
No More Pesky Learning Rates: Supplementary Material

Tom Schaul schaul@cims.nyu.edu
Sixin Zhang zsx@cims.nyu.edu
Yann LeCun yann@cims.nyu.edu

Courant Institute of Mathematical Sciences
New York University
715 Broadway, New York, NY 10003, USA

A. Convergence Proof

If we do gradient descent with η∗(t), then almost
surely, the algorithm converges (for the quadratic
model). To prove that, we follow classical techniques
based on Lyapunov stability theory (Bucy, 1965). No-
tice that the expected loss follows

E
[
J
(
θ(t+1)

)
| θ(t)

]
=

1

2
h · E

[(
(1− η∗h)(θ(t) − θ∗) + η∗hσξ

)2
+ σ2

]
=

1

2
h
[
(1− η∗h)2(θ(t) − θ∗)2 + (η∗)2h2σ2 + σ2

]
=

1

2
h

[
σ2

(θ(t) − θ∗)2 + σ2
(θ(t) − θ∗)2 + σ2

]
≤ J

(
θ(t)
)

Thus J(θ(t)) is a positive super-martingale, indicating
that almost surely J(θ(t)) → J∞. We are to prove
that almost surely J∞ = J(θ∗) = 1

2hσ
2. Observe that

J(θ(t))− E[J(θ(t+1)) | θ(t)] =
1

2
hη∗(t) ,

E[J(θ(t))]− E[J(θ(t+1)) | θ(t)] =
1

2
hE[η∗(t)]

Since E[J(θ(t))] is bounded below by 0, the telescoping
sum gives us E[η∗(t)]→ 0, which in turn implies that
in probability η∗(t)→ 0. We can rewrite this as

η∗(t) =
J(θt)− 1

2hσ
2

J(θt)
→ 0

By uniqueness of the limit, almost surely,
J∞− 1

2hσ
2

J∞ =
0. Given that J is strictly positive everywhere, we
conclude that J∞ = 1

2hσ
2 almost surely, i.e J(θ(t))→

1
2hσ

2 = J(θ∗).

0 50 100 150 200

10-3

10-2

10-1

100

101

102

lo
ss

 L

SGD η=0.2

SGD η=0.2/t

SGD η=1.0

SGD η=1.0/t

oracle
vSGD

0 50 100 150 200
#samples

10-4

10-3

10-2

10-1

100

le
ar

ni
ng

 ra
te

 η

Figure 1. Optimizing a noisy quadratic loss (dimension
d = 1, curvature h = 1). Comparison between SGD for
two different fixed learning rates 1.0 and 0.2, and two cool-
ing schedules η = 1/t and η = 0.2/t, and vSGD (red cir-
cles). In dashed black, the ‘oracle’ computes the true op-
timal learning rate rather than approximating it. In the
top subplot, we show the median loss from 1000 simulated
runs, and below are corresponding learning rates. We ob-
serve that vSGD initially descends as fast as the SGD with
the largest fixed learning rate, but then quickly reduces the
learning rate which dampens the oscillations and permits
a continual reduction in loss, beyond what any fixed learn-
ing rate could achieve. The best cooling schedule (η = 1/t)
outperforms vSGD, but when the schedule is not well tuned
(η = 0.2/t), the effect on the loss is catastrophic, even
though the produced learning rates are very close to the
oracle’s (see the overlapping green crosses and the dashed
black line at the bottom).



No More Pesky Learning Rates

Figure 2. Illustration of the dynamics in a noisy quadratic
bowl (with 10 times larger curvature in one dimension than
the other). Trajectories of 400 steps from vSGD, and from
SGD with three different learning rate schedules. SGD
with fixed learning rate (crosses) descends until a certain
depth (that depends on η) and then oscillates. SGD with a
1/t cooling schedule (pink circles) converges prematurely.
On the other hand, vSGD (green triangles) is much less
disrupted by the noise and continually approaches the op-
timum.

B. Derivation of Global Learning Rate

We can derive an optimal global learning rate η∗g as
follows.

