ −X?)‖22 and

hence the oracle inequality of Proposition 1 provides
a abound on the estimation error.

We point out that using similar techniques, and un-
der the stronger assumption called Restricted Isometry
Property that assumes there exists µ > 0 such that for
any X1, X2 ∈ S

1

d
‖ω(X1 −X2)‖22 ≥ µ−2‖X1 −X2‖2F ,

one can state that for λ ≥ 2
d‖Λ(M)‖op/‖Λ‖2, we have

µ−2‖X̂ −X?‖2F ≤ ‖ω(X̂ −X?)‖22 ≤

inf
X∈S

{
‖ω(X −X?)‖22 + µ2c20λ

2 rank(Λ(X))

}
where c0 =

√
2+1
2 and the first inequality being true

if X? ∈ S. In particular in the case of denoising

ω = id, y = X? + M considered for instance by
Chandrasekaran & Jordan (2012), this proves that if
λ ≥ 2

nm‖Λ(M)‖op/‖Λ‖2

1√
nm
‖X̂ −X?‖F ≤ c0λ

√
rank(Λ(X?)) .

1.3. Probabilistic results

The theoretical analysis of penalized estimation pro-
cedures by a norm highlights that when the dual norm
of the noise is low the result is more attractive. This
motivates us to understand the behavior of ‖Λ(G)‖op
where G denotes the noise which we assume to Gaus-
sian in this work. To this end let us first define the
variance of a lifting using canonical matrices Ei,j hav-
ing 1 at the (i, j) entry and 0 everywhere else as

v2
Λ = ‖

∑
i,j

Λ(Ei,j)Λ(Ei,j)
>‖op∨‖

∑
i,j

Λ(Ei,j)
>Λ(Ei,j)‖op .

Using results stated in (Tropp, 2010), we know that
for a matrix G having i.i.d. centered normal entries

E [‖Λ(G)‖op] ≤
√

2v2
Λ log(N +M) ,

and we can control the deviation for t > 0 as

P
[
‖Λ(G)‖op ≥

√
2v2

Λ(log(N +M) + t)

]
≤ e−t .

We can bound the Πs variance v2
Π(β) ≤ β2 ∨n(1−β)2

and observe that by setting β =
√
n

1+
√
n

we get the up-

per bound on the expectation over standard normal
matrices G

E‖Π(G)‖op ≤

√
2n

(1 +
√
n)2

log(n+m+ 2nm) .

The variance of Φ can be controlled by
v2

Φ(β) ≤ (1 + n)(1 − β)2 + β2, which suggests to
set β = n+1

n+2 in order to obtain

E‖Φ(G)‖op ≤ 2

√
n+ 1

n+ 2
log(n+m) .

We also define the observable variance under the linear
map ω as

v2
ω,Λ =

1

d

∥∥∥∥ d∑
i=1

Λ(Ωi)Λ(Ωi)
>

∥∥∥∥
op

∨
∥∥∥∥ d∑
i=1

Λ(Ωi)
>Λ(Ωi)

∥∥∥∥
op

,

which is a function of β for Π and Φ and equal to
1
nmv

2
Λ in case of denoising ω = id. We finally assume

the noise vector elements εi are independently drawn
from N (0, σ2).
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Corollary 1 (Block norm) Consider the Φ-trace
penalty and calibrate for t > 0

λ =
6σvΦ,ω

β2 + (n+m)(1− β)2

√
log(n+m) + t

d
,

then with probability at least 1− e−t,

‖ω(X̂ −X?)‖22 ≤ inf
X∈S

{
‖ω(X −X?)‖22

+ c2
log(n+m) + t

d
ranksity(X)

}
,

where c =
6σσvΦ,ωµ5,Φ(X)
β2+(n+m)(1−β)2 depends on β.

Corollary 2 (Trace + 1) Consider the Π-trace
penalty and calibrate for t > 0

λ =
3σvΠ,ω

β2 + (1− β)2

√
2 log(n+m+ 2nm) + t

d
,

then with probability at least 1− e−t,

‖ω(X̂ −X?)‖22 ≤ inf
X∈S

{
‖ω(X −X?)‖22

+ c2
log(n+m+ 2nm) + t

d

(
rank(X) + ‖X‖0

)}
,

where c =
3
√

2σvΠ,ωµ5,Π(X)
β2+(1−β)2 .

