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Abstract

A new model is developed for joint analy-
sis of ordered, categorical, real and count
data. The ordered and categorical data are
answers to questionnaires, the (word) count
data correspond to the text questions from
the questionnaires, and the real data corre-
spond to fMRI responses for each subject.
The Bayesian model employs the von Mises
distribution in a novel manner to infer sparse
graphical models jointly across people, ques-
tions, fMRI stimuli and brain region, with
this integrated within a new matrix factor-
ization based on latent binary features. The
model is compared with simpler alternatives
on two real datasets. We also demonstrate
the ability to predict the response of the brain
to visual stimuli (as measured by fMRI),
based on knowledge of how the associated
person answered classical questionnaires.

1. Introduction

This paper is motivated by analysis of heterogeneous
data, such as ordered, categorical, real and count data.
Such data are of interest, for example, in cognitive and
brain science, in which subjects may answer question-
naires, and also (separately) undergo fMRI interroga-
tion, with fMRI data measured as a function of visual
stimulus. In this paper we focus on fMRI data, but the
same approach may be applied to electroencephalog-
raphy and other brain-imaging modalities. The fMRI
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data are typically real valued. One also has access
to the text of the questions (word-count data), which
ideally should be leveraged, to inform statistical rela-
tionships between the questions.

It is anticipated that the manner in which multiple
people answer a given question, or how the brains of
multiple people respond to a given stimuli, are not
independent. While each individual is unique, there
are typically statistical relationships between people
and their brains, which we wish to infer. Further, for
a particular person, the answers to multiple questions
are typically not independent, and the fMRI responses
to different stimuli are also typically not independent.
We wish to infer these statistical relationships, jointly
across people, questions, brain regions, stimuli, and
the text of the questions.

The mapping of text questions to ordered/categorical
answers from multiple people has been considered in
the analysis of roll-call data (Zhang & Carin, 2012;
Gerrish & Blei, 2011). Concerning the aforementioned
borrowing of strength, one of the key contributions
of this work concerns joint inference of the (sparse)
graphical interrelationships between the people and
between the questions, with this not addressed in the
above roll-call studies.

The inferred graphs significantly generalize recent re-
search on such methods as graphical lasso (Friedman
et al., 2008) and related Bayesian models (Yoshida &
West, 2010), in that we consider graph learning within
the context of heterogenous data, and multiple sparse
graphs are learned at once. Such joint analysis of the
hierarchical relationships between multiple data axes
is related to biclustering/co-clustering (Kriegel et al.,
2009). However, here we generalize these relationships
to sparse graphs (in co-clustering a tree construction
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is assumed), and the analysis is performed here within
a generative statistical model.

The joint analysis of ordered, categorical and real
data was considered in (Salazar et al., 2012), but
that work did not exploit text (count data), and it
did not infer sparse graphical interrelationships. We
demonstrate quantitatively that leveraging the text
and sparse graphical models yields better predictive
accuracy. The topics learned from the text also pro-
vide important interpretative value. In this paper we
model the text with a state-of-the-art focused topic
model (Williamson et al., 2010), while also account-
ing for available metadata (e.g., labels on the types of
questions).

A contribution of this paper concerns the joint analy-
sis of how people answer questionnaires and how their
brain responds to external stimuli (here visual), the
latter measured via fMRI. Researchers within the ma-
chine learning community have analyzed fMRI and
EEG data, with such goals as predicting what finite
set of objects an individual is thinking of based upon
fMRI/EEG data (Mitchell et al., 2008; Fyshe et al.,
2012). In this paper we ask a novel and practical ques-
tion, which to our knowledge has not been considered
previously: can one predict the fMRI response (here
from the amygdala) to external stimuli, based upon
knowledge of how the subject answers a questionnaire?