η∗g(t) = arg min
η

E
[
J
(
θ(t+1)

)
| θ(t)

]
= arg min

η

d∑
i=1

hi

(
(1− ηhi)2(θ

(t)
i − θ

∗
i )2

+σ2
i + η2h2iσ

2
i

)
= arg min

η

[
η2

d∑
i=1

(
h3i (θ

(t)
i − θ

∗
i )2 + h3iσ

2
i

)
−2η

d∑
i=1

h2i (θ
(t)
i − θ

∗
i )2

]

which gives

η∗g(t) =

∑d
i=1 h

2
i (θ

(t)
i − θ∗i )2∑d

i=1

(
h3i (θ

(t)
i − θ∗i )2 + h3iσ

2
i

)
The adaptive time-constant for the global case is:

τg(t+ 1) =

(
1−

∑d
i=1 gi

2

l(t)

)
· τg(t) + 1

10−1 100 101 102

epochs

0

2

4

6

8

10

er
ro

r

test
train

Figure 3. Learning curves for full-length runs of 100
episodes, using vSGD-l on the M1 benchmark with 800
hidden units. Test error is shown in red, training error is
green. Note the logarithmic scale of the horizontal axis.
The average test error after 100 epochs is 1.87%.

C. SMD Implementation

The details of our implementation of SMD (based on
a global learning rates) are given by the following up-
dates:

θt+1 ← θt − ηt∇θ

ηt+1 ← ηt exp
(
−µ∇>θ vt

)
vt+1 ← (1− τ−1)vt − ηt

(
∇θ + (1− τ−1) ·Htvt

)
where Hv denotes the Hessian-vector product with
vector v, which can be computed in linear time. The
three hyper-parameters used are the initial learning
rate η0, the meta-learning rate µ, and a time constant
τ for updating the auxiliary vector v.

D. Additional Results and Analysis

Figures 1 through 8 complement the results from the
main paper. First, for an intuitive understanding
of the effects of the optimal adaptive learning rate
method, and the effect of the approximation, we il-
lustrate the oscillatory behavior of SGD (Figure 2),
and compare the decrease in the loss function and the
accompanying change in learning rates on the noisy
quadratic loss function (Equation 2 of the main paper):
Figure 1 shows learning curves, contrasting the effect
of fixed rates or fixed schedules to adaptive learning
rates, whether in approximation or using the oracle.
Complementing the MNIST experiments in the main
paper, Figure 3 shows the learning curve on the M1
setup over 100 epochs, much longer than the remain-
der of the experiments. Further, Figure 4 visualizes
test and training error for different algorithm settings
on the three CIFAR benchmarks, and Figure 5 visual-
izes test and training error for all algorithms and their



No More Pesky Learning Rates

settings on all benchmarks (zoomed out from the re-
gion of interest to give different perspective). Figure 6
shows the evolution of (minimal/maximal) learning
rates over time, emphasizing the effects of slow-start
initialization in our approach. Figure 7 and 8 show
the effect of tuning for all benchmarks and a subset of
the algorithms.

E. Sensitivity to Initialization

Figure 10 shows that the initialization parameter C
does not affect performance, so long as it is sufficiently
large. This is not surprising, because its only effect
is to slow down the initial step sizes until accurate
exponential averages of the interesting quantities can
be computed.

There is a critical minimum value of C, blow which
the algorithm is unstable. Figure 9 shows what those
critical values are for 13 different setups with widely
varying problem dimension. From these empirical re-
sults, we derive our rule-of-thumb choice of C = d/10
as a ‘safe’ pick for the constant (in fact it is even a fac-
tor 10 larger than the observed critical value for any
of the benchmarks, just to be extra careful).

References

Bucy, R. S. Stability and positive supermartin-
gales. Journal of Differential Equations, 1(2):151–
155, 1965.

