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Abstract

The performance of stochastic gradient de-
scent (SGD) depends critically on how learn-
ing rates are tuned and decreased over time.
We propose a method to automatically adjust
multiple learning rates so as to minimize the
expected error at any one time. The method
relies on local gradient variations across sam-
ples. In our approach, learning rates can in-
crease as well as decrease, making it suitable
for non-stationary problems. Using a num-
ber of convex and non-convex learning tasks,
we show that the resulting algorithm matches
the performance of SGD or other adaptive
approaches with their best settings obtained
through systematic search, and effectively re-
moves the need for learning rate tuning.

1. Introduction

Large-scale learning problems require algorithms that
scale benignly (e.g. sub-linearly) with the size of the
dataset and the number of trainable parameters. This
has lead to a recent resurgence of interest in stochas-
tic gradient descent methods (SGD). Besides fast con-
vergence, SGD has sometimes been observed to yield
significantly better generalization errors than batch
methods (Bottou & Bousquet, 2011).

In practice, getting good performance with SGD re-
quires some manual adjustment of the initial value of
the learning rate (or step size) for each model and each
problem, as well as the design of an annealing schedule
for stationary data. The problem is particularly acute
for non-stationary data.

The contribution of this paper is a novel method to
automatically adjust learning rates (possibly different
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learning rates for different parameters), so as to min-
imize some estimate of the expectation of the loss at
any one time.

Starting from an idealized scenario where every sam-
ple’s contribution to the loss is quadratic and separa-
ble, we derive a formula for the optimal learning rates
for SGD, based on estimates of the variance of the gra-
dient. The formula has two components: one that cap-
tures variability across samples, and one that captures
the local curvature, both of which can be estimated in
practice. The method can be used to derive a single
common learning rate, or local learning rates for each
parameter, or each block of parameters, leading to five
variations of the basic algorithm, none of which need
any parameter tuning.

The performance of the methods obtained without any
manual tuning are reported on a variety of convex and
non-convex learning models and tasks. They compare
favorably with an “ideal SGD”, where the best possible
learning rate was obtained through systematic search,
as well as previous adaptive schemes.

2. Background

SGD methods have a long history in adaptive sig-
nal processing, neural networks, and machine learn-
ing, with an extensive literature (see (Bottou, 1998;
Bottou & Bousquet, 2011) for recent reviews). While
the practical advantages of SGD for machine learning
applications have been known for a long time (LeCun
et al., 1998), interest in SGD has increased in recent
years due to the ever-increasing amounts of streaming
data, to theoretical optimality results for generaliza-
tion error (Bottou & LeCun, 2004), and to competi-
tions being won by SGD methods, such as the PAS-
CAL Large Scale Learning Challenge (Bordes et al.,
2009), where Quasi-Newton approximation of the Hes-
sian was used within SGD. Still, practitioners need to
deal with a sensitive hyper-parameter tuning phase to
get top performance: each of the PASCAL tasks used
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very different parameter settings. This tuning is very
costly, as every parameter setting is typically tested
over multiple epochs.

Learning rates in SGD are generally decreased accord-
ing a schedule of the form η(t) = η0(1 + γt)−1. Origi-
nally proposed as η(t) = O(t−1) in (Robbins & Monro,
1951), this form was recently analyzed in (Xu, 2011;
Bach & Moulines, 2011) from a non-asymptotic per-
spective to understand how hyper-parameters like η0
and γ affect the convergence speed.

Numerous researchers have proposed schemes for mak-
ing learning rates adaptive, either globally or by adapt-
ing one rate per parameter (‘diagonal precondition-
ing’); see (George & Powell, 2006) for an overview. An
early diagonal preconditioning schemes was proposed
in (Almeida & Langlois, 1999) where the learning rate
is adapted as

ηi(t) = max

(
0,
η0 θi(t) · ∇(t−1)

θi

vi

)

for each problem dimension i, where ∇(t)
θi

is gradient

of the ith parameter at iteration t, and vi ≈ E
[
∇2
θi

]
is a recent running average of its square. Stochastic
meta-descent (SMD, Schraudolph (1999; 2002)) uses
a related multiplicative update of learning rates. Ap-
proaches based on the natural gradient (Amari et al.,
2000) precondition the updates by the empirical Fisher
information matrix (estimated by the gradient covari-
ance matrix, or its diagonal approximation), in the
simplest case: ηi = η0/vi; the “Natural Newton” al-
gorithm (Le Roux & Fitzgibbon, 2010) combines the
gradient covariance with second-order information. Fi-
nally, derived from a worst-case analysis, (Duchi et al.,
2010) propose an approach called ‘AdaGrad’, where
the learning rate takes the form

