Multilinear Multitask Learning

A. Solution of ADM

The underlying algorithm to solve problem (8) is based
on the ADM method, (see e.g. Bertsekas & Tsitsiklis,
1989). It comsists of iteratively applying the update
equations
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for n = 1,...,N, where £ is the augmented La-
grangian for problem (8) and is defined in equation

(7).
We now discuss each of these steps in turn.
MINIMIZING OVER W

In order to solve Step (a), we need to solve the problem
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which is equal to
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for some constant ¢ whose value is independent of W.

Notice that the terms where the whole tensor W ap-
pears are both the square of its Frobenius norm and
inner products with other tensors. By using the defi-
nition of the tensor inner products, it is easy to see
that in both cases we can decouple the whole ten-
sor W in terms of the fibers of its mode-1 unfolding,
that is the original tasks weight vectors: (Z, W) =
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ing the above optimization problem is equivalent to
solving the following T' = pops...pn minimization
problems
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for all t € {1,...,T}, where we use the notation w; =
W(1),t- In particular, if we consider one half of the
square loss function, then the solution to problem (11)
has the close form
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where X! is the d x m; data matrix for task ¢, that
is, the columns of X* are the inputs zf, i = 1,...,m,

and y* = (yf,...,yb,)"

MINIMIZING OVER B,

Minimizing equation (7) over B,, is equivalent to the
problem
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which is the same as the problem
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which in turn equals to
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+§ HBn (n) — (Bcn(n) - W(n)) HFr + Q27
for some constant matrices Q1,Qs € RP»*/n. The
solution to problem (12) is given by (Gandy et al.,
2011) as
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where shrink (M, k) is a function that shrinks the
eigenvalues of the matrix M by k. That is, given M =
UXVT, where ¥ is a diagonal matrix containing the
singular values of M, then shrink (M, k) = US,(Z)V7T,
where S (X) = diag(max{X%;; — k, 0}).



