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Paul Ruvolo and Eric Eaton. ELLA: An Ef-
ficient Lifelong Learning Algorithm. In Pro-
ceedings of the 30th International Conference
on Machine Learning, Atlanta, GA, 2013.

A.1. Recursive Update of L

A näıve algorithm for updating the latent model com-
ponent matrix L whenever new data are received is
to invert the matrix 1

T A + λI. The computational
complexity of this update is O(d3k3). However, it is
possible to speedup the computation by exploiting the
fact that the matrix A is only updated by adding or
subtracting a low-rank matrix. The updates to A at
each iteration have the form:
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where we use tick marks to denote the updated ver-
sions of D(t) and s(t) after receiving the new train-

ing data, and D(t)
1
2 is the matrix square-root of D(t).

The updates to A consist of adding or subtracting an
outer-product of a matrix of size (d × k)-by-d, which
implies that each update has rank at most d. If we
have already computed the eigenvalue decomposition
of the old A, we can compute the eigenvalue decom-
position of the updated value of A in O(d3k2) using
the recursive decomposition algorithm proposed by Yu
(1991). Given the eigenvalue decomposition of the up-
dated value of A = UΣU�, we can compute the new
value of L by considering the resulting linear system
in canonical form:

vec (L) = Uψ (11)

ψi =

�
1
T U

�b
�
i

λ+ 1
T σi,i

. (12)

Computing the vector ψ requires multiplying a (d×k)-
by-(d×k) matrix by a vector of size (d×k) for a com-
plexity of O(d2k2). To complete the computation of L
requires another matrix multiplication with the same
size input matrices yielding another O(d2k2). Com-
bining the recursive computation of the eigenvalue de-
composition and the computation of L yields a compu-
tational complexity of O(d3k2) for the update step —
a factor of k speedup from the näıve implementation.

A.2. Convergence Proof

In this section, we present complete proofs for the
three results on the convergence of ELLA (previously
described in Section 3.6 of the main paper):
1. The latent model component matrix, LT , becomes

increasingly stable as the number of tasks T in-
creases.

2. The value of the surrogate cost function, ĝT (LT ),
and the value of the true empirical cost function,
gT (LT ), converge almost surely (a.s.) as the num-
ber of tasks learned goes to infinity.

3. LT converges asymptotically to a stationary point
of the expected loss g.

These three convergence results are given below as
Propositions 1–3.

These results are based on the following assumptions:
A. The tuples

�
D(t),θ(t)

�
are drawn i.i.d. from a dis-

tribution with compact support (bounding the en-
tries of D(t) and θ(t)).

B. For all L, D(t), and θ(t), the smallest eigenvalue
of L�

γ D
(t)Lγ is at least κ (with κ > 0), where γ is

the subset of non-zero indices of the vector s(t) =
argmins �θ(t)−Ls�2D(t) . In this case, the non-zero

elements of the unique minimizing s(t) are given

by: s(t)γ =
�
L�
γ D

(t)Lγ

�−1 �
L�
γ D

(t)θ(t) − µ�γ
�
,

where �γ is a vector containing the signs of the
non-zero entries of s(t).

Claim 1: ∃ c1 ∈ R such that no element of LT has
magnitude greater than c1, ∀ T ∈ {1 . . .∞}.

Proof: Consider the solution LT = 0. Since each θ(t)

and D(t) are both bounded by Assumption (A), the
loss incurred on Equation 5 for the tth task when LT =

0 is θ(t)�D(t)θ(t), which is bounded by Assumption
(A). The part of Equation 5 consisting of the average
loss over tasks can be no larger than the maximum loss
on a single task (which as we just showed is bounded).
Therefore, ĝT (0) must be bounded by some constant
independent of T . Provided λ > 0, there must exist
a constant c1 to bound the maximum entry in LT or
else the regularization term would necessarily cause
ĝT (LT ) to exceed ĝT (0). �
Claim 2: ∃ c2 ∈ R such that the maximum magnitude
of the entries of s(t) is bounded by c2, ∀ T ∈ {1 . . .∞}.

