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Abstract

We present a family of linear regression es-
timators that provides a fine-grained trade-
off between statistical accuracy and computa-
tional efficiency. The estimators are based on
hard thresholding of the sample covariance
matrix entries together with ¢-regularizion
(ridge regression). We analyze the predictive
risk of this family of estimators as a function
of the threshold and regularization param-
eter. With appropriate parameter choices,
the estimate is the solution to a sparse, di-
agonally dominant linear system, solvable in
near-linear time. Our analysis shows how the
risk varies with the sparsity and regulariza-
tion level, thus establishing a statistical esti-
mation setting for which there is an explicit,
smooth tradeoff between risk and computa-
tion. Simulations are provided to support the
theoretical analyses.

1. Introduction

Modern data sets used for statistical analysis are of-
ten large and high dimensional. The computation
required to construct standard estimators for such
data may be prohibitive. In this setting it is attrac-
tive to tradeoff statistical accuracy for computational
scalability—tolerating increased predictive error, or
risk, in exchange for more favorable computational re-
quirements. While several heuristics for reduced com-
putation are often possible, including dimension reduc-
tion, sampling, and greedy algorithms, little is known
about precise tradeoffs between risk and computation.
In the setting of Bayesian inference using MCMC al-
gorithms, for instance, limiting computation by early
stopping of the Markov chain will introduce bias and
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increase risk; but a quantitative understanding of this
tradeoff is generally lacking.

Linear regression is a workhorse method for many sta-
tistical problems. But without special assumptions,
the method has quadratic computational cost O(np?)
in the dimension p, when the sample size n is larger
than p. This may be prohibitive when p is large.
In this work we study a concrete, practical way to
smoothly tradeoff risk for computation in linear regres-
sion, by sparsifying the sample covariance with hard
thresholding.

The standard ridge regression estimator is

N 1 -11
By = (fXTX + AnI) ~xXTy (1)
n n
= (S+ )" by (2)
where X is the n x p design matrix, S = 1X7X is

the sample covariance, and b,, = %XTY is the sample
marginal correlation for data {(X1,Y7),...,(Xn,Yn)},
assuming for convenience that the data are scaled to
have mean zero and variance one. We consider the
family of estimators

Bin = (St +d) by, (3)

where S; is a sparsified version of the sample covariance
obtained by hard thresholding, to zero out the small
entries. That is, S; = T3(S) where

Ti([miz)) = [ma(lmig| > t)]. (4)

The basic intuition is that as we increase the thresh-
old t, so that the matrix S; becomes more sparse, the
model degrades, but the estimator can be obtained
with less computation. For sufficiently large regular-
ization level A, and sparsity threshold ¢, the linear
system

(81 + \I)B = b, (5)

is sparse and symmetric diagonally dominant (SDD).
Recent research in algorithms and scientific compu-
tation has led to a breakthrough in fast solvers for
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such systems. In particular, work of Spielman & Teng
(2009) and Koutis et al. (2012) shows that sparse SDD
systems can be solved in near linear time in the num-
ber of nonzero entries in the matrix. We adopt a com-
putational model in which the sparsification S; is not
included in the computation cost. The calculation of
S; is parallelizable in a simple and direct manner, and
the cost of the computation can be amortized over dif-
ferent regressions. We discuss this point further in the
conclusion to the paper.

The main contribution of the present paper is to
combine this computational analysis with a statistical
analysis of the predictive risk for this family of linear
models, making precise the tradeoff between computa-
tion and error. In the following section we briefly men-
tion some previous work on risk-computation trade-
offs. In Section 3 we give a high level summary of
our results, with the detailed assumptions and theo-
rems given in Section 4. Section 5 presents numerical
simulations that illustrate the methods and analysis.
Details of the proofs are given in Section 6.

2. Related Work

The development of statistical methodology that pro-
vides a way of controlling tradeoffs between compu-
tation and accuracy is relatively new. However, with
the growing attention on large scale data analysis in
recent years, researchers have begun to focus more on
this problem.

Sparse PCA is one problem that has been studied from
the perspective of trading off computation for sample
complexity. In the stylized setting of a sparse rank
one covariance corrupted by noise, where the princi-
pal eigenvector of dimension p has only k£ nonzero en-
tries, a simple thresholding algorithm has been shown
to have sample complexity O(k?log(p — k)) with com-
putational complexity O(np + plogp). In constrast,
a more expensive semidefinite relaxation algorithm is
known to have lower sample complexity O(klog(p—k))
at the expense of greater computational complexity
O(np?+p*logp) (Johnstone & Lu, 2004; d’Aspremont
et al., 2004; Amini & Wainwright, 2009). These anal-
yses assume, however, that the solution has rank one.
This problem has also been studied by Chandrasekaran
& Jordan (2012).