101 102 103 104 105 106

number of parameters

100

101

102

103

104

105

106

cr
iti

ca
lC

XOR
M0
M1
M2
C0
C1
CR

Figure 9. Critical values for initialization parameter C.
This plot shows the values of C below which vSGD-l be-
comes unstable (too large initial steps). We determine the
critical C value as the largest for which at least 10% of
the runs give rise to instability. The markers correspond
to experiments with setups on a broad range of parameter
dimensions. Six markers correspond to the benchmark se-
tups from the main paper, and the green stars correspond
to simple the XOR-classification task with an MLP of a
single hidden layer, the size of which is varied from 2 to
500000 neurons. The black dotted diagonal line indicates,
our ‘safe’ heuristic choice of C = d/10.



No More Pesky Learning Rates

40 45 50 55 60 65 70
training error

60

62

64

66

68

70

te
st

er
ro

r

C0

25 30 35 40 45 50 55 60 65
training error

56

58

60

62

64

te
st

er
ro

r

C1

6 8 10 12 14 16 18 20
training error

6

8

10

12

14

16

18

20

te
st

er
ro

r

CR

adagrad
sgd
vsgd-b
vsgd-g
vsgd-l

Figure 4. Training error versus test error on the three CIFAR setups (after 6 epochs). Different symbol-color combinations
correspond to different algorithms, with the best-tuned parameter setting shown as a much larger symbol than the other
settings tried. The axes are zoomed to the regions of interest for clarity. Note how there is much more overfitting here
than for MNIST, even with vanilla SGD.

0 20 40 60 80 100
training error

0

20

40

60

80

100

te
st

er
ro

r

C0

0 20 40 60 80 100
training error

0

20

40

60

80

100

te
st

er
ro

r

C1

0 20 40 60 80 100
training error

0

20

40

60

80

100

te
st

er
ro

r

CR

0 20 40 60 80 100
training error

0

20

40

60

80

100

te
st

er
ro

r

M0

0 20 40 60 80 100
training error

0

20

40

60

80

100

te
st

er
ro

r

M1

0 20 40 60 80 100
training error

0

20

40

60

80

100

te
st

er
ro

r

M2

adagrad
almeida
amari
sgd
smd
vsgd-b
vsgd-g
vsgd-l

Figure 5. Training error versus test error on all 6 setups, global perspective. Different symbol-color combinations cor-
respond to different algorithms, with the best-tuned parameter setting shown as a much larger symbol than the other
settings tried.



No More Pesky Learning Rates

10−4 10−3 10−2 10−1 100

epoch

10−4

10−3

10−2

10−1

100

101

m
in

/m
ax

le
ar

ni
ng

ra
te

C0

10−4 10−3 10−2 10−1 100

epoch

10−4

10−3

10−2

10−1

100

101

m
in

/m
ax

le
ar

ni
ng

ra
te

C1

10−4 10−3 10−2 10−1 100

epoch

10−4

10−3

10−2

10−1

100

101

m
in

/m
ax

le
ar

ni
ng

ra
te

CR

10−4 10−3 10−2 10−1 100

epoch

10−4

10−3

10−2

10−1

100

101

m
in

/m
ax

le
ar

ni
ng

ra
te

M0

10−4 10−3 10−2 10−1 100

epoch

10−4

10−3

10−2

10−1

100

101

m
in

/m
ax

le
ar

ni
ng

ra
te

M1

10−4 10−3 10−2 10−1 100

epoch

10−4

10−3

10−2

10−1

100

101

m
in

/m
ax

le
ar

ni
ng

ra
te

M2

SGD
adagrad
vSGD -l
vSGD-b
vSGD-g

Figure 6. Evolution of learning rates. It shows how the learning rates (minimum and maximum across all dimensions)
vary as a function of the epoch. Left: CIFAR classification (no hidden layer), right: MNIST classification (no hidden
layer). Each symbol/color corresponds to the median behavior of one algorithm. The range of learning rates (for those
algorithms that don’t have a single global learning rate) is shown in a colored band in-between the min/max markers.
The log-log plot highlights the initial behavior, namely the ‘slow start’ (until about 0.1 epochs) due to a large C constant
in out methods, which contrasts with the quick start of AdaGrad . We also note that AdaGrad (yellow circles) has
drastically different ranges of learning rates on the two benchmarks.