ηi(t) =
η0√∑t

s=0

(
∇(s)
θi

)2 .
The main practical drawback for all of these ap-
proaches is that they retain one or more sensitive
hyper-parameters, which must be tuned to obtain sat-
isfactory performance. AdaGrad has another dis-
advantage: because it accumulates all the gradients
from the moment training starts to determine the
current learning rate, the learning rate monotoni-
cally decreases: this is especially problematic for non-
stationary problems, but also on stationary ones, as
navigating the properties of optimization landscape
change continuously.

The main contribution of the present paper is a for-
mula that gives the value of the learning rate that will
maximally decrease the expected loss after the next up-

Figure 1. Illustration of the idealized loss function consid-
ered (thick magenta), which is the average of the quadratic
contributions of each sample (dotted blue), with minima
distributed around the point θ∗. Note that the curvatures
are assumed to be identical for all samples.

date. For efficiency reasons, some terms in the for-
mula must be approximated using such quantities as
the mean and variance of the gradient. As a result, the
learning rate is automatically decreased to zero when
approaching an optimum of the loss, without requiring
a pre-determined annealing schedule, and if the prob-
lem is non-stationary, it the learning rate grows again
when the data changes.

3. Optimal Adaptive Learning Rates

In this section, we derive an optimal learning rate
schedule, using an idealized quadratic and separable
loss function. We show that using this learning rate
schedule preserves convergence guarantees of SGD. In
the following section, we find how the optimal learning
rate values can be estimated from available informa-
tion, and describe a couple of possible approximations.

The samples, indexed by j, are drawn i.i.d. from a
data distribution P. Each sample contributes a per-
sample loss L(j)(θ) to the expected loss:

J (θ) = Ej∼P
[
L(j)(θ)

]
(1)

where θ ∈ Rd is the trainable parameter vector, whose
optimal value is denoted θ∗ = arg minθ J (θ). The

SGD parameter update formula is of the form θ(t+1) =

θ(t)−η(t)∇(j)
θ , where ∇(j)

θ = ∂
∂θL(j)(θ) is the gradient

of the the contribution of example j to the loss, and
the learning rate η(t) is a suitably chosen sequence of
positive scalars (or positive definite matrices).

3.1. Noisy Quadratic Loss

We assume that the per-sample loss functions are
smooth around minima, and can be locally approxi-
mated by a quadratic function. We also assume that
the minimum value of the per-sample loss functions
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are zero:

L(j)(θ) =
1

2

(
θ − c(j)

)>
H(j)

(
θ − c(j)

)
∇(j)

θ = H(j)
(
θ − c(j)

)
where Hi is the (positive semi-definite) Hessian matrix
of the per-sample loss of sample j, and c(j) is the opti-
mum for that sample. The distribution of per-sample
optima c(j) has mean θ∗ and variance Σ. Figure 1
illustrates the scenario in one dimension.

To simplify the analysis, we assume for the remain-
der of this section that the Hessians of the per-sample
losses are identical for all samples, and that the prob-
lem is separable, i.e., the Hessians are diagonal, with
diagonal terms denoted {h1, . . . , hi, . . . , hd}. Further,
we will ignore the off-diagonal terms of Σ, and de-
note the diagonal {σ2

1 , . . . , σ
2
i , . . . , σ

2
d}. Then, for any

of the d dimensions, we thus obtain a one-dimensional
problem (all indices i omitted).

J(θ) = Ei∼P
[

1

2
h(θ − c(j))2

]
=

1

2
h
[
(θ − θ∗)2 + σ2

]
(2)

The gradient components are ∇(j)
θ = h

(
θ − c(j)

)
, with

E[∇θ] = h(θ − θ∗) V ar[∇θ] = h2σ2 (3)

and we can rewrite the SGD update equation as

θ(t+1) = θ(t) − ηh
(
θ(t) − c(j)

)
= (1− ηh)θ(t) + ηhθ∗ + ηhσξ(j) (4)

where the ξ(j) are i.i.d. samples from a zero-mean
and unit-variance Gaussian distribution. Inserting this
into equation 2, we obtain the expected loss after an
SGD update

E
[
J
(
θ(t+1)