Shalev-Shwartz et al. (2010) propose an algorithm for
sparse linear prediction where the excess risk is in-
versely proportional to the sparsity of the estimator.
Their approach is based on forward greedy selection
modified to reweight the components at each step. For
the regularized risk R(w) = E[L(w”z,y)] + 3|lw|3, it

is shown that R(w®) < R(w*) + € if the number of
steps k satisfies

(R

e
k> flw HOXIOg

where w(*) is the estimator after k steps and w* is a
reference model. Since the number of iterations con-
trols both the sparsity and the computation time, this
implicitly establishes a relationship between computa-
tion and excess risk.

In the setting of online learning, Agarwal et al. (2012)
consider model selection under a computational bud-
get constraint, assuming that computation grows lin-
early with sample size. They bound excess risk for a
grid search over a nested family of models. Although
the relationship between computation time and risk is
explicit, the linearity assumption may be unrealistic
for many classes of models.

A growing body of work has investigated algorithms
for scaling regression to large data sets, notably using
coresets (Drineas et al., 2006; Dasgupta et al., 2009;
Clarkson et al., 2013). Recently, Clarkson & Woodruff
(2013) proposed a new algorithm for generating sub-
space embedding matrices, which yields a regression
algorithm running in O(m(X)) + O(p3e~2) time, with
m(X) denoting the number of nonzeros of X. The pro-
cedure only increases error by a multiplicative factor
of 1+ ¢; but the requirement of a sparse design matrix
may be limiting.

Another sort of tradeoff is given by early stopping of
stochastic gradient descent, which converges at rate
O(1/t) in the number of steps ¢, for strongly convex
functions (Robbins & Monro, 1951; Bach & Moulines,
2011). This gives an approximate solution to the re-
gression problem. In contrast, the approach we explore
here is to approximate the original regression problem
itself, which is then solved exactly.

3. Setup and Overview of Results

In this section we provide a high level overview of our
assumptions, framework, and results. The following
sections give more formal, precise statements of the
results, together with proofs.

We consider ridge estimation in a random design set-
ting with fixed p < n, so that we have Y = Xg* + ¢
with ¢ ~ N(0,0%I,) independent of X and Y, where
X'is an n X p design matrix with X;; the jth covariate
of the ¢th datapoint. Let X;_ € R"™ refer to the ith
row. Assume that the observations X;_ are iid and let
S = %XTX and ¥ = E(S) be the sample and popu-
lation covariance, respectively. Let S; = T3(S) be the
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thresholded sample covariance, where
Ti([mij]) = [miz1(|mij| > 1)]. (7)

When we make statements about the computational
cost, we will assume that S; + A\I is a diagonally dom-
inant matrix. While this is true for sufficiently large
A, it will also hold (with high probability) when the
population covariance ¥ = Cov(X) is diagonally dom-
inant.

We modify the usual ridge estimator to be the solution
to a SDD system

~ 1
B = (S + AI)*EXTY (8)
=(S; + )" 'b, (9)
where b,, = %XTY. We also define

Br = (Z+A)~ing* (10)
Bix = (St + AI)~1SB*. (11)

These are the population ridge estimator and the con-
ditional expectation of f; » given X, respectively.

Let || - |4 denote the norm relative to a positive semi-
definite matrix A, so that

|z||a = VaT Az. (12)

We can write the excess risk over a new pair (X,Y) in
terms of this norm as

E(Y — XTB)? —E(Y — XTB*)* = ||* - B]%. (13)

We leverage three previous results in our approach.
First, we work with the family of sparse covariance
matrices studied by Bickel & Levina (2008), defined
by

P
Ujeo = {E : maxoy; < M, maxz loi; |7 < co(p)
K3 (] J=1

Amin(D) > €0 > 0} (14)

with 0 < ¢ < 1 and Ay denoting the smallest eigen-
value. This class constrains the covariance as having
rows lying in an ¢, ball; the matrices are sparse when
g = 0 and ¢o(p) is small. It also requires the covariance
to have eigenvalues bounded away from 0. Second, we
adapt some of the results of Hsu et al. (2011) on ridge
regression to our setting, as described in Section 4.