No More Pesky Learning Rates

M0
0.07

M1
0.02

M2
0.02

0.02

0.04

0.06

0.08

0.10

0.12

Te
st

er
ro

r

MNIST classification

SGD
adagrad
vSGD -l
vSGD-b
vSGD-g

C0
0.61

C1
0.57

0.60

0.65

0.70

0.75

Te
st

er
ro

r

CIFAR-10 classification

CR
10.2

10

15

20

25

30

Te
st

er
ro

r

CIFAR-10 reconstruction

Figure 7. Final performance on test set, on all the practical learning problems (after six epochs) using architectures trained
using SGD, AdaGrad or vSGD. We show all 28 SGD settings (green circles), and 11 AdaGrad settings (yellow circles),
in contrast to tables 2 and 3, where we only compare the best SGD with the vSGD variants. See also Figure 8 for the
corresponding performance on the training set. SGD runs (green circles) vary in terms of different learning rate schedules,
and the vSGD variants correspond to the local-global approximation choices described in section 5. Symbols touching
the top boundary indicate runs that either diverged, or converged too slow to fit on the scale. Note how SGD tuning is
sensitive, and the adaptive learning rates are typically competitive with the best-tuned SGD, and sometimes better.

M0
0.07

M1
0.0

M2
0.0

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Tr
ai

ni
ng

er
ro

r

MNIST classification

SGD
adagrad
vSGD -l
vSGD-b
vSGD-g

C0
0.45

C1
0.27

0.3

0.4

0.5

0.6

0.7

Tr
ai

ni
ng

er
ro

r

CIFAR-10 classification

CR
9.69

10

15

20

25

30

Tr
ai

ni
ng

er
ro

r

CIFAR-10 reconstruction

Figure 8. Final performance on training set, on all the practical learning problems (after six epochs) using architectures
trained using SGD, AdaGrad or vSGD. We show all 28 SGD settings (green circles), and 11 adaSGD settings (yellow
circles). We can observe some clear overfitting in the M2, M3 and C2 cases.



No More Pesky Learning Rates

100 101 102 103 104 105 106 107 108

C

0.0

0.2

0.4

0.6

0.8

1.0

te
st

er
ro

r

M0

100 101 102 103 104 105 106 107 108

C

0.0

0.2

0.4

0.6

0.8

1.0

te
st

er
ro

r

M1

100 101 102 103 104 105 106 107 108

C

0.0

0.2

0.4

0.6

0.8

1.0

te
st

er
ro

r

M2

vSGD -l (1ep)
vSGD -l (3ep)
vSGD -l (6ep)
vSGD-b (1ep)
vSGD-b (3ep)
vSGD-b (6ep)
vSGD-g (1ep)
vSGD-g (3ep)
vSGD-g (6ep)

Figure 10. Parameter study on hyper-parameter C. These plots demonstrate that the algorithm is insensitive to the choice
of initial slowness parameter C. For each of the setups on the MNIST classification benchmark (with vastly differing
parameter dimension d, see Table 1 in the main paper, we show the sensitivity of the test set performance as we vary
C over 8 orders of magnitude. Each plot shows the test errors after 1, 3 and 6 epochs (different levels of transparency),
for the three adaptive variants (l, b, g, in different colors). In all cases, we find that the updates are unstable if C is
chosen too small (the element-wise ‘l’ variant being most affected), but otherwise C has very little effect, up until when
it becomes extremely large: for C = 108, this initialization basically neutralizes the whole first epoch, and is still felt at
epoch 6. The black vertical line indicates, for the three setups, our ‘safe’ heuristic choice of C = d/10. Its only purpose is
to avoid instability upon initialization, and given that its ’sweet spot’ spans many orders of magnitude, it does not need
to be tuned more precisely.