Proof: The value of s(t) is given by the solution to
Equation 3. We can use a similar argument as we did
in Claim 1 to show that the magnitude of the entries
of s(t) must be bounded (i.e., by considering s(t) = 0
and showing the loss of this solution is bounded by
Assumption (A)). �
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Proposition 1: LT − LT−1 = O
�
1
T

�
.

Proof: First, we show that ĝT −ĝT−1 is Lipschitz with
constant O

�
1
T

�
:

ĝT (L)− ĝT−1(L) =
1

T
�(L, s(T )

,θ(T )
,D(T ))
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If � is Lipschitz in its first argument with a constant
independent of T , then ĝT − ĝT−1 has a Lipschitz con-
stant O

�
1
T

�
. This is true since ĝT − ĝT−1 is equal to

the difference of two terms: the first of which is � di-
vided by T , and the second is an average over T − 1
terms (which can have Lipschitz constant no greater
than the largest Lipschitz constant of the functions
being averaged) which is then normalized by T . We
can easily see that � is Lipschitz with constant O(1)
since it is a quadratic function over a compact region
with all coefficients bounded. Therefore, ĝT − ĝT−1 is
Lipschitz with constant O

�
1
T

�
.

Let ξT be the Lipschitz constant of ĝT − ĝT−1. We
have:

ĝT−1(LT )− ĝT−1(LT−1) = ĝT−1(LT )− ĝT (LT )

+ ĝT (LT )− ĝT (LT−1)

+ ĝT (LT−1)− ĝT−1(LT−1)

≤ ĝT−1(LT )− ĝT (LT )

+ ĝT (LT−1)− ĝT−1(LT−1)

≤ ξT �LT − LT−1�F . (13)

Additionally, since LT−1 minimizes ĝT−1 and the L2

regularization term ensures that the minimum eigen-
value of the Hessian of ĝT−1 is lower-bounded by 2λ,
we have that ĝT−1(LT ) − ĝT−1(LT−1) ≥ 2λ�LT −

LT−1�
2
F. Combining these two inequalities, we have:

�LT − LT−1�F ≤
ξT

2λ
= O

�
1

T

�
.

Therefore, LT − LT−1 = O
�
1
T

�
. �

Before stating our next proposition, we define the func-
tion:

α(L,θ(t)
,D(t)) = arg min

s
�(L, s,θ(t)

,D(t)) . (14)

For brevity we will also use the notation αL,θ(t),D(t) =

α(L,θ(t),D(t)). We define the following lemma to sup-

port the proof of the next proposition:

Lemma 1:
A. mins �(L, s,θ(t),D(t)) is continuously differ-

entiable in L with ∇L mins �(L, s,θ(t),D(t)) =
−2D(t)

�
θ(t) − Lα(L,θ(t),D(t))

�
α(L,θ(t),D(t))�.

B. g is continuously differentiable with ∇g(L) =
2λI+ Eθ(t),D(t)

�
∇L mins �(L, s(t),θ(t),D(t))

�
.

C. ∇Lg(L) is Lipschitz on the space of latent com-
ponents L that obey Claim (1).

Proof: To prove Part (A), we apply a corollary
to Theorem 4.1 as stated in (Bonnans & Shapiro,
1998) (originally shown in (Danskin, 1967)). As ap-
plied to our problem, this corollary states that if �

is continuously differentiable in L (which it clearly
is) and has a unique minimizer s(t) regardless of
θ(t) and D(t) (which is guaranteed by Assumption
(B)), then∇L mins �(L, s,θ(t),D(t)) exists and is equal
to ∇L�(L,α(L,θ(t),D(t)),θ(t),D(t)). Following some
simple algebra, we arrive at the specific form of
the gradient listed as Part (A). Part (B) can be
proven immediately since by Assumption (A) the tuple�
D(t),θ(t)

�
is drawn from a distribution with compact

support.