To integrate the multiple forms of data, we generalize
the binary matrix factorization introduced in (Meeds
et al., 2007) and further developed in (Salazar et al.,
2012). Specifically, the latent binary features of each
data axis are modeled via a probit model, and the
latent real variables in the probit are modeled via a
multivariate normal distribution, with sparse preci-
sion matrix. We perform a detail quantitative analy-
sis of the proposed model, and demonstrate significant
performance gains relative to an Indian buffet process
(IBP) model of the latent binary features (Meeds et al.,
2007) and to a generalized Tucker model, which em-
ploys no latent binary features (Xu et al., 2012). The
sparse inverse covariance matrix is implemented in a
novel manner, coupling a covariance decomposition in
(Yoshida & West, 2010) with a new utilization of the
matrix von Mises-Fisher distribution (Hoff, 2009).

2. Modeling Framework

2.1. Notation

Let Y r = {yrij} denote the N × P1 matrix of real re-
sponses, where people are indexed i = 1, . . . , N , and
components of the real vector of data are indexed
j = 1, . . . , P1. Let Ỹ o = {ỹoij} denote an N × P2

matrix of ordered responses for the same N subjects,
with j = 1 . . . , P2. We also employ a distinct pro-
bit model for the categorical data, along the lines in
(Salazar et al., 2012); here the discussion focuses on
the real and ordered parts of the data for conciseness,
as this is sufficient to elucidate the driving components
of the model.

In practice the questions can be partitioned into Q
mutually exclusive sets (questionnaire types). For
q = 1, . . . , Q, let Iq denote the index set contain-
ing all questions in the qth questionnaire, i.e., I1 =
{1, . . . , J1}, I2 = {J1 + 1, . . . , J1 + J2} and so on,

where
∑Q

q=1 |Iq| = P2 and |Iq| denotes the cardinal-
ity of the set Iq. Following this assumption, we have

Ỹ o = (Ỹ o
1 , . . . , Ỹ

o
Q) where Ỹ o

q = {ỹoij}, for j ∈ Iq, de-
notes the N × Jq matrix of ordered responses for the
qth questionnaire. Finally, assuming that questions in
the qth questionnaire have Lq + 1 possible answers,
we have that ỹoij ∈ {0, . . . , Lq}. We assume all ques-
tions in a given questionnaire have the same number
of possible answers, for notational simplicity.

2.2. Ordered probit model

Let Y o = {yoij} ∈ RN×P2 be a latent response ma-
trix, where yoij denotes a Gaussian random variable
with mean µo

ij and unit variance. For j ∈ Iq, we

assume there are Lq − 1 ordered cut-points c(q) =

(c
(q)
1 , . . . , c

(q)
Lq−1) where 0 ≤ c

(q)
1 ≤ c

(q)
2 ≤ . . . ≤ c

(q)
Lq−1.

Then, for i = 1, . . . , N , j ∈ Iq and for every ques-
tionnaire q, the ordered probit model is defined by

ỹoij = h ∈ {0, . . . , Lq} if c
(q)
h−1 ≤ yoij < c

(q)
h , where

c
(q)
−1 = −∞, c

(q)
0 = 0 and c

(q)
Lq

=∞, and yoij = µo
ij + εoij ,

with εoij ∼ N (0, 1). Consequently, Pr(ỹoij ≤ j) =

Pr(yoij < c
(q)
j ) = φ(c

(q)
j − µo

ij) where φ is the stan-
dard normal distribution function. The parameters of
this model are the mean component µo

ij and the cut-

points c(q). As considered in Albert & Chib (1997)
and Albert & Chib (2001), we transform c(q) into a

real-valued vector α(q) = (α
(q)
1 , . . . , α

(q)
Lq−1) such that

α
(q)
1 = log c

(q)
1 and α

(q)
j = log(c

(q)
j − c

(q)
j−1) for 2 ≤ j ≤

Lq−1 with inverse map given by c
(q)
j =

∑j
i=1 exp(α

(q)
i )

for 1 ≤ j ≤ Lq−1. We consider a multivariate normal
prior distribution for α(q) to simplify posterior infer-
ence.