)
| θ(t)

]
=

1

2
h ·
[
(1− ηh)2(θ(t) − θ∗)2 + η2h2σ2 + σ2

]
3.2. Greedy Optimality

We can now derive the optimal (greedy) learning rates
for the current time t as the value η∗(t) that minimizes
the expected loss after the next update

η∗(t) = arg min
η

[
(1− ηh)2(θ(t) − θ∗)2 + σ2 + η2h2σ2

]
= arg min

η

[
η2
(
h(θ(t) − θ∗)2 + hσ2

)
−2η(θ(t) − θ∗)2

]
=

1

h
· (θ(t) − θ∗)2

(θ(t) − θ∗)2 + σ2
(5)

In the classical (noiseless or batch) derivation of the
optimal learning rate, the best value is simply η∗(t) =
h−1. The above formula inserts a corrective term that
reduces the learning rate whenever the sample pulls
the parameter vector in different directions, as mea-
sured by the gradient variance σ2. The reduction of
the learning rate is larger near an optimum, when
(θ(t) − θ∗)2 is small relative to σ2. In effect, this will
reduce the expected error due to the noise in the gra-
dient. Overall, this will have the same effect as the
usual method of progressively decreasing the learning
rate as we get closer to the optimum, but it makes this
annealing schedule automatic.

If we do gradient descent with η∗(t), then almost
surely, the algorithm converges (for the quadratic
model). The proof is given in the appendix.

3.3. Global vs. Parameter-specific Rates

The previous subsections looked at the optimal learn-
ing rate in the one-dimensional case, which can be triv-
ially generalized to d dimensions if we assume that all
parameters are separable, namely by using an individ-
ual learning rate η∗i for each dimension i. Alterna-
tively, we can derive an optimal global learning rate η∗g
(see supplementary material for the full derivation),

η∗g(t) =

∑d
i=1 h

2
i (θ

(t)
i − θ∗i )2∑d

i=1

(
h3i (θ

(t)
i − θ∗i )2 + h3iσ

2
i

) (6)

which is especially useful if the problem is badly con-
ditioned.

In-between a global and a component-wise learning
rate, it is of course possible to have common learning
rates for blocks of parameters. In the case of multi-
layer learning systems, the blocks may regroup the pa-
rameters of each single layer, the biases, etc. This is
particularly useful in deep learning, where the gradi-
ent magnitudes can vary significantly between shallow
and deep layers.

4. Approximations

In practice, we are not given the quantities σi, hi and

(θ
(t)
i −θ∗i )2. However, based on equation 3, we can esti-

mate them from the observed samples of the gradient:

η∗i =
1

hi
· (E[∇θi ])2

(E[∇θi ])2 + V ar[∇θi ]
=

1

hi
· (E[∇θi ])2

E[∇2
θi

]
(7)

The situation is slightly different for the global learn-
ing rate η∗g . Here we assume that it is feasible to es-

timate the maximal curvature h+ = maxi(hi) (which
can be done efficiently, for example using the diago-
nal Hessian computation method described in (LeCun
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et al., 1998)). Then we have the bound

η∗g(t) ≥ 1

h+
·

∑d
i=1 h

2
i (θ

(t)
i − µi)2∑d

i=1

(
h2i (θ

(t)
i − µi)2 + h2iσ

2
i

)
=

1

h+
· ‖E[∇θ]‖2

E
[
‖∇θ‖2

] (8)

because

E
[
‖∇θ‖2

]
= E

[
d∑
i=1

(∇θi)2
]

=

d∑
i=1

E
[
(∇θi)2

]
In both cases (equations 7 and 8), the optimal learning
rate is decomposed into two factors, one term which is
the inverse curvature (as is the case for batch second-
order methods), and one novel term that depends on
the noise in the gradient, relative to the expected
squared norm of the gradient. Below, we approximate
these terms separately. For the investigations below,
when we use the true values instead of a practical algo-
rithm, we speak of the ‘oracle’ variant (e.g. in Figure 2,
or Figure 1 of the supplementary material).