In both cases it is the minimizer of respectively

β 7→ vΦ,ω(β)
β2+(n+m)(1−β)2 and

vΠ,ω(β)
β2+(1−β)2 that calibrates β.

The two corollaries are interesting because they show
that after a natural calibration of the tuning parameter
λ, the convex estimation procedure (3) outputs the op-
timal estimators for the nonconvex penalties rank +`0
and ranksity, respectively. In addition the multiplica-
tive factor behind these estimators sharply reminds us
of known optimal rates, such as (log n)/p for the Lasso.

1.4. Compressed sensing and exact recovery

Consider the constrained convex optimization problem

min
X
‖Λ(X)‖∗ s.t. ω(X) = ω(X?) , (4)

where the design matrices Ωi are i.i.d. Gaussians. We
have the following bound on the minimum required
such observations for perfect recovery of X?.

Proposition 2 The minimum required number of
Gaussian i.i.d. observations for achieving perfect re-
covery of X? with overwhelming probability by solving
(4) where Λ is an orthogonal lifting is at most

dΛ = E
[
‖P⊥Λ(X?)(Λ(G))‖2op

]
rank(Λ(X?)) + 1 ,

the expectation being taken over the set of i.i.d. stan-
dard normal matrices G.

In the case of the orthogonal lifting Φ, the quan-
tity ‖P⊥Φ(X?)(Φ(G))‖op can be naively bounded by

‖Φ(G)‖2op for which we already have an upper bound.

Corollary 3 (Block norm) For the Φ-trace
penalty, by taking β = (n + 1)/(n + 2),
dΦ ≤ 1 + 4 ranksity(X?) log(n+m) i.i.d. Gaussian
observations are enough to achieve with overwhelming
probability perfect recovery of X? by solving (4).

For Π the situation is simpler as we have a better un-
derstanding of the behavior of P⊥Π(X?)(Π(G)). In fact

‖P⊥Π(X?)(Π(G))‖op =∥∥∥∥((1− β)P⊥X?(G) 0
0 β Diag(vec(Q⊥X?(G)))

)∥∥∥∥
op

.

allows us to analyze the terms separately and state

Corollary 4 (Trace + 1) In the case of Π-trace
penalty, take β = 1− 1√

n+m−2r
, and assume r < m−2,

we have

dΠ ≤ 1 + c1(r + s) log

(
c2 +

nm− s
2

)
where c1 = 8

3 and c2 = 1 + e
3

4β2 ≤ 2.3.

On a bi-clique of size (k, l) we get dΠ ≤ c1kl log(nm−s)
and dΦ ≤ 4{(n+m− 1) + (k− 1)(l− 1)} log(n+m).
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Proof of Proposition 1. Pick X ∈ S, in the convex
cone of admissible solutions. Let PΛ(X) denote the
projector onto span(Λ(X)). We start by setting some
technical lemmas.

Lemma 1 For all M ∈ Rn×n, we have

〈M, X̂ −X〉 ≤
‖PΛ(X)(Λ(M))‖∗‖PΛ(X)(Λ(X̂ −X))‖op/‖Λ‖2

+ ‖P⊥Λ(X)(Λ(M))‖op‖P⊥Λ(X)(Λ(X̂ −X))‖∗/‖Λ‖2

and

〈M, X̂ −X〉 ≤ (5)√
2 rank(Λ(M))‖PΛ(X)(Λ(M))‖op (6)

‖PΛ(X)(Λ(X̂ −X))‖F /‖Λ‖2 (7)

+ ‖P⊥Λ(X)(Λ(M))‖op (8)

‖P⊥Λ(X)(Λ(X̂ −X))‖∗/‖Λ‖2 (9)

Lemma 2 There exists Z ∈ ∂‖Λ(X)‖∗ such that

−〈Z, X̂ −X〉 ≤√
rank(Λ(X))‖X̂ −X‖F ‖Λ‖ − ‖P⊥Λ(X)(Λ(X̂))‖∗

and

−〈Z, X̂−X〉 ≤ ‖PΛ(X)(Λ(X̂−X))‖∗−‖P⊥Λ(X)(Λ(X̂))‖∗ .
(10)

Lemma 3 Let M =
∑d
i=1 εiΩi, we have

∇‖ω(X̂)−y‖22 = 2〈ω(X̂−X?), ω(X̂−X)〉−2〈M, X̂−X〉 .
(11)