Finally, the computational analysis relies on recent de-
velopments in fast solvers for SDD systems. For ex-
ample, for an SDD system Ax = b of dimension p with

m nonzero entries in A, the analysis of Koutis et al.
(2012) shows that the solution z* can be obtained to
accuracy € in near linear time. More precisely, the al-
gorithm forms a chain of preconditioners that yields
an e-approximate solution Z, so that

[ = Z[|a < ez a, (15)

in time T'(m, p, €) satisfying

T(m,p,e) = O(mlogplog(l/e)), (16)
the notation O hiding a factor of order (loglog p)?.

Our main result analyzes the excess risk of the
covariance-thresholded regression estimation. The as-
sumptions required are detailed in Section 4.

Theorem 1. Suppose that the covariance ¥ €
Ug.eo, and the regularization parameter satisfies A =
O(n=Y2). Then the excess risk of the estimator Bt,)\
solving (9) is bounded in probability as

1ea—87lls = Op (£ 0+~ 2 4 2)|57))). (17)

Moreover, given S, and assuming S;+ A1, is diagonally
dominant, the estimator can be computed in time

T(Mi,¢,p) = O (my ¢ logplogn) (18)

where my, + is the number of nonzero entries in the
thresholded covariance matrix S;.

As the threshold ¢ increases, the number of nonzero
elements my,; decreases, and the computation time
scales roughly linearly in this value. The result shows
how the excess risk increases as a function of this
threshold for the class U, ¢,. The excess risk can be
decomposed as

1Bex = B711% < (19)
3 (1Bea = Bealle + 18r — Balz + 118x — 8712
The key step in the proof of the result is to bound
the second term on the righthand side of (19), which
includes both the error due to the random design and
the error due to thresholding. The first term is the
error due to the finite sample size, and can be bounded
as Op (0%/n). This part of our analysis reuses and

extends results of Hsu et al. (2011). The third term is
the approximation error due to regularization.

4. Main Results

We make the following assumptions:
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2. The X,;_ are mean zero sub-Gaussian.

Assumption 1 insures that S; + AI is positive definite,
since by Weyl’s Theorem

Amin(St) > Amin(Z) — Amax(Z—S¢) > —A. (20)

Assumption 2 implies that for every ¢t € R?
Eexp(tTX,;_) < e~ lltI7e* (21)

for some a > 0.

Write A;(2) to be the jt" largest eigenvalue of ¥ and

define
_ Aj(2) _ NN
A_Zj:)\j(E)JF)\ dZ’A_Zj:</\j(E)+>\)
(22)

The important ingredient in bounding the second term
is Theorem 1 of Bickel & Levina (2008). They define

two classes of sparse covariance matrices:

P
Ug={S:04 < M,> |oyj|" < co(p), for all i} (23)
j=1
Ugeo ={2 : 2 €U, and A\pin(X) > €9 > 0} (24)

for fixed 0 < ¢ < 1.

Theorem 2. (Bickel-Levina) In the current setting,
assume that ¥ € Uy. Iflogp/n = o(1), then

IS — X|| = Op (Co( )t \/ o i +co (P)tl_q> .

Moreover, if ¥ € Uy, then
_ _ _. o _
Is;* - =71 = 0p <cO<p>t W =2E o (p)t! )

Remarks:

1. Since we consider p fixed, the condition that
logp/n = o(1) is simply n — oo.

2. For ¥ € U, and symmetric, we have the bound

||EH = )\IIIaX(E) < max § |Ulj| < Mliqco(p)'
? X
J

3. Both Theorem 2 and Assumption 1 bound ||S; —
Y|l. The terms in Theorem 2 are balanced when
—1/2 " in which case the bound becomes

Op (n%) As we will show, the risk is mini-

. g—1 . .
mized when A < n 2 . Assumption 1 is weaker
1

than Theorem 2 when Ay, (X) = Q (n%>

We can now state the bounds for each term in (19), to-
gether with the general version of the final bound. The
proofs are largely technical and are left to Section 6.

Lemma 3. Under Assumptions 1 and 2, if ¥ € Uy,
then the random design and thresholding error can be
bounded as

1Ber = Ball3 _
15+]1?

2
1
Op | 2030-9 ()(t q\/()ipjttl‘?) +ok

Recall that 5,; » and 3, solve
(St + AI) By x = SB* (26)
(Z+ M) By =2p" (27)

We can view each of these as a perturbation of the
system

(25)

(X + \I) B =Sp*. (28)
The first term in the bound comes from the perturba-
tion analysis of (26), and the second term in the bound
comes from the perturbation analysis of (27). In par-

ticular, the dependence on t comes from considering
(St + AXI)™' — (S 4+ AI)~" and applying Theorem 2.

The rest of the terms are more straightforward.

Lemma 4. Under Assumptions 1 and 2, if £ € Uy ¢,,
then the stochastic error is bounded in probability by

N - 24
s = Balp =0 (T22). 29)

Note that this is the usual order bound for Gaussian
error in a model of dimension d ».

Lemma 5. The approxzimation error can be bounded
as

()

1831 = Zﬂ? T = ORI 0

Putting these bounds together leads to our main re-
sult.

Theorem 6. Under the above assumptions, if X €
Uq.co, the excess risk is bounded by

2
) _R*12 a d27>‘
[Bex = Blls = 0P<7n
+ {2M3(1*Q>c3(p) (179 128 | j1-ay?
n
p 21 %12
+ 2oz} R). (31)
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Moreover, this is minimized for the threshold t =< n~1/2

1-gq
and regularization level A = t1—9 < (%) 2, resulting
in the bound

1Ber = 8713 = O (NI1871) - (32)

This result shows how the excess risk increases with
the threshold ¢ and regularization level A\. As the
threshold ¢ increases, the computation time to solve
the system decreases, although the precise manner in
which the sparsity of S; varies with ¢ depends on the
exact coefficients of the covariance ¥. As we will see
in the next section, when the true covariance is near-
sparse and nearly SDD, as for an AR-type covariance
matrix, a very large decrease in the computation time
can be obtained for a very small value of t.

5. Simulations

The simulations compare the excess risk of Bt, ) for
different values of n and p for both sparse and non-
sparse >. We plot the risk against both the threshold
t and the sparsity of S;, since the latter controls the
computation time. We also make comparisons with the
excess risk of the population estimator 5,y = (Z; +
A,)~'E3*. These simulations support our theoretical
results and show how a moderate increase in the risk
may provide a significant decrease in the computation
time.

For the sparse case, we chose ¥ to have 2p off-diagonal
entries, which were generated as Uniform(-1, 1). The
diagonals were set equal to X;; = 1+ 3., (X[ in
order to guarantee that ¥ was symmetric diagonally
dominant. Since X is sparse, this corresponds to ¢ = 0,
i.e., ¥ € Up,,. Theorem 6 then implies that

2
1B = 87118 = 0p (A2 + (072 +0))18°17 + =),

(33)
By using a slight adaptation of Theorem 2, we can see
that in the population setting

1Bex = BIIZ = Op((#2 + X)187]%).  (34)

For the non-sparse case, we took ¥ to be an AR(1)
covariance matrix with p = .7, i.e., %;; = pl*=l. This
is not a diagonally dominant matrix. However the size
of the entries decreases quickly so that, even for small
values of t, we do not need to take A much larger than is
optimal in order to make S; + A\I diagonally dominant.
Note that in our simulations we did not choose A to
make S; + AI diagonally dominant and did not use an
SDD solver in either set of simulations.

For both the sparse and the AR(1) case we took sam-
ple size to be n =1000, 2000, 3000, 5000, 10,000, and

100,000 and set 02 = 100. For each value of n and
p, we found the optimal value of A(¢) for 5 » at each
value of threshold ¢t. We averaged the excess risk of
Be,aey over 10 different samples of X and plotted this
against the value of the threshold. The excess risk for
Bi ) is also shown. As n gets larger, the excess risk
approaches the excess risk of the population estimator.

The computation required to solve the system depends
not directly on the threshold, but on the number of
nonzero entries in S;. In order to illustrate the tradeoff
between computation and risk, for each combination
of n and p we took a single trial and plotted the ex-
cess risk against the proportion of zero entries of S;.
For smaller sample sizes, a small threshold, which only
increases the risk moderately, can greatly increase the
sparsity of S; and therefore decrease the computation
time.

6. Proofs of Technical Results

The main work is in bounding the random design and
thresholding error term in (19). We prove the following
version of Lemma 3:

Lemma 7. Under Assumptions 1 and 2, if ¥ € Uy ¢,

- 2 C
W — Op ({ (2M3(1‘Q)08(p) + gp) (35)

- (colpyi=y 5L cO<p>t1q)2} +— AZ) .