To prove Part (C), we first show that α(L,θ(t),D(t))
is Lipschitz in L with constant independent of θ(t) and
D(t). Part (C) will follow once α has been shown
to be Lipschitz due to the form of the gradient of
g with respect to L. The function α is continuous
in its arguments since � is continuous in its argu-
ments and by Assumption (B) has a unique minimizer.
Next, we define the function ρ(L,D(t),θ(t), j) =�
D(t)lj

���
θ(t)−LαL,θ(t),D(t)

�
, where lj represents the

jth column of L, and state the following facts about
ρ(L,D(t),θ(t), j):
���ρ(L,D(t)

,θ(t)
, j)

���= µ, iff
�
αL,θ(t),D(t)

�
j
�=0

���ρ(L,D(t)
,θ(t)

, j)
���< µ, iff

�
αL,θ(t),D(t)

�
j
=0 . (15)

Let γ be the set of indices j such that��ρ(L,D(t),θ(t), j)
�� = µ. Since ρ(L,D(t),θ(t), j)

is continuous in L, D(t), and θ(t), there must exist
an open neighborhood around

�
L,D(t),θ(t)

�
called

V such that for all
�
L�,D(t)�,θ(t)�

�
∈ V and j /∈ γ,

���ρ(L�,D(t)�,θ(t)�, j)
��� < µ. By Equation 15, we can

conclude that
�
αL�,θ(t)�,D(t)�

�
j
= 0, ∀ j /∈ γ.

Next, we define a new loss function:

�(Lγ , sγ ,θ,D) = �θ − Lγsγ�
2
D + µ�sγ�1 .

By Assumption (B) we are guaranteed that � is strictly
convex with a Hessian lower-bounded by κ. Based on
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this, we can conclude that:

�(Lγ ,αL�,θ(t)�,D(t)�
γ
,θ(t)

,D(t))

− �(Lγ ,αL,θ(t),D(t)
γ
,θ(t)

,D(t))

≥ κ�αL�,θ(t)�,D(t)�
γ
−αL,θ(t),D(t)

γ
�
2
2 . (16)

By Assumption (A) and Claim (1), � is Lipschitz in its
second argument, sγ , with constant equal to

e1�Lγ − L�
γ�F + e2�θ

�
− θ�2 + e3�D

�
−D�F

(where e1, e2, e3 are all constants independent of
Lγ ,L�

γ ,θ,θ
�,D, and D�). Combining this fact with

Equation 16, we obtain:

�αL�,θ(t)�,D(t)� −αL,θ(t),D(t)� =
���
�
αL�,θ(t)�,D(t)�

�
γ
−
�
αL,θ(t),D(t)

�
γ

���

≤
e1�L�

γ − Lγ�F

κ

+
e2�θ(t)� − θ(t)�2

κ

+
e3�D(t)� −D(t)�F

κ
.

Therefore, α is locally-Lipschitz. Additionally, since
the domain of α is compact by Assumption (A) and
Claim (1), this implies that α is uniformly Lipschitz,
and we can conclude that ∇g is Lipschitz as well. �
Proposition 2:
1. ĝT (LT ) converges a.s.
2. ĝT (LT )− gT (LT ) converges a.s. to 0
3. ĝT (LT )− g(LT ) converges a.s. to 0
4. g(LT ) converges a.s.

Proof: We begin by defining the stochastic process:

uT = ĝT (L) .

The basic proof outline is to show that this stochastic
positive process (since the loss can never be negative)
is a quasi-martingale and by a theorem in (Fisk, 1965)
the stochastic process converges almost surely.

uT+1 − uT = ĝT+1(LT+1)− ĝT (LT )

= ĝT+1(LT+1)− ĝT+1(LT )

+ ĝT+1(LT )− ĝT (LT )

= ĝT+1(LT+1)− ĝT+1(LT )

+
mins(T+1) �(LT , s(T+1),θ(T+1),D(T+1))

T + 1

−
gT (LT )

T + 1

+
gT (LT )− ĝT (LT )

T + 1
, (17)

where we made use of the fact that:

ĝT+1(LT ) =
1

T + 1
min
s(T+1)

�(LT , s
(T+1)

,θ(T+1)
,D(T+1))

+
T

T + 1
ĝT (LT ) .

We now need to show that the sum of the positive
variations in Equation 17 from T = 1 to T = ∞ is
bounded. Note that the term on the first line of Equa-
tion 17 is guaranteed to be negative since LT+1 min-
imizes ĝT+1. Additionally, since ĝT is always at least
as large as gT , the term on the last line is also guar-
anteed to be negative. Therefore, if we are interested
in bounding the positive variations, we focus on the
terms on the middle two lines.

E[uT+1 − uT |GT ] ≤

E[mins(T+1) �(LT , s(T+1),θ(T+1),D(T+1))|IT ]

T + 1

−
gT (LT )

T + 1

=
g(LT )− gT (LT )

T + 1

≤
�g − gT �∞

T + 1
, (18)

where IT represents all of the information up to time T
(i.e. all the previous θ(t)’s and D(t)’s) and � ·�∞ is the
infinity norm of a function (e.g. the maximum of the
absolute value of the function). If we are able to show

that
�∞

t=1
�g−gt�∞

t+1 < ∞ then we will have proven that
the stochastic process uT is a quasi-martingale that
converges almost surely. In order to prove this, we
apply the following corollary of the Donsker theorem
((Van der Vaart, 2000) Chapter 19.2, lemma 19.36,
example 19.7):

Let G = {gθ : X → R,θ ∈ Θ} be a set of
measurable functions indexed by a bounded
subset Θ of Rd. Suppose that there exists a
constant K such that:

|gθ1(x)− gθ2(x)| ≤ K�θ1 − θ2�2

for every θ1,θ2 ∈ Θ and x ∈ X . Then, G is
P-Donsker and for any g ∈ G, we define Png,
Pg, and Gng as:

Png =
1

n

n�

i=1

g(Xi)

Pg = EX [g(X)]

Gng =
√
n(Png − Pg) .

If Pg2 ≤ δ2 and �g�∞ < M and the random
elements are Borel measurable, then:

E[sup
g∈G

|Gng|] = O(1) .
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In order to apply this lemma to our analysis, consider
a set of functions H indexed by possible latent compo-
nent matrices, L. Consider the domain of each of the
functions inH to be all possible tuples

�
D(t),θ(t)

�
. We

define hL(D(t),θ(t)) = mins �(L, s,θ(t),D(t)). First,
the expected value of h2 is bounded for all h ∈ H

since the value of � is bounded on the set of L that
conform to Claim (1). Second, �h�∞ again is bounded
given Claim (1) and Assumption (A). Therefore, we
can state that:

E
�
√
T

����

�
1

T

T�

t=1

min
s

�

�
L, s,θ(t)

,D(t)
��

− E
�
min
s

�

�
L, s,θ(t)

,D(t)
�� ����

∞

�
= O(1)

=⇒ E [�gT (L)− g(L)�∞] = O

�
1

√
T

�
.

Therefore, ∃ c3 ∈ R such that E [�gT − g�∞] < c3√
T
:

∞�

t=1

E
�
E [ut+1 − ut|It]

+
�

≤

∞�

t=1

E [�gt − g�∞]

t+ 1

<

∞�

t=1

c3

t
3
2

= O(1) ,

where a superscripted + takes on value 0 for nega-
tive numbers and the value of the number otherwise.
Therefore, the sum of the positive variations of uT is
bounded. By applying a theorem due to (Fisk, 1965)
this implies that uT is a quasi-martingale and con-
verges almost surely. This proves the first part of
Proposition 2.