By optimality, an element of the subgradient of L at
X̂ belongs to the normal cone of S at X̂. We have
〈∂L(X̂), X̂ − X〉 ≤ 0. On the other hand, by the
monotonicity of the subgradient of the convex function
‖Λ(·)‖∗ we have 〈X̂−X, Ẑ−Z〉 ≥ 0. Therefore we can

deduce by using Lemma 3, that for M =
∑d
i=1 εiΩi,

〈∂L(X̂), X̂ −X〉 − λ〈Ẑ − Z, X̂ −X〉 ≤ 0 (12)

⇔ 〈1
d
∇‖ω(X̂)− y‖22 + λZ, X̂ −X〉 ≤ 0 (13)

⇔ 2

d
〈ω(X̂ −X?), ω(X̂ −X)〉 ≤ (14)

2

d
〈M, X̂ −X〉 − λ〈Z, X̂ −X〉 . (15)

We recall the identity

2〈ω(X̂ −X?), ω(X̂ −X)〉 =

‖ω(X̂ −X?)‖22 + ‖ω(X̂ −X)‖22 − ‖ω(X −X?)‖22 .

It shows that if 〈ω(X̂ − X?), ω(X̂ − X)〉 ≤ 0,
then the bound trivially holds. So lets assume
〈ω(X̂ −X?), ω(X̂ −X)〉 > 0.

In this case the bound (10) in Lemma 2 and equation
(15) imply

λ‖P⊥Λ(X)(Λ(X̂))‖∗ ≤
2

d
〈M, X̂−X〉+λ‖PΛ(X)(Λ(X̂−X))‖∗ .

(16)

By using Lemma 1 , first inequality (5), we have

(λ− 2

d

‖Λ(M)‖op
‖Λ‖2

)‖P⊥Λ(X)(Λ(X̂ −X))‖∗

≤ (λ+
2

d

‖Λ(M)‖op
‖Λ‖2

)‖PΛ(X)(Λ(X̂ −X))‖∗ .

This shows that for λ ≥ 3
d‖Λ(M)‖op/‖Λ‖2, by using

the fact that for x ≥ 3, x−2
x+2 ≥

1
5 , the following holds

true

‖P⊥Λ(X)(Λ(X̂ −X))‖∗ ≤ 5‖PΛ(X)(Λ(X̂ −X))‖∗ .

As a consequence, X̂ −X ∈ C(X, 5,Λ). On the other
hand, by using Lemma 1, second inequality (9) and
(15) we have
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1

d

(
‖ω(X̂−X?)‖22 +‖ω(X̂−X)‖22−‖ω(X−X?)‖22

)
≤ 2

d

(√
2 rank(Λ(X))

‖Λ(M)‖op
‖Λ‖2

‖PΛ(X)(Λ(X̂−X))‖F

+
‖Λ(M)‖op
‖Λ‖2

‖P⊥Λ(X)(Λ(X̂))‖∗
)

+λ
√

rank(Λ(X))‖PΛ(X)(Λ(X̂−X))‖F−λ‖P⊥Λ(X)(Λ(X̂))‖∗ .
(17)

By using the definition of the restricted eigenvalue
µ(X) = µ5,Λ(X), given that X̂ −X ∈ C(X, 5,Λ),

‖PΛ(X)(Λ(X̂ −X))‖F ≤
µ(X)√
d
‖ω(X̂ −X)‖2

so we can write, again thanks to
λ ≥ 3

d‖Λ(M)‖op/‖Λ‖2,

1

d

(
‖ω(X̂−X?)‖22 +‖ω(X̂−X)‖22−‖ω(X−X?)‖22

)
≤ µ(X)√

d
λ
√

rank(Λ(X))

(
1+

2
√

2

3

)
‖ω(X̂−X)‖F .

So by bx− x2 ≤
(
b
2

)2
we finally get

1

d
‖ω(X̂ −X?)‖22 ≤

1

d
‖ω(X −X?)‖22 + λ2µ(X)2

4d
(1 +

2
√

2

3
)2 rank(Λ(X)) . �

Proof of Lemma 1 Let us decompose Λ(M) onto
the direct sum formed by the span of Λ(X) and the
orthogonal space:

Λ(M) = PΛ(X)(M) + P⊥Λ(X)(M) .