Proof. Starting with the definitions, we have

1Bex — Ball: = (St + AI)TISB* — (S + A1) "'8p* |4
<3| [Se+ADT = (S+ A7 SB|3
+3[(E+ADIS-D)B E. (36)

We can bound the first term using Theorem 2, giving

I[(Se+ AN = (B +AD) SB[ (37)
<IZMS: +AD ™ = (S +AD PS8+

Theorem 2 gives a bound for ||S;* —X~1||, but is easily
adapted to show that ||(S; + M)~ — (X + XI)71|| =
O (ISt + M) — (Z+ AI)||), so the bound stays the
same. Additionally,

ISI* < 2 (ISl + 1% - S|?) (38)

<2[(M'e(p)’ +CE] (39)

for some constant C'. The second inequality follows
from (25) together with concentration bounds for the
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different n and p when X is sparse; the plots on the right

show the excess risk when ¥ is an AR(1) matrix with p = .7. In the first row the risk is plotted against the threshold. In

the second row the risk is plotted against the proportion of zeros in S;.

sample covariance (Vershynin, 2012). Together these
imply that
IS+ 2D~ = (B +AD)THSB*% (40)

=0Op <2M1qco(p) (Mz(lfq)cg(p) + C’%)

-@quw%?+%@quwwﬁ.

Bounding the second term in (36) is straightforward:

I(E+AD7HE =285
<BE+ADTHIE + AD IS = 2)1)18%1

1 »p 9
=0p | ——=8"II" |- 41
e (i) (a)
Together, (40) and (41) give the result. O

In order to handle the stochastic error term in (19),
we make the following definition:

Amin(Z) + A
Ky = (%)

. 42
’ Amin(2) + A = [|S; — X (42)

We can bound K, » in probability directly from The-
orem 2.

Corollary 8. There exists a constant & such that with

probability 1 — 6,

)\min(E) + A
K= 43
P2 Nain (D) F A — S — 2] (43)
Amin(Z) + A
_AWMD+A—EGMWQ %?+%@WQ)

= Ct -

i

The term Cy ) depends on ¢, but that dependence is
suppressed from the notation. It plays a role analogous
to K 5n in (Hsu et al., 2011), and is needed to bound

the following quantity.

Lemma 9. Under assumption 1,
(S +ADY2 (S + ADTHE + A2 || < Kin (44)
and so with probability 1 — 0

(S 4+ ADY2 (S + M) (S + ADY? || < Cpn. (45)

Proof.

(2 + M) 72 (S, + AL (Z+ M) ~/? (46)
=T+ S+ M) Y2 (S 4+ M =S = M) (S +AI)~H?
=T+ (S4+M)"Y2(S =) (R + A2



Computation-Risk Tradeoffs for Covariance-Thresholded Regression

Then we have

Awin(I+ (S +AD) T2 (8= 2) (B+ D7) (47)
=1+ )\min((z + )\1)71/2 (St — E) (E + )\I)*l/Q)
(48)
>1—[[(S+A) (S = D) B+ AT (49)
IS — Z||
=T R ® (50)

By Assumption 1, this lower bound is always positive.
Note that the first inequality is strict unless the matrix
product is not positive definite, in which case Anyin
might be equal in absolute value to the norm.

Since assumption 1 implies that (S;+AI)~! is positive

definite, we have that
(S +ADY2 (S, + M) E + ADY2 (51)
= dmax (S +AD2 (8 + 20071 (£ +ADY) (52)

1
_ 53
Ammin ((ZH—)\I) V2(S, + M) (S + AI)~ 1/2) (53)
Amin ( )+ A
mln(E) HSt*E” -

The final ingredient in the bound of the stochastic er-
ror term is a bound on the Frobenius norm of the \-
whitened version of S — 3. This bound is stated and
proved as Lemma 9 of Hsu et al. (2011).

Lemma 10. With probability at least 1 — 4,

I(E+ MDA = Z)(E+AD)V2||p (54)
EN(D N-1/2X, |14 —
4/3(p3dix + \/d2,x)log(1/6
| 363+ i) g9 -
We now prove a version of Lemma 4.
Lemma 11.
PlIBir = Bual (56)

< o2 tr(M,) 4 20%\/tr(M,
+ 20| M; | log(1/5) | X} >1-5

t)[| M log(1/0)

where,
M, = —=X(S; + A 7IS(S, + M)~ IXT. (57)
Under Assumptions 1 and 2, with probability 1,
2
tr(My) < —* (d2,>\ (58)

a5+ AD)7V2(S — £)(S + A2

Adl,,\Kf’t

M| < (59)

n
where A is a constant such that with probability at least
1—6, [|Z7Y2X;_|? < A.