Next, we show that uT being a quasi-martingale im-
plies the almost sure convergence of the fourth line of
Equation 17. To see this we note that since uT is a
quasi-martingale and the sum of its negative variations
is bounded, and since the term on the fourth line of
Equation 17, gT (LT )−ĝT (LT )

T+1 , is guaranteed to be neg-
ative, the sum of that term from 1 to infinity must be
bounded:

∞�

t=1

ĝt(Lt)− gt(Lt)

t+ 1
< ∞ . (19)

To complete the proof of Part (B) of Proposition
2, consider the following lemma: Let an, bn be two
real sequences such that for all n, an ≥ 0, bn ≥

0,
�∞

n=1 an = ∞,
�∞

n=1 anbn < ∞, ∃K > 0 s.t.|bn+1 −

bn| < Kan. Then, limn→+∞ bn = 0.

If we define at = 1
t+1 and bt = ĝt(Lt) −

gt(Lt), then clearly these are both positive se-
quences, and

�∞
t=1 at = ∞. We just showed

that
�∞

t=1
ĝt(Lt)−gt(Lt)

t+1 < ∞ which is equivalent to

�∞
t=1 anbn < ∞. Since gT and ĝT are bounded

and Lipschitz with constant independent of T , and
LT+1 − LT = O

�
1
T

�
we have all of the assumptions

verified, which implies that:

lim
T→∞

ĝT (LT )− gT (LT ) → 0, a.s.

Now we have established Part (B) of this proposition
that gT (LT ) and ĝT (LT ) converge almost surely to the
same limit. Additionally, by the Glivenko-Cantelli the-
orem we have that limT→∞ �g − gT �∞ = 0, which
implies that g must converge almost surely. By tran-
sitivity, limT→∞ ĝT (LT ) − g(LT ) = 0. We have now
shown Parts (C) and (D) of Proposition 2. �
Proposition 3: The distance between LT and the set of
all stationary points of g converges a.s. to 0 as t → ∞.

Proof: Before proceeding, we show that ∇LĝT is Lip-
schitz with constant independent of T . Since ĝT is
quadratic its gradient is linear which implies that it
is Lipschitz. Additionally, since s(t), D(t), and θ(t)

are all bounded and the summation over task losses
is normalized by T , it follows that ĝT has a Lipschitz
constant independent of T .

Next, we define an arbitrary non-zero matrix U of the
same dimensionality as L. Since ĝT upper-bounds gT ,
we have:

ĝT (LT +U) ≥ gT (LT +U)

lim
T→∞

ĝT (LT +U) ≥ lim
T→∞

g(LT +U) ,

where to get the second inequality we took the limit of
both sides and replaced gT with g (which are equiva-
lent as T → ∞). Let hT > 0 be a sequence of positive
real numbers that converges to 0. If we take the first-
order Taylor expansion on both sides of the inequality
and use the fact that ∇g and ∇ĝ are both Lipschitz
with constant independent of T , we get:

lim
T→∞

�
ĝT (LT ) + Tr

�
hTU

�
∇ĝT (LT )

�
+O(hTU)

�
≥

lim
T→∞

�
g(LT ) + Tr

�
hTU

�
∇g(LT )

�
+O(hTU)

�
.

Since limT→∞ ĝT (LT ) − g(LT ) = 0 a.s. and
limT→∞ hT = 0, we have:

lim
T→∞

Tr

�
1

�U�F
U�

∇ĝT (LT )

�
≥

lim
T→∞

Tr

�
1

�U�F
U�

∇g(LT )

�
.

Since this inequality has to hold for every U, we
require that limT→∞ ∇ĝT (LT ) = limT→∞ ∇g(LT ).
Since LT minimizes ĝT , we require that ∇ĝT (LT ) = 0,
where 0 is the zero-vector of appropriate dimension-
ality. This implies that ∇g(LT ) = 0, which is a first-
order condition for LT to be a stationary point of g. �


