
A New Frontier of Kernel Design for Structured Data

Kilho Shin yshin@ai.u-hyogo.ac.jp

University of Hyogo, 7-1-28 Minatojima-Minami, Kobe 6500047, Japan

Abstract

Many kernels for discretely structured data in
the literature are designed within the frame-
work of the convolution kernel and its gener-
alization, the mapping kernel. The two most
important advantages to use this framework
are an easy-to-check criteria of positive defi-
niteness of the resulting kernels and efficient
computation based on the dynamic program-
ming methodology. On the other hand, the
recent theory of partitionable kernels reveals
that the known kernels only take advantage
of a very small portion of the potential of the
framework. In fact, we have good opportu-
nities to find novel and important kernels in
the unexplored area. In this paper, we shed
light on a novel important class of kernels
within the framework: We give a mathemat-
ical characterization of the class, and then,
based on the characterization, we show a
parametric method to optimize kernels of the
class to specific problems. Also, we present
some experimental results that show that the
new kernels are promising in both accuracy
and efficiency.

1. Introduction

When applying the kernel method to specific prob-
lems, the choice of the kernel to use is critical. First,
the kernel must be positive definite (Berg et al., 1984).
This condition is mandatory not only for a reproduc-
ing kernel Hilbert space to exist but for performing
kernel multivariate analysis, such as SVM. Secondly,
an efficient algorithm to compute the kernel must ex-
ist. Even if these two conditions are met, the choice of
the kernel still impact the results.

Assume that data objects are (row) vectors of real val-

Proceedings of the 30 th International Conference on Ma-
chine Learning, Atlanta, Georgia, USA, 2013. JMLR:
W&CP volume 28. Copyright 2013 by the author(s).

ues of the same dimension, for example. They are in
a common space, and the kernel K(x,y) = xyT is
canonically associated. Although this kernel is posi-
tive definite and efficiently computed, whether we can
obtain good results with this kernel is not certain. We
need a latitude to tune kernels, and the polynomial
and Gaussian kernels provide methods. The polyno-
mial kernel is defined as K(x,y) = (xyT+c)d with the
adjustable parameters c and d, and Gaussian kernel as

K(x,y) = exp
(
−∥x−y∥2

2σ2

)
with the adjustable param-

eter σ. We can optimize these parameters by means
of cross validation and grid search, for example.

Also, the kernel method is good at dealing with data
structured in the form of strings, trees and graphs.
In fact, we have an effective framework to incorporate
structural information of data objects into the design
of kernels. To illustrate, we first see the R-convolution
kernel that Haussler (1999) introduced as follows:

K(x, y) =
∑

(x′,y′)∈R−1(x)×R−1(y)

D∏
d=1

κd(x
′
d, y

′
d).

R ⫅ χ′
1×· · ·×χ′

D×χ is a relation to relate a data object
x ∈ χ to a D-dimensional vector x′ ∈ χ′

1 × · · · × χ′
D,

and κd : χ′
d×χ′

d → R are kernels. Haussler has proved
that K is positive definite, if κd’s are positive definite.

The spectrum kernel (Leslie et al., 2002) is a good ex-
ample of the R-convolution kernel. Given a pair of
strings (x, y), the kernel counts the pairs (x′,y′) of D-
character-long substrings of x and y with x′ = y′. As
an R-convolution kernel, we define it so that

R = {(x′, x) | x ∈ Σ∗,x′ ∈ ΣD,x′ ⫅ x}

and κd(x
′, y′) = δx′,y′ with Kronecker’s delta function.

Shin & Kuboyama (2008) have generalized the R-
convolution kernel to introduce the mapping kernel:

K(x, y) =
∑

(x′,y′)∈Mx,y

|x′|∏
d=1

κ(x′
d, y

′
d).

A New Frontier of Kernel Design for Structured Data

The Cartesian product R−1(x) × R−1(y) is replaced
with arbitrary Mx,y. Also, K is positive definite, if
Mx,y is symmetric ((x′,y′) ∈ Mx,y ⇔ (y′,x′) ∈ My,x)
and transitive ((x′,y′) ∈ Mx,y ∧ (y′,z′) ∈ My,z ⇒
(x′,z′) ∈ Mx,z), and κ is positive definite.

The all-subsequence kernel is an example of the map-
ping kernel. The kernel counts the identical sparse
substring pairs (x′,y′) of variable length with the

weights of λ|x
′|. To define this formally, we let

Mx,y = {(x′,y′) | |x′| = |y′| ,x′ ⫅ x,y′ ⫅ y} (1)

and κ(x′, y′) = λδx′,y′ . Apparently, the family of Mx,y

is symmetric and transitive, and κ is positive definite.
Therefore, this kernel is positive definite.