By using assumption 1 and Holder’s inequality twice

〈M, X̂ −X〉 = 〈Λ(M),Λ(X̂ −X)〉/‖Λ‖2 ≤
‖PΛ(X)(Λ(M))‖∗‖PΛ(X)(Λ(X̂ −X))‖op/‖Λ‖2

+ ‖P⊥Λ(X)(Λ(M))‖op‖P⊥Λ(X)(Λ(X̂))‖∗/‖Λ‖2

The other bound is obtained in a similar fashion by us-
ing Cauchy-Schwarz on the first term and also the fact
that ‖PΛ(X)(M)‖F ≤

√
2 rank(Λ(X))‖M‖F since we

can write PΛ(X)(M) = (I−UU>)MV V > +UU>M for
U and V singular vectors of Λ(X).
Proof of Lemma 2.Let

Z = Λ∗
(
UΛ(X)V

>
Λ(X) + P⊥Λ(X)(W )

)

denote an element of the subgradient of ‖Λ(·)‖∗,
where ‖W‖op ≤ 1 . Take W = −UV > where

UΣV > = P⊥Λ(X)(Λ(X̂)) is a singular value decompo-

sition, then ‖W‖op = 1 and

〈Λ∗(P⊥Λ(X)(W )), X̂ −X〉 =

〈P⊥Λ(X)(W ),Λ(X̂ −X)〉 =

− ‖P⊥Λ(X)(Λ(X̂))‖∗
so we can write

− 〈Z, X̂ −X〉 =

− 〈Λ∗
(
UΛ(X)V

>
Λ(X)

)
, X̂ −X〉

+ 〈Λ∗(P⊥Λ(X)(W )), X̂ −X〉 =

− 〈UΛ(X)V
>
Λ(X),Λ(X̂ −X)〉

+ 〈P⊥Λ(X)(W ),Λ(X̂ −X)〉 =

− 〈UΛ(X)V
>
Λ(X),Λ(X̂ −X)〉

− ‖P⊥Λ(X)(Λ(X̂))‖∗ .

We know that ‖UΛ(X)V
>
Λ(X)‖

2
F ≤ rank(Λ(X)). By

Cauchy-Schwarz

−〈Z, X̂−X〉 ≤
√

rank(Λ(X))‖X̂−X‖F ‖Λ‖−‖P⊥Λ(X)(Λ(X̂))‖∗ .

Similarly if we use Holder’s instead of Cauchy-
Schwarz, and thanks to ‖UΛ(X)V

>
Λ(X)‖op = 1 ,

−〈Z, X̂ −X〉 ≤

‖PΛ(X)(Λ(X̂ −X))‖∗ − ‖P⊥Λ(X)(Λ(X̂))‖∗ . �

Proof of Lemma 3.

Given that ∇‖ω(X̂)− y‖22 = 2
∑d
i=1 Ωi〈Ωi, X̂〉 − yiΩi,

we obtain

〈∇‖ω(X̂)− y‖22, X̂ −X〉

= 2

d∑
i=1

〈(〈Ωi, X̂〉 − yi)Ωi, X̂ −X〉

= 2

d∑
i=1

(〈Ωi, X̂〉 − yi)〈Ωi, X̂ −X〉

= 2〈ω(X̂)− y, ω(X̂ −X)〉

= 2〈ω(X̂ −X?) + ω(X?)− y, ω(X̂ −X)〉

= 2〈ω(X̂ −X?), ω(X̂ −X)〉 − 2〈ε, ω(X̂ −X)〉

= 2〈ω(X̂ −X?), ω(X̂ −X)〉 − 2〈M, X̂ −X〉 . �
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Proof of Proposition 2. By orthogonality of Λ we
have

‖Λ‖2G = Λ∗Λ(G) = Λ∗
(
PΛ(X?)(Λ(G)) + P⊥Λ(X?)(Λ(G))

)
.

Lets build an appropriate element of the normal cone
of the Λ-trace at X?

Z(G) =
1

‖Λ‖2
Λ∗(P⊥Λ(X?)(Λ(G)))+

‖P⊥Λ(X?)(Λ(G))‖op
‖Λ‖2

Λ∗
(
UΛ(X?)V

⊥
Λ(X?)

)
,

and get by Cauchy-Schwarz inequality

‖Z(G)−G‖2F =
‖P⊥Λ(X?)(Λ(G))‖2op

‖Λ‖2
‖Λ∗UΛ(X?)V

⊥
Λ(X?)‖

2
F

≤ ‖P⊥Λ(X?)(Λ(G))‖2op rank(Λ(X?)) .