For categorical observations (no preferred ordering in
the answers), we employ the probit construction in
Salazar et al. (2012), to which the reader is referred
for details.
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2.3. Binary & low-rank matrix factorization

We are now interested in performing decompositions
of the real matrices Y r and Y o, with a similar decom-
position performed for the categorical data. Consider
the decompositions

Y r = LM rRT
r +Er , Y o = LMoRT

o +Eo (1)

where L ∈ {0, 1}N×K , Rr ∈ {0, 1}P1×K , Ro ∈
{0, 1}P2×K , M r ∈ RK×K , Mo ∈ RK×K , Er ∈ RN×P1

and Eo ∈ RN×P2 ; note that L is shared for modeling
Y r and Y o, because the same N subjects are respon-
sible for the real, ordered and categorical data. Each
component of Eo is drawn i.i.d. from N (0, 1), and
each component of Er is drawn i.i.d. from N (0, α−1

r ),
with a flat/broad gamma prior placed on αr.

For either a = r or a = o, we employ a decomposition

Ma =

K∑
k=1

λakua,kv
T
a,k, (2)

where λak ∈ R, ua,k ∈ RK and va,k ∈ RK . We employ
priors ua,k ∼ N (0, IK) and va,k ∼ N (0, IK).

As proposed in (Bhattacharya & Dunson, 2011), we
use the following shrinkage prior for λak: λak|τ̃k ∼
N (0, τ̃−1

k ), τ̃k =
∏k

h=1 δ̃h, δ̃h|a1 ∼ Gamma(a1, 1),
where a1 > 1 and τ̃k tends stochastically towards infin-
ity as k goes to infinity, shrinking λak toward zero with
increasing k. Therefore, the representation in (2), with
λak so defined, encourages that Ma be near low-rank
(near because the singular values diminishes quickly
with increasing k, but do not go to exactly zero). This
is analogous to the nuclear norm in related low-rank
research (Candes & Recht, 2008).

2.4. Correlated binary features

We consider construction of the binary matrix L, with
identical constructions employed for Ro and Rr. Our
goal is to infer a sparse graphical model between the
N subjects characterized by L. Letting L = {lik}, we
employ

lik|ηik =

{
1 if ηik > 0
0 otherwise

, ηk ∼ N (0,ΣL) (3)

with ηk = (η1k, . . . , ηNk)T ∈ RN . Matrix ΣL ∈ RN×N

imposes an underlying covariance structure on lk =
(l1k, . . . , lNk)T for k = 1, . . . ,K, and here we wish to
impose that the precision matrix Σ−1

L is sparse, allow-
ing inference of a sparse dependency graph between
the N subjects (Friedman et al., 2008; Yoshida &
West, 2010). Extending the construction in (Yoshida

& West, 2010), we employ

ηk = Ψ1/2ΦBfk + εk, ΦB = Φ ◦B,

fk ∼ N (0,∆), and εk ∼ N (0,Ψ), (4)

where ∆ = diag(δ1, . . . , δK), Ψ = diag(ψ1, . . . , ψN ),
Ψ1/2ΦB ∈ RN×K represents the factor loading ma-
trix, B = {bij} ∈ {0, 1}N×K is a binary matrix that
defines the sparsity pattern of the factor loading ma-
trix, and ΦB ∈ RN×K is orthogonal (i.e., ΦT

BΦB =
IK) with ◦ representing the element-wise product.
Consequently, the covariance matrix, ΣL, and the cor-
responding precision matrix, Σ−1

L , are given by

ΣL = Ψ1/2
(
IN + ΦB∆ΦT

B

)
Ψ1/2,

Σ−1
L = Ψ−1/2

(
IN −ΦBTΦT

B

)
Ψ−1/2,

where T = diag(τ1, . . . , τK) and τk = δk/(1 + δk) for
k = 1, . . . ,K. Note that the sparse loading matrix,
Ψ1/2ΦB , induces some zero elements in the covariance
matrix. However, an important property of model (4)
is that the orthogonal property of the sparse loading
matrix also induces off diagonal zeros in the precision
matrix Σ−1

L which defines a conditional independence
or Gaussian graphical models. In particular, under
this construction, the location of zero entries (sparse
structure) in the covariance and precision matrices are
exactly the same. Here, Ψ is fixed to be the identity
to allow a simple identification strategy.

The model parameters to be inferred are Φ, ∆ and B.
Following the Bayesian approach, we must now place
priors on these parameters that may reflect a priori
knowledge. Specifically, the joint prior distribution is
p(Φ,∆,B) = p(Φ|B)p(∆)p(B). Note that the prior
distribution for Φ depends on the configuration of B,
i.e. the prior, if available, is defined over the non-zero
factor loadings. However, here we consider a uniform
prior distribution on Φ. As pointed out in (Yoshida
& West, 2010), this prior involves a uniform density
on the hypersphere defined by the orthogonality con-
straint that is conditioned by setting some elements of
Φ to zero (this is done considering the location of zero
elements in B). Moreover, the uniform prior distribu-
tion for Φ imply that

p(ΦB |η∗,F ) ∝ etr
(
(η∗F )TΦB

)
,

where η∗ = (η1, . . . ,ηK)T , F = (f1, . . . ,fK)T and
etr(·) denotes the exponential trace function. The
above representation is equivalent to the matrix von
Mises-Fisher distribution. Therefore, posterior infer-
ence for ΦB is obtained by iteratively sampling from
this distribution (Hoff, 2009).
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Concerning the sparse structure B, we consider in-
dependent beta priors on the binary variates bij , i.e.,
p(bij) = Beta(a, b). Finally, for each element of ∆, δk
(k = 1, . . . ,K), we consider an inverse gamma prior
such that δk ∼ IG(c, d).

2.5. Focused topic modeling of questions

In Section 2.4 we imposed a prior on the binary matrix
Ro, and a similar binary feature matrix is manifested
for the categorical questions. We now integrate the
latent binary features of the questions to a topic model
of the text, using a generalization of the focused topic
model (FTM) first developed in (Williamson et al.,
2010).

Let roj represent the jth row of Ro, corresponding to
the jth ordered question. Constitute a K-dimensional
positive, real vector φ, with component k drawn
φk ∼ Gamma(γ, 1). Then the generative process for
drawing the words for question j is: (1) Draw topic
proportions for the question θj = (θj1, . . . , θjK) ∼
Dir(roj ◦ φ). (2) For the nth word in question j, draw
the topic index zjn ∼ Mult(1,θj), and then draw
word wjn ∼ Mult(1,βzjn), where βk ∼ Dir(η) is a
distribution over words for topic k (we typically set
η = (1/W, . . . , 1/W )T , where the vocabulary is of size
W ).

In the above construction the binary feature vector roj
associated with question j was latent. In practice, we
may have multiple types of questionnaires, such as the
Q questionnaires discussed in Section 2.1. To account
for these known labels, we append a Q-dimensional
binary vector to roj , which is all zeros with a single one;
this imposes that one topic distribution βk is explicitly
associated with each of the questionnaire types (the
remaining topics are shared across all questionnaires).
Through this construction we also learn an associated
word distribution (topic) with each of the latent binary
features, evincing understanding to the latent binary
features characteristic of the questions.

2.6. Other modeling choices & related work

We consider other options for modeling the real matri-
ces Y r and Y o, and perform comparisons in Section
4.1. The basic form of the binary matrix factoriza-
tion in (1) was proposed in (Meeds et al., 2007), in
which L, Ro and Rr were constituted via the Indian
buffet process (IBP), which assumes that the order of
the rows and columns is exchangeable. Additionally,
in (Meeds et al., 2007) the matrix Ma was not mod-
eled as low-rank. When presenting comparison results,
the model in (Meeds et al., 2007) is denoted IBP. We
examine the importance of imposing low-rank on Ma,

while retaining an IBP on L, Ro and Rr; this compar-
ison model is termed IBP+Low Rank. We wished to
examine the importance of imposing that L, Ro and
Rr are binary. When these matrices are modeled as
real, we effectively have a Tucker-like model (Xu et al.,
2012). We consider such a construction, in which ηk
is used to directly model the columns of L, Ro and
Rr, without the probit model. This is referred to as
Tucker+Sparse Precision. In this context, to examine
the importance of a sparse Σ−1

L , we consider the same
Tucker representation, but the matrix ΣL is modeled
as low-rank and sparse, as in (Salazar et al., 2012);
this is referred to below as Tucker+Low Rank. To the
authors’ knowledge the Tucker+Sparse Precision and
Tucker+Low Rank models are new. When comparing
to the models above without the binary representations
for L, Ro and Rr, we do not consider the text of the
questions, because the integration of the topic model
in Section 2.5 requires the binary decomposition for
linkage to the topics.

The proposed model (with binary factorization) is de-
noted BMF+Sparse Precision, for binary matrix fac-
torization (BMF). In this context, to examine the im-
portance of the sparse precision matrix, we consider
all aspects of the proposed model unchanged, but now
ΣL is modeled as sparse and low-rank (Salazar et al.,
2012); this is referred to as BMF+Low Rank.

Finally, the recent work of (Hahn et al., 2012) directly
considered a real factor-model representation of Y o

(not Tucker or BMF), where the factor scores and load-
ings are real, and the factor loadings are sparse; this
model is referred to as Sparse Matrix Factorization.

3. Posterior inference

Bayesian model inference is performed via a Markov
chain Monte Carlo (MCMC) algorithm which involves
Gibbs sampling and Metropolis-Hastings steps for a
subset of the parameters. Specifically,

• For the ordered probit model, we use the algorithm
proposed in (Albert & Chib, 1997) for the cumula-
tive model for ordinal responses independently for ev-
ery questionnaire. As pointed out in Section 2.2,
the transformed cut-point vector α(q) follows a mul-
tivariate normal prior distribution and the full condi-
tional posterior does not have a close form, therefore a
Metropolis-Hastings step is employed. The other pa-
rameters are drawn via Gibbs sampling.

•Updating the binary featuresL andRr is straightfor-
ward and tractable since each elements of the matrix
are updated from Bernoulli distributions with updated
probabilities. Also, the real value vectors ua,k and va,k
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(for either a = r or a = o) are updated from Gaus-
sian distributions (see Salazar et al., 2012, for more
details).

• In order to sample the binary matrix Ro and the
FTM parameters, we use the algorithms proposed in
(Zhang & Carin, 2012) and (Williamson et al., 2010),
respectively.

• For orthogonal matrix ΦB , as considered in (Yoshida
& West, 2010), we modified the orthogonality condi-
tion and assume that ΦTΦ = IK with bij = 1 for
all i and j. Then, we updated the matrix Φ using a
Gibbs sampling scheme proposed in (Hoff, 2009). The
algorithm use Gibbs sampling to construct a depen-
dent Markov chain from the full conditional distribu-
tion which converges in distribution to the von Mises
distribution. Finally, we update the elements of the
sparse binary matrix B using Bernoulli distributions
with updated probabilities derived from the full con-
ditional posterior distribution.

The complete software package will be released upon
publication.

4. Applications

4.1. Senate voting data

To compare components of the proposed model to the
alternatives in Section 2.6, we first test performance
on the US Senate voting dataset. This consists of a
binary vote matrix, Ỹ o ∈ {0, 1}102×657, from the U.S.
Senate during the 110th Congress (January 2007 to
January 2009). In this application, we only use the bi-
nary observations without the use of associated legisla-
tive text, to help elucidate the power of the proposed
matrix representation (and the real matrix decompo-
sitions are not appropriate for the integration to the
topic model, as in Section 2.5).

We perform analysis with K = 50 (the inferred rank
of Mo was less than 5, and larger values of K yielded
very similar results). We considered 10,000 MCMC
iterations, with a burn-in of 2,000; we collected every
fourth sample, yielding 2,000 collection samples. The
posterior results indicate that there are approximately
15 latent binary features for senators and 20 latent
binary features for legislation.

From the learned sparse precision matrix of the legis-
lators, we are able to construct a network between the
senators (we simultaneously learn such a sparse net-
work for the legislation, which is omitted for brevity).
We use a common technique for visualizing social net-
works called spring-embedding (Eades, 1984; Fruchter-
man & Reingold, 1991). In particular, we use the

Kamada-Kawai algorithm (Kamada & Kawai, 1989)
implemented in the open source program Pajek1. Fig-
ure 1, left panel, shows the learned connectivity net-
work for senators derived from the precision matrix.

Note that Republican and Democrat senators form two
principal clusters, with strong ties within both groups.
Arlen Specter is depicted as a Democrat (blue circle),
but his network is highly linked to Republicans (red
circles). Further, the two Independents are closely
linked with Democrats. Senator Specter was a Repub-
lican senator for over two decades, before switching
in this legislative session to a Democrat, and the two
Independents caucused with the Democrats.

Figure 1, right panel, shows the average fraction of cor-
rect predictions for different percentage (40%, 50%,
60%, 70%) of missingness; comparisons are made to
the models summarized in Section 2.6. The missing
values were selected uniformly at random, and the
mean and standard deviation (error bars) are shown,
based on 15 runs. A clear advantage is manifested
by imposing low-rank on Ma, particularly comparing
IBP and IBP+Low Rank. For both the real (Tucker)
and binary (BMF) models for L, Ro and Rr, impos-
ing correlation between the rows and columns yields
significant performance gains. Generally the sparse
graphical relationship between the rows and columns
yields better performance relative to the low-rank co-
variance structure, and therefore it appears that the
sparse graphical representation may be better matched
to the (real-world) data considered (we see this below
as well for the neuroscience application). Overall, the
proposed model, with binary factorization and sparse
precision matrix, yields the best quantitative perfor-
mance, against a wide range of alternative models.

4.2. fMRI data and behavioral questionnaires

We perform joint analysis of real, ordered, categori-
cal, and word-count (text) data. Specifically, the real
data is composed of P1 = 16 measurements associated
with fMRI data from the amygdala. The data are
associated with each hemisphere (left/ right) and sub-
regions (basolateral/central-medial); for each of these
four amygdala regions the response is measured to
four types of visual stimuli, meant to be associated
with fear, anger, surprise and be neutral (see Figure
2). The four spatial regions and four stimuli are sum-
marized in the 16-dimensional real vector. We tar-
get the amygdala for several reasons (Hariri, 2009).
First, the amygdala is a critical neural hub for learning
predictive links between stimuli that signal important
changes in our environment and subsequently generat-

1See http://pajek.imfm.si/doku.php for more details
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• Democrats • Independents • Republicans

Figure 1. Voting data. Left panel: Learned connectivity network between senators using a sparse graphical factor model
with probit link. The colored bullets represent the parties. Right panel: Average fraction of correct predictions as a
function of the fraction of missing data (averaged over 15 runs). The results, using the proposed model, were compared
with six related models. Error bars indicate the standard deviation around the mean. The results of the different models
are shifted slightly horizontally with respect to each other, for better viewing.

ing adaptive behavioral and physiologic responses. A
second related feature is a generally robust reactivity
of the amygdala to visual cues signaling such changes
that is readily measured by fMRI and exhibits con-
siderable inter-individual variability. Third, amygdala
reactivity as measured by fMRI is stable over time
within individuals and thus represents a trait-like fea-
ture similar to those assessed by the questionnaires in-
cluded in our analyses (Manuck et al., 2007). Finally,
the amygdala is clearly important in the emergence of
psychopathology, particularly mood and anxiety dis-
orders, and variability in its reactivity is associated
with individual differences in relative risk for dysfunc-
tion as well as response to common treatments. Thus,
developing models that can predict amygdala reactiv-
ity with fidelity without the need for direct assays via
neuroimaging has tremendous potential to advance on-
going efforts to better treat and even prevent mental
illness at a population level.

The ordered/categorical data consist of answers to
questions concerning different aspects of behavior, per-
sonality and life experiences (e.g. anxiety, interper-
sonal support, psychopathy, drug use, stress, NEO
personality, mindfulness, insomnia, eating disorders,
childhood trauma, depression and alcohol use).

The questions are grouped into Q = 18 widely used
questionnaires, with P2 = 616 questions in total. Data
were collected from N = 400 people. Respondents

Fear Anger Surprise Neutral

Figure 2. Prototypical examples of the 4 facial expressions
used for visual stimuli.

ranged in age from 18 to 22 years old (college stu-
dents). The percentage of missing values is approxi-
mately 2%. Additionally, we process the text of the
questions. The joint data analysis is performed with
K = 50, a1 = 3 (shrinkage prior parameter), and γ = 6
(FTM hyperparameter). For the beta parameters, we
set a = b = 0.5 which imposes a horseshoe-shaped
prior. The MCMC algorithm was run for 10,000 iter-
ations with a burn-in of 5,000 and then every second
sample was collected, to yield 2,500 posterior samples.

Figure 3 shows the learned connectivity network for
the amygdala fMRI measurements (top panel) and for
the questions (bottom panel); a similar sparse graph-
ical interrelationship is also inferred for the people
(omitted), with all graphs learned simultaneously. The
observed pattern of subregion- and expression-specific
amygdala reactivity is consistent with both theoreti-
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Figure 3. Top panel: Learned connectivity network for
amygdala fMRI measurements. Bottom panel: Learned
connectivity network for questions. G1, . . ., G6 indicate
groups of questions in the network.

cal models and empirical data revealing a sensitivity of
the amygdala to specific feature-based cues that vary
in their intensity across categorical facial expressions
(Ahs et al., 2013). Specifically, amygdala reactivity in
the basolateral and central-medial subregions in both
the left and right hemispheres observes a correspon-
dence with greater displacement of the eyebrows in
neutral and surprised expressions relative to fearful
and angry expressions (along a vertical axis in the top
panel of Figure 3) as well as with elevation of the up-
per eyelid revealing more of the eye whites together
with lowering of the brow in neutral and angry ex-
pressions relative to fearful and surprised expressions
(along a horizontal axis in the top panel of Figure 3).
A novel feature of our model not anticipated by prior
research is the subregional segregation of reactivity
to anger with the central-medial subregions in both
hemispheres aligning with broader reactivity to neu-
tral expressions and that of the basolateral subregions

in both hemispheres with reactivity to fear. This sub-
regional expression-specific pattern will be important
to explore in future work.

G1 G2

Figure 4. Example average topic distributions for two of
the clusters in Figure 3.

Table 1. Six example learned topics from the questionnaire
data, with the top-ten most probable words. These top-
ics are associated with particular classes of questionnaires,
identified within parentheses.

Topic 11 Topic 14 Topic 19

(Personality) (Mood/Anxiety) (Mindfulness)
feel afraid problem

worrier shaky feeling
dominant family help
people feelings find
crafty hurt myself
chatting worthless daydreaming
seldom self-confidence criticize
think felt emotions

emotionally beliefs person
myself happy work

Topic 26 Topic 28 Topic 42
(Eating disorders) (Childhood Trauma) (Alcohol/drugs)

food family drink
weight stupid alcohol
feel parents rebellious

myself sexual drugs
think emotionally often
eat teacher rules

nervous drunk guilty
upset eat sad
size protect felt
stuff people myself

The connectivity network for questions (Figure 3, bot-
tom panel), manifested via the sparse graphical model
prior, reveals six groups of questions (denoted by G1,
. . ., G6) and thirteen independent questions. We note
that each group is composed of questions from differ-
ent questionnaires. In order to interpret each group,
we analyzed the learned topics associated with each
of them. Considering the most likely collection sam-
ple (for illustrative purposes), we computed the av-
erage distribution over topics for every question in a
group. Figure 4 shows the results for two example
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groups (other groups omitted in this figure for brevity).
Some topics are widely used in some groups but less
used in others. For instance, “Topic 11”, related to
personality traits or facets is used in groups G1 and
G5. On the other hand, “Topic 14”, related with mood
and anxiety symptoms, is widely used in the groups
G2 and G4. For additional interpretations, Table 1
shows six learned topics with the top-ten most proba-
ble words within each topic (note that the topic num-
ber is arbitrary, and happened to be associated with
the most-probable collection sample). The topics in
Table 1 corresponds to those associated with particu-
lar survey types (recall Section 2.5), with the survey
noted in parentheses.

It is of interest to examine whether given the answers
to the questionnaire, we can predict the corresponding
16-dimensional real vector associated with the amyg-
dala data. In the training phase, we build a model us-
ing the full data from 80% of the subjects. The learned
model is then employed to perform testing on the re-
maining 20% of data, where for these we only assume
access to the questionnaires; the goal is to predict from
the questionnaire data the associated 16-dimensional
vector associated with the amygdala. We did this for
10 runs, and for each run the 20% of subjects for which
amygdala data were held out were selected uniformly
at random. When testing using the proposed model,
we infer the latent binary features characteristic of the
subject/person based only on the questionnaires, and
then these binary features are employed within the
learned model to predict the fMRI data.

Table 2. Average of the mean percent error (MPE) for
Amygdala fMRI predictions for 20% of missing data (held-
out data) averaged over 10 runs and standard deviations.

Model Average Standard

MPE Deviation

Regression 66.7% 1.01%
BMF-Cov.(no text) 14.5% 0.83%
BMF-Prec.(no text) 14.2% 1.47%
BMF-Cov. (text) 12.6% 1.40%
BMF-Prec. (text) 11.3% 0.20%

To assess the prediction performance, we compare five
models. The first is a regression model where the
covariates are the ordered-categorical responses (im-
posing a sparseness prior on the regression weights);
this is a simple baseline model for comparison. Us-
ing notation from Section 2.6, the other four models
correspond to BMF+Sparse Precision and BMF+Low
rank. We are interested in examining the utility of
using text from the questions, so we use the BMF con-

structions (we could also use IBP, but the performance
is markedly worse). When examining BMF+Sparse
Precision and BMF+Low rank, we consider the mod-
els with and without use of the text, leading to four
comparisons of this type. Table 2 shows the aver-
age mean percent error and the standard deviation
for each model. The regression model based directly
on the questionnaire answers yields performance that
is markedly worse than that of variants of the pro-
posed model. Using the text of the questions improves
performance (helps learn the correlation structure be-
tween the questions), and the proposed BMF+Sparse
Precision model with text yields the overall best per-
formance.

5. Conclusions

A new model has been developed for joint analysis
of ordered, categorical, real, and (word) count data.
A key component of the model is development of a
new framework for jointly learning sparse graphical
models along multiple axes of the heterogeneous data.
In the context of the motivating problem of integrat-
ing questionnaire and fMRI data, the sparse graphs
are learned simultaneously for the people, questions,
and components of the fMRI data. Comparisons have
been made to numerous variations of the model, and
to related published models. Encouraging results have
been obtained on two real-world datasets, including
the ability to predict the fMRI response of the amyg-
dala, based on the answers to questionnaires consid-
ered by the subject. Comparisons on two real-world
examples indicate that the sparse graphical model for
the relationships between the rows and columns may
be more consistent with real data than a low-rank and
sparse covariance matrix.
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