Another interesting example of the mapping kernel is
derived from the generic framework of edit distance.
Let d(x, y) = minσ:x→y γ(σ) be an edit distance be-
tween objects x and y, where σ : x → y and γ(σ)
denote an edit script from x to y and its cost. As
Cortes et al. (2004) proved for Levenshtein edit dis-
tance, e−λd(x,y) is not always positive definite. By
contrast, when we define a parameterized family of

distances by dλ(x, y) = − 1
λ log

(∑
σ:x→y e

−λγ(σ)
)
for

λ > 0, e−λdλ(x,y) is not only positive definite in most
of cases, but limλ→∞ dλ(x, y) = d(x, y) also holds.
Hence, we define mapping kernels Kλ by

Kλ(x, y) =
e−λdλ(x,y)

e−λ(|x|+|y|) =
∑

(x′,y′)∈Mx,y

|x′|∏
i=1

e−λγ(x′
i→y′

i)+2λ.

Mx,y is the set of mappings (traces) across all
of the edit scripts that transform x into y
(Wagner & Fischer, 1974; Täı, 1979). In the case
of Levenshtein distance, Mx,y is determined by For-
mula (1). Also, γ(x′ → y′) is the cost of substitut-
ing y′ for x′, and we assume that the costs of dele-
tion and insertion are 1. For Levenshtein distance,
and for Täı (Täı, 1979), constrained (Zhang, 1995) and
Lu (Lu, 1979) distances for trees, the family of Mx,y

is symmetric and transitive, and hence, the derived
mapping kernels are positive definite, while this does
not hold true for the less-constrained distance for trees
(Kuboyama et al., 2006).

Many other important kernels in the literature are
also shown to be mapping kernels, including the gap-
sensitive string kernel (Lodhi et al., 2001), the parse
tree kernel (Collins & Duffy, 2001) and the elastic tree
kernel (Kashima & Koyanagi, 2002), and furthermore,
Shin & Kuboyama (2010) reported that 18 of the 19
tree kernels surveyed were mapping kernels.

In the original paper (Shin & Kuboyama, 2008), the
mapping kernel is defined in the more general form of

K(x, y) =
∑

(x′,y′)∈Mx,y

k(x′,y′), (2)

and the following interesting and useful theorem holds.

Theorem 1 (Shin & Kuboyama (2008)) For
Formula (2), the following are equivalent.

1. {Mx,y | x, y ∈ χ} is symmetric and transitive.

2. K is positive definite for any positive definite k.

Nevertheless, the examples in the literature all em-
ploy the restricted setting of k(x′,y′) =

∏
κ(x′

i, y
′
i).

Is this just a coincidence? What if
∑

κ(x′
d, y

′
d),∑

κ(x′
d, y

′
d)

2 or
∏

κ1(x
′
d, y

′
d) · (

∑
κ2(x

′
d, y

′
d)) substi-

tutes for
∏

κ(x′
d, y

′
d)? Answering these questions was

the initial motivation of our research.

The answer to the first question is negative: The set-
ting of k(x′,y′) =

∏
κ(x′

i, y
′
i) is important for com-

putational feasibility of the resulting mapping kernels.
For example, for the all-subsequence kernel and the
kernel derived from Levenshtein distance, Formula (3)
holds thanks to k(x′,y′) =

∏
κ(x′

i, y
′
i), and the for-

mula yields an efficient dynamic-programming-based
algorithm to compute the respective mapping kernels.

K(x, y) =(κ(x1, y1)− 1)K(x \ {x1}, y \ {y1})
+K(x \ {x1}, y) +K(x, y \ {y1}) (3)

To answer the second question, we need the theory of
partitionable kernels that Shin (2011) has developed.
The theory defines partitionable kernels so that, if a
partitionable kernel is specified for the inner kernel k
of a mapping kernel, and ifMx,y meets a certain condi-
tion, the mapping kernel has a set of recurrence formu-
las to compute itself. All of

∏
κ(x′

d, y
′
d),
∑

κ(x′
d, y

′
d),∑

κ(x′
d, y

′
d)

2 and
∏

κ1(x
′
d, y

′
d) · (

∑
κ2(x

′
d, y

′
d)) are ex-

amples of the partitionable kernel.

Furthermore, each partitionable kernel is associated
with a unique non-negative integer, named hidden de-
gree, and a partitionable kernel of hidden degree h
is defined through association with other h − 1 par-
titionable kernels (Definition 2). In other words, if
h > 1, whether a given string kernel is partitionable
is not always an easy question to answer, since it re-
quires to find the remaining (hidden) associated ker-
nels. Contrarily, a kernel k is a partitionable kernel of
hidden degree one, if, and only if, it is of the form of

k(x′,y′) = λ1−|x′|∏|x′|
d=1 κ(x

′
d, y

′
d). The hidden degree

A New Frontier of Kernel Design for Structured Data

also relates to computational complexity of mapping
kernels: Approximately, a mapping kernel defined with
a partitionable kernel of hidden degree h has h times
greater complexity than when h = 1.

We have two findings from the above. First, all of the
examples of mapping kernels in the literature merely
take advantage of the easiest portion of the entire par-
titionable kernels, that is, the class of partitionable
kernels