By Lemma 2.7 in (Chandrasekaran et al., 2012) this
bounds the squared gaussian width of the tangent
cone to ‖Λ(·)‖∗ at X? intersected with the unit
sphere. We conclude by using Corollary 3.3 from the
same paper. �

Proof of Corollary 4

Let s = ‖X?‖0 and r = rank(X?). First lets show that
for any G ∈ Rn×m

‖P⊥Π(X?)(Π(G))‖op =∥∥∥∥((1− β)P⊥X?(G) 0
0 β Diag(vec(Q⊥X?(G)))

)∥∥∥∥
op

.

In fact as the singular value decomposition of Π(X?)
can be written (up to permutations of rows and
columns) using the matrices

UΠ(X?) =

(
UX? 0

0 Diag(vec(sgn(X?)))

)
and

VΠ(X?) =

(
VX? 0

0 Diag(vec(| sgn(X?)|))

)
the formula P⊥(Z) = (I − UU>)Z(I − V V >) implies
the result. Since the gaussian distribution is isotropic

we know that ‖P⊥Π(X?)(G)‖op is distributed as the op-

erator norm of a (n−r)× (m−r) gaussian matrix and
that ‖Q⊥Π(X?)(G)‖∞ is distributed as the `∞ norm of
a vector of length nm− s having iid standard normal
entries.

Let J = Q⊥X?(G) and H = P⊥X?(G) and

z = max
{

(1− β)2‖H‖2op , β2‖J‖2∞
}

,

and notice that by Jensen inequality, for all t > 0

exp (t E[z]) ≤ E exp(tz)

≤ E exp(t(1− β)2‖H‖2op) +

nm−s∑
i=1

E exp(tβ2Ji)

= E exp(t(1− β)2‖H‖2op) +
nm− s√
1− 2tβ2

,

where Jis are iid χ2 variables and the last relation be-
ing the moment generating function of χ2. For bound-
ing the term E exp(t(1− β)2‖H‖2op), let us recall

P[‖H‖op >
√
n− r +

√
m− r + s] ≤ exp(−s2/2)

and introduce f(x) = exp(t(1 − β)2x2). We have

f−1(z) = 1
1−β

√
log(z)
t strictly increasing [1;∞) → R.

Denoting R =
√
n− r+

√
m− r we have the sequence

of inequalities

E exp(t(1− β)2‖H‖2op) (18)

= Ef(‖H‖op) (19)

=

∫ ∞
1

P[f(‖H‖op) > h] dh (20)

≤
∫ 1+f(R)

1

1 dh (21)

+

∫ ∞
1+f(R)

P[f(‖H‖op) > h]dh (22)

= f(R) (23)

+

∫ ∞
0

P[‖H‖op > f−1(f(R) + 1 + ζ)]dζ (24)

≤ f(R) (25)

+

∫ ∞
0

P[‖H‖op > R+ f−1(1 + ζ)]dζ (26)

≤ f(R) (27)

+

∫ ∞
0

2ts(1− β)2 exp
(
−s2/2 + ts2(1− β)2

)
ds

(28)

≤ f(R) + 1 (29)
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where (26) is due to the sublinearity of

f−1(z) = 1
(1−β)

√
log(z)
t :

f−1(z + z′) ≤ f−1(z) + f−1(z′)

and (29) is true for any t < 1
2(1−β)2 . We have for

t < 1
2 min

(
1

(1−β)2 ,
1
β2

)
,

E[z] ≤

1

t
log

{
1 + exp[2t(1− β)2(n+m− 2r)] +

nm− s√
1− 2tβ2

}

By taking t = 3
8β2 and (1 − β)2 = 1

n+m−2r the latter
expression gives

E[z] ≤
8β2

3
log

{
1 + e

3
4β2 +

nm− s
2

}
.

The bound in Proposition 4 (skippin 1+)becomes

(r + s)
8β2

3
log

{
1 + e

3
4β2 +

nm− s
2

}
≤ c1(r + s) log

{
c2 +

nm− s
2

}

where c1 = 8
3 and c2 = 1 + e

3
4β2 ≤ 2.3.

Lemma 4 The variance (see (Tropp, 2010)) of the set
of Φ(Ei,j)s where 1 ≤ i ≤ n, 1 ≤ j ≤ m is bounded by

σ2 =

‖
n∑
i=1

m∑
j=1

Φ(Ei,j)Φ(Ei,j)
>‖op

∨ ‖
n∑
i=1

m∑
j=1

Φ(Ei,j)
>Φ(Ei,j)‖op

≤ (1 + (n ∨m))(1− β)2 + β2

Proof of Lemma 4. Lets recall for En1,m1

i1,j1
and

En2,m2

i2,j2
denoting canonical elements of size n1 × m1

and n2 ×m2, the Kronecker product expression:

En1,m1

i1,j1
⊗ En2,m2

i2,j2
= En1n2,m1m2

(i1−1)n2+i2,(j1−1)m2+j2
.