Such an A will exist because X;_ is sub-Gaussian.
Then the stochastic bounds on tr(M;) and || M| in-
volve only terms for which we already have stochas-
tic bounds via Lemmas 9 and 10. In particular, with
probability 1 — 34,

C2?,d Ady \C?
tr(M,) < %ﬂ and  ||M,]| € ——28A
(60)
Then with probability at least 1 — 46
1Bex = Binll3 (61)
UQCfAdg A N QUQCzApA da xd1,xlog(1/6)

n
202 log(1/8)p3 dl,AC’Z/\

n
—OP< 2dz,\>

Proof. The proof is structured like the proof of Lemma
12 in Hsu et al. (2011). We have that

1Be = Beall® (62)
1
= ||(S¢ + AI)"H(SB* + EXTe) — (St + MI)'sSB*||%
1
=[S+ AN X e f = M (63)

Then by Lemma 14 of Hsu et al. (2011), a general
lemma on sub-Gaussian quadratic forms, conditional
on X, the following bound holds with probability at
least 1 — ¢

1Bex = Benll3: < o”tr(M;) + 20°V/tr(My) [ My [ Tog(1/6)

+20% || My log(1/9). (64)
We can bound || M| by
1 _
[ M| = ﬁ”zl/Q(St +AD)TIXT? (65)
1 a2 —1/2)2
< SIEEELA)T (66)

AN 4 ADY2(S, + AN THE 4+ ADV??
(S 4 AD)T2S2) 12 5K

K2
e (67)
n
KRt N e
=5 1T X | (68)
j=1
Ady \K}
SM- (69)
n
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The last inequality follows from Assumption 2.
Bounding tr(M;) can be done in the same way as in
Hsu et al. (2011), except where they use their Lemma
13, we would use Lemma 9 above. To make the nota-
tion simpler, define:

Yo = (S+AN)TV2R(Z + )TV (70)
Sw = (S+M)TAS(T+ ANV (11)
Siaw = (S +ADTV2S, + AN (S +AD Y2 (72)

Then

(M) = %tr(X(St FADTIS(S + ADTIXT) (73)

1
= Etr((St + AD)TIS(S; + A1) 7LS) (74)
1 a1 & o
= 5tr(Et&,wEth,inw). (75)
Von Neumann’s theorem gives that
tr(i;;\,wiwi;i,wzw) (76)

Under Assumption 1, EA]; )1\ » Will be positive definite
and so we can use Ostrowski’s theorem to say that

NE WS L) € Amax(E )N (Ew). (77)
Thus
(73 Bw Sy g 0 Sw)

< Amax(Z 5 0) DA (E0)A (Zu) (78)

For the final step, notice that

Xj_: Aj(Z0)? = ; (%)2 =dyy (81
and by Mirsky’s theorem

Do) = X(B0)’ < 80 - Sulll (82)

iH(E+>\I)‘1/2(S—E)(Z+)\I)_1/2||%. (83)

Then we get that

K2
¥ ( dox
n

tr(M) <

(84)

+ \/dQ,AH(z +A)-/2(S - D) + AI)—1/2||%>.
0

7. Conclusion

We have presented a framework for trading off risk
for computational efficiency in linear regression. Our
analysis shows how the predictive risk degrades as a
function of a hard threshold parameter and a regular-
ization parameter. As the sparsity level of the thresh-
olded sample covariance increases, the computation
decreases, as analyzed in the recent literature on fast
solvers for SDD systems. This establishes a setting
where a tuning parameter provides a fine-grained way
to tradeoff accuracy for computation.

We have adopted a computational model where the
thresholded covariance S; is given as input, as a sparse
matrix. Of course, straightforward algorithms require
O(np?) computation to compute S = %ZZ X xt.
But this is easily parallelizable, and the cost of the
computation can be amortized across many regres-
sions. Alternatively, provided a sparsity pattern of m
entries, the actual matrix S; can be computed in time
O(nm).

The approach we have introduced here leaves several
interesting possibilities for further work. In particular,
the computation-risk tradeoff we have studied for ridge
regression can be leveraged for other learning prob-
lems. For example, the alternating direction method
of multipliers (ADMM) procedure has been shown to
be an effective algorithm for the optimizations required
in many learning problems, including the lasso, elas-
tic net, and Gaussian graph estimation (Boyd et al.,
2010). In many ADMM algorithms, the proximal pro-

" cedure leads to a form of ridge regression in the iter-

ative step. An interesting future direction is to study
sparsification of these linear systems to obtain faster
solvers, and to analyze the resulting tradeoff in statis-
tical risk.
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