4.1. Approximate Variability

We use an exponential moving average with time-
constant τ (the approximate number of samples con-
sidered from recent memory) for online estimates of
the quantities in equations 7 and 8:

gi(t+ 1) = (1− τ−1i ) · gi(t) + τ−1i · ∇θi(t)
vi(t+ 1) = (1− τ−1i ) · vi(t) + τ−1i · (∇θi(t))2

l(t+ 1) = (1− τ−1) · l(t) + τ−1 · ‖∇θ‖2

where gi estimates the average gradient component i,
vi estimates the uncentered variance on gradient com-
ponent i, and l estimates the squared length of the
gradient vector:

gi ≈ E[∇θi ] vi ≈ E[∇2
θi ] l ≈ E

[
‖∇θ‖2

]
and we need vi only for an element-wise adaptive learn-
ing rate and l only in the global case.

4.2. Adaptive Time-constant

We want the size of the memory to increase when the
steps taken are small (increment by 1), and to decay
quickly if a large step (close to the Newton step) is
taken, which is obtained naturally, by the following
update

τi(t+ 1) =

(
1− gi(t)

2

vi(t)

)
· τi(t) + 1,

Algorithm 1 Stochastic gradient descent with adap-
tive learning rates (element-wise, vSGD-l).

repeat

draw a sample c(j), compute the gradient ∇(j)
θ , and

compute the diagonal Hessian estimates h
(j)
i using

the “bbprop” method
for i ∈ {1, . . . , d} do

update moving averages

gi ← (1− τ−1i ) · gi + τ−1i · ∇(j)
θi

vi ← (1− τ−1i ) · vi + τ−1i ·
(
∇(j)
θi

)2
hi ← (1− τ−1i ) · hi + τ−1i ·

∣∣∣bbprop(θ)
(j)
i

∣∣∣
estimate learning rate η∗i ←

(gi)
2

hi · vi
update memory size

τi ←
(

1− (gi)
2

vi

)
· τi + 1

update parameter θi ← θi − η∗i∇(j)
θi

end
until stopping criterion is met

This way of making the memory size adaptive allows
us to eliminate one otherwise tuning-sensitive hyper-
parameter. Note that these updates (correctly) do
not depend on the local curvature, making them scale-
invariant.

4.3. Approximate Curvature

There exist a number of methods for obtaining an on-
line estimates of the diagonal Hessian (Martens et al.,
2012; Bordes et al., 2009; Chapelle & Erhan, 2011;
Schaul & LeCun, 2013). We adopt the “bbprop”
method, which computes positive estimates of the di-
agonal Hessian terms (Gauss-Newton approximation)

for a single sample h
(j)
i , using a back-propagation for-

mula (LeCun et al., 1998). The diagonal estimates are
used in an exponential moving average procedure

hi(t+ 1) = (1− τ−1i ) · hi(t) + τ−1i · h(t)i
If the curvature is close to zero for some component,
this can drive η∗ to infinity. Thus, to avoid numerical
instability (to bound the condition number of the ap-
proximated Hessian), it is possible to enforce a lower
bound hi ≥ ε. This addition is not necessary in our ex-
periments, due to the presence of an L2-regularization
term.

4.4. Slow-start Initialization

To initialize these estimates, we compute the arith-
metic averages over a handful (n0 = 0.001 ×
#traindata) of samples before starting to the main
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algorithm loop. We find that the algorithm works
best with a slow start heuristic, where the parame-
ter updates are kept small until the exponential av-
erages become sufficiently accurate. This is achieved
by overestimating vi and l) by a factor C. We find
that setting C = d/10, as a rule of thumb is both ro-
bust and near-optimal, because the value of C has only
a transient initialization effect on the algorithm. The
supplementary material details how we arrived at this,
and demonstrates the low sensitivity empirically.

5. Adaptive Learning Rate SGD

The simplest version of the method views each com-
ponent in isolation. This form of the algorithm will be
called “vSGD” (for “variance-based SGD”). In realis-
tic settings with high-dimensional parameter vector, it
is not clear a priori whether it is best to have a single,
global learning rate (that can be estimated robustly),
a set of local, dimension-specific rates, or block-specific
learning rates (whose estimation will be less robust).
We propose three variants on this spectrum:

vSGD-l uses local gradient variance terms and the
local diagonal Hessian estimates, leading to η∗i =

(gi)
2/(hi · vi),

vSGD-g uses a global gradient variance term and an
upper bound on diagonal Hessian terms: η∗ =∑

(gi)
2/(h+ · l),

vSGD-b operates like vSGD-g, but being only global
across multiple (architecture-specific) blocks of
parameters, with a different learning rate
per block. Similar ideas are adopted in
TONGA (Le Roux et al., 2008). In the experi-
ments, the parameters connecting every two lay-
ers of the network are regard as a block, with the
corresponding bias parameters in separate blocks.

The pseudocode for vSGD-l is given in Algorithm 4.1,
the other cases are very similar; all of them have linear
complexity in time and space; in fact, the overhead of
vSGD is roughly a factor two, which arises from the
additional bbrop pass (which could be skipped in all
but a fraction of the updates) – this cost is even less
critical because it can be trivially parallelized.

6. Non-stationary Behavior

For an intuitive understanding of the effects of the op-
timal adaptive learning rate method, and the effect of
the approximation, we refer to Figures 1 and 2 of the
supplementary material, where we illustrate the os-
cillatory behavior of SGD, and compare the decrease
in the loss function and the accompanying change in

learning rates on the noisy quadratic loss function
(Equation 2).

In realistic on-line learning scenarios, the curvature or
noise level in any given dimension changes over time
(for example because of the effects of updating other
parameters), and thus the learning rates need to in-
crease as well as increase. Of course, no fixed learning
rate or fixed cooling schedule can achieve this. To
illustrate this, we use the same noisy quadratic loss
function, but with abrupt changes of the optimum ev-
ery 300 timesteps.

Figure 2 shows how vSGD with its adaptive memory-
size appropriately handles such cases. Its initially large
learning rate allows it to quickly approach the opti-
mum, then it gradually reduces the learning rate as
the gradient variance increases relative to the squared
norm of the average gradient, thus allowing the param-
eters to closely approach the optimum. When the data
distribution changes (abruptly, in our case), the algo-
rithm automatically detects that the norm of the av-
erage gradient increased relative to the variance. The
learning rate jumps back up and adapts to the new
circumstances. Note that the curvature is always 1,
which implies that the preconditioning by the diagonal
Hessian component vanishes, and still the advantage
of adaptive learning rates is clear.

7. Experiments

We test the new algorithm on well-known benchmark
problems for digit recognition, image classification and
image reconstruction, using the new SGD variants to
train both convex models (logistic regression) and non-
convex ones (multi-layer perceptrons).

SGD is one of the most common training algorithms
in use for (large-scale) neural network training. The
experiments in this section compare the three vSGD
variants introduced above with SGD, and some adap-
tive algorithms described in section 2 (AdaGrad,
Almeida, Amari and SMD), with additional details in
the supplementary material.

We exhaustively search for the best hyper-parameter
settings among η0 ∈ {10−7, 3 · 10−7, 10−6, . . . , 3 ·
100, 101}, γ ∈ {0, 1/3, 1/2, 1}/#traindata, τ ∈
{105, 5 · 104, 104, 5 · 103, 103, 102, 101, } and µ ∈
{10−4, 10−3, 10−2, 10−1} as determined by their lowest
test error (averaged over 2 runs), for each individual
benchmark setup. The last line in Table 3 shows the
total number of settings over which the tuning is done.

7.1. Datasets

We choose two widely used standard datasets to test
the different algorithms; the MNIST digit recogni-
tion dataset (LeCun & Cortes, 1998) (with 60k train-
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Figure 2. Non-stationary loss. The loss is quadratic but the target value (µ) changes abruptly every 300 time-steps.
Above: loss as a function of time, below: corresponding learning rates. This illustrates the limitations of SGD with
fixed or decaying learning rates (full lines): any fixed learning rate limits the precision to which the optimum can
be approximated (progress stalls); any cooling schedule on the other hand cannot cope with the non-stationarity. In
contrast, our adaptive setting (‘vSGD’, red circles), as closely resembles the optimal behavior (oracle, black dashes). The
learning rate decays like 1/t during the static part, but increases again after each abrupt change (with just a very small
delay compared to the oracle). The average loss across time is substantially better than for any SGD cooling schedule.

Loss Network layer SGD AdaGrad Amari SMD Almeida
sizes η0 γ η0 η0 τ η0 µ τ η0 τ

M0 CE [784, 10] 3 · 10−2 1 10−1 10−5 104 10−1 10−3 103 10−3 103

M1 [784, 120, 10] 3 · 10−2 1/2 10−1 10−6 5 · 103 3 · 10−2 10−4 104 10−3 104

M2 [784, 500, 300, 10] 10−2 1/2 3 · 10−2 3 · 10−7 5 · 103 3 · 10−2 10−3 102 10−3 104

C0 CE [3072, 10] 3 · 10−3 1 10−2

C1 [3072, 360, 10] 10−2 1 3 · 10−3

CR MSE [3072, 120, 3072] 3 · 10−3 1 10−2

Table 1. Experimental setup for standard datasets MNIST and and the subset of CIFAR-10 using neural nets with 0
hidden layer (M0 and C0), 1 hidden layer (M1, C1 and CR), 2 hidden layers (M2). Columns 4 through 13 give the
best found hyper-parameters for SGD and the four adaptive algorithms used to compare vSGD to. Note that those
hyper-parameters vary substantially across the benchmark tasks.

ing samples, and 10k test samples), and the CIFAR-
10 small natural image dataset (Krizhevsky, 2009),
namely the ‘batch1’ subset, which contains 10k train-
ing samples and 10k test samples. We use CIFAR
both to learn image classification and reconstruction.
The only form of preprocessing used (on both datasets)
is to normalize the data by substracting mean of the
training data along each input dimension.

7.2. Network Architectures

We use four different architectures of feed-forward neu-
ral networks. The first one is simple softmax regression
(i.e., a network with no hidden layer) for multi-class

classification. It has convex loss (cross-entropy) rel-
ative to parameters. This setup is denoted ‘M0’ for
the MNIST case, and ‘C0’ for the CIFAR classifica-
tion case. The second one (denoted ‘M1’/‘C1’) is a
fully connected multi-layer perceptron, with a single
hidden layers, with tanh non-linearities at the hidden
units. The cross-entropy loss function is non-convex.
The third (denoted ‘M2’, only used on MNIST) is a
deep, fully connected multi-layer perceptron, with a
two hidden layers, again with tanh non-linearities. The
fourth architecture is a simple autoencoder (denoted
‘CR’), with one hidden layer (tanh non-linearity) and
non-coupled reconstruction weights. This is trained
to minimize the mean squared reconstruction error.
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vSGD-l vSGD-b vSGD-g SGD AdaGrad SMD Amari Almeida
M0 6.72% 7.63% 8.20% 7.05% 6.97% 7.02% 7.33% 11.80%
M1 0.18% 0.78% 3.50% 0.30% 0.58% 0.40% 2.91% 8.49%
M2 0.05% 0.33% 2.91% 0.46% 0.41% 0.55% 1.68% 7.16%
C0 45.61% 52.45% 56.16% 54.78% 54.36% – – –
C1 33.16% 45.14% 54.91% 47.12% 45.20% – – –
CR 10.64 10.13 15.37 9.77 9.80 – – –

Table 2. Final classification error (and reconstruction error for CIFAR-2R) on the training set, obtained after 6 epochs
of training, and averaged over ten random initializations. Variants are marked in bold if they don’t differ statistically
significantly from the best one (p = 0.01). Note that the tuning parameters of SGD, AdaGrad, SMD, Amari and
Almeida are different for each benchmark (see Table 1). We observe the best results with the full element-wise learning
rate adaptation (‘vSGD-l’), almost always significantly better than the best-tuned SGD or best-tuned AdaGrad.

vSGD-l vSGD-b vSGD-g SGD AdaGrad SMD Amari Almeida
M0 7.50% 7.89% 8.20% 7.60% 7.52% 7.57% 7.69% 11.13%
M1 2.42% 2.44% 4.14% 2.34% 2.70% 2.37% 3.95% 8.39%
M2 2.16% 2.05% 3.65% 2.15% 2.34% 2.18% 2.97% 7.32%
C0 66.05% 61.70% 61.10% 61.06% 61.25% – – –
C1 57.72% 59.55% 60.62% 58.85% 58.67% – – –
CR 11.05 10.57 15.71 10.29 10.33 – – –

#settings 1 1 1 68 17 476 119 119

Table 3. Final classification error (and reconstruction error for CIFAR-2R) on the test set, after 6 epochs of training,
averaged over ten random initializations. Variants are marked in bold if they don’t differ statistically significantly from
the best one (p = 0.01). Note that the parameters of SGD, AdaGrad, SMD, Amari and Almeida were finely tuned, on
this same test set, and were found to be different for each benchmark (see Table 1); the last line gives the total number
of parameter settings over which the tuning was performed. Compared to training error, test set performance is more
balanced, with vSGD-l being better or statistically equivalent to the best-tuned SGD in 4 out of 6 cases. The main
outlier (C0) is a case where the more aggressive element-wise learning rates led to overfitting (compare training error in
Table 2).

Again, the loss is non-convex w.r.t. the parameters.

Formally, given input data h0 = x, the network pro-
cesses sequentially through H > 0 hidden layers by
applying affine transform then an element-wise tanh,

hk+1 = tanh(Wkhk + bk), k = 0, · · · , H − 1.

The output of the network y = hH+1 = WHhH +bH is
then feed into the loss function. For cross-entropy loss,
the true label c gives the target (delta) distribution to
approximate, thus the loss is

E[KL(δc||py)] = E[− log(py(c))],

where

py(c) =
exp−y(c)∑
k exp−y(k)

.

For mean-squared reconstruction error, the loss is
E[ 12 ||x − y||22] The exact numbers of hidden units in
each layer, and the corresponding total problem di-
mensions are given in Table 1. The parameters are
initialized randomly based on Glorot & Bengio.

To avoid over-fitting, especially for CIFAR which has
a comparatively small dataset, we add λ

2 ||w||22, a L2

regularization term on the weights, to the loss in all
experiments (with λ = 10−4). This also avoids nu-
merical instability in vSGD-l, because the estimated
diagonal Hessian elements will almost never be close
to zero.

7.3. Results

For each benchmark, ten independent runs are aver-
aged and reported in Table 2 (training set) and Table 3
(test set). They show that the best vSGD variant,
across the board, is vSGD-l, which most aggressively
adapts one learning rate per dimension. It is almost
always significantly better than the best-tuned SGD
or best-tuned AdaGrad in the training set, and bet-
ter or statistically equivalent to the best-tuned SGD
in 4 out of 6 cases on the test set. The main out-
lier (C0) is a case where the more aggressive element-
wise learning rates led to overfitting (compare training
error in Table 2), probably because of the compara-
tively small dataset size. Figure 3 illustrates the sensi-
tivity to hyper-parameters of SGD, AdaGrad, SMD
and Amari’s natural gradient on the three MNIST
benchmarks: different settings scatter across the per-
formance scale adn tuning matters. This is in stark
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Figure 3. Training error versus test error on the three MNIST setups (after 6 epochs). Different symbol-color combinations
correspond to different algorithms, with the best-tuned parameter setting shown as a much larger symbol than the other
settings tried (the performance of Almeida is so bad it’s off the charts). The axes are zoomed to the regions of interest for
clarity, for a more global perspective, and for the corresponding plots on the CIFAR benchmarks, see the supplementary
material. Note that there was no tuning for our parameter-free vSGD, yet its performance is consistently good (see black
circles).

contrast with vSGD, which without tuning obtains
the same performance than the best-tuned algorithms.
Numerous additional visualization, e.g., the evolution
of learning rates, are provided in the supplementary
material.

8. Conclusions

Starting from the idealized case of quadratic loss con-
tributions from each sample, we derived a method to
compute an optimal learning rate at each update, and
(possibly) for each parameter, that optimizes the ex-
pected loss after the next update. The method relies
on the square norm of the expectation of the gradient,
and the expectation of the square norm of the gradient.
A proof of the convergence in probability is given. We
showed different ways of approximating those learning
rates in linear time and space in practice. The exper-
imental results confirm the theoretical prediction: the
adaptive learning rate method completely eliminates
the need for manual tuning of the learning rate, or for
systematic search of its best value.

Our adaptive approach makes SGD more robust in two
related ways: (a) When used in on-line training sce-
narios with non-stationary signals, the adaptive learn-
ing rate automatically increases when the distribution
changes, so as to adjust the model to the new distri-
bution, and automatically decreases in stable periods
when the system fine-tunes itself within an attractor.

This provides robustness to dynamic changes of the
optimization landscape. (b) The tuning-free property
implies that the same algorithm can adapt to drasti-
cally different circumstances, which can appear within
a single (deep or heterogeneous) network. This ro-
bustness alleviates the need for careful normalizations
of inputs and structural components.

Given the successful validation on a variety of clas-
sical large-scale learning problems, we hope that this
enables for SGD to be a truly user-friendly ‘out-of-the-
box’ method.

Future work will address how our approach can be ex-
tended to distinctly non-separable loss functions (e.g.,
where the diagonal of the Hessian is zero). Some com-
plementary results are already available, and presented
in a companion paper (Schaul & LeCun, 2013), dis-
cussing minibatch parallelization, reweighted updates
for sparse gradients, and robustness on non-smooth
loss functions.
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