Using this and by expressing In =
∑n
i=1E

n,n
i,i , after

some algebra we get

Φ(Ei,j)Φ(Ei,j)
> =(

(1− β)2Em,mj,j ⊗ In

+ (1− β)2Im ⊗ En,ni,i + β2Enm,nmi+n(j−1),i+n(j−1)

)
.

Adding up the terms results in a very simple object:

n∑
i=1

m∑
j=1

Φ(Ei,j)Φ(Ei,j)
>

= (1− β)2Im ⊗ In + (1− β)2Im ⊗ In + β2Inm

=
(
2(1− β)2 + β2

)
Inm .

The second term is also quite friendly, in fact
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Φ(Ei,j)
>Φ(Ei,j) =

(1− β)2En,ni,i ⊗ In (1− β)2En
2,m2

in,jm β(1− β)En
2,nm

ni,n(j−1)+i

(1− β)2Em
2,n2

jm,in (1− β)2Im ⊗ Em,mj,j β(1− β)Em
2,nm

mj,n(j−1)+i

β(1− β)Enm,n
2

i+n(j−1),ni β(1− β)Enm,m
2

i+n(j−1),mj β2Enm,nmi+n(j−1),i+n(j−1)



=


(1− β)2

∑n
k=1E

n2,n2

n(i−1)+k,n(i−1)+k (1− β)2En
2,m2

in,jm β(1− β)En
2,nm

ni,n(j−1)+i

(1− β)2Em
2,n2

jm,in (1− β)2
∑m
k=1E

m2,m2

j+(k−1)m,j+(k−1)m β(1− β)Em
2,nm

mj,n(j−1)+i

β(1− β)Enm,n
2

i+n(j−1),ni β(1− β)Enm,m
2

i+n(j−1),mj β2Enm,nmi+n(j−1),i+n(j−1)



=


(1− β)2En

2,n2

ni,ni (1− β)2En
2,m2

in,jm β(1− β)En
2,nm

ni,n(j−1)+i

(1− β)2Em
2,n2

jm,in (1− β)2Em
2,m2

mj,mj β(1− β)Em
2,nm

mj,n(j−1)+i

β(1− β)Enm,n
2

i+n(j−1),ni β(1− β)Enm,m
2

i+n(j−1),mj β2Enm,nmi+n(j−1),i+n(j−1)


+

(1− β)2
∑n
k 6=iE

n2,n2

n(i−1)+k,n(i−1)+k 0n2,m2 0n2,nm

0m2,n2 (1− β)2
∑m
k 6=j E

m2,m2

j+(k−1)m,j+(k−1)m 0m2,nm

0nm,n2 0nm,m2 0nm,nm



Adding up the terms we get on the one hand matrices
having only diagonal terms (from the second term of
the last equality) and on the other hand (first term)
pairwise orthogonal matrices which are also orthogonal
to the diagonal terms. The second bunch of matrices
that can be written, up to row and column permuta-
tions, as the following matrix

(1− β)2m (1− β)2 β(1− β)
(1− β)2 (1− β)2n β(1− β)
β(1− β) β(1− β) β2

 =

1− β 0 0
0 1− β 0
0 0 β

m 1 1
1 n 1
1 1 1

1− β 0 0
0 1− β 0
0 0 β

 .

Using triangle inequality∥∥∥∥∥∥
(1− β)2m (1− β)2 β(1− β)

(1− β)2 (1− β)2n β(1− β)
β(1− β) β(1− β) β2

∥∥∥∥∥∥
op

=

∥∥∥∥∥∥
1− β 0 0

0 1− β 0
0 0 β


m− 1 0 0

0 n− 1 0
0 0 0

+

1 1 1
1 1 1
1 1 1


1− β 0 0

0 1− β 0
0 0 β

∥∥∥∥∥∥
op

≤ (1− β)2(1 + (n ∨m)) + β2 ,

so

n∑
i=1

m∑
j=1

Φ(Ei,j)
>Φ(Ei,j) ≤ (1−β)2(1+(n∨m))+β2 .�


