
Multilinear Multitask Learning

A. Solution of ADM

The underlying algorithm to solve problem (8) is based
on the ADM method, (see e.g. Bertsekas & Tsitsiklis,
1989). It consists of iteratively applying the update
equations
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for n = 1, . . . , N , where L is the augmented La-
grangian for problem (8) and is defined in equation
(7).

We now discuss each of these steps in turn.

Minimizing over W

In order to solve Step (a), we need to solve the problem
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for some constant c whose value is independent of W .

Notice that the terms where the whole tensor W ap-
pears are both the square of its Frobenius norm and
inner products with other tensors. By using the defi-
nition of the tensor inner products, it is easy to see
that in both cases we can decouple the whole ten-
sor W in terms of the fibers of its mode-1 unfolding,
that is the original tasks weight vectors: hZ,W i =
TP
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ing the above optimization problem is equivalent to
solving the following T = p2p3 . . . pN minimization
problems
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for all t 2 {1, . . . , T}, where we use the notation wt =

Ŵ (1),t. In particular, if we consider one half of the
square loss function, then the solution to problem (11)
has the close form
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where Xt is the d ⇥ mt data matrix for task t, that
is, the columns of Xt are the inputs xt

i, i = 1, . . . ,mt,
and yt = (yt1, . . . , y
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Minimizing over Bn

Minimizing equation (7) over Bn is equivalent to the
problem
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which is the same as the problem
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which in turn equals to
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for some constant matrices Q1, Q2 2 Rpn⇥Jn . The
solution to problem (12) is given by (Gandy et al.,
2011) as
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where shrink (M,k) is a function that shrinks the
eigenvalues of the matrix M by k. That is, given M =
U⌃V T , where ⌃ is a diagonal matrix containing the
singular values of M , then shrink (M,k) = USk(⌃)V

T ,
where Sk(⌃) = diag(max{⌃i,i � k, 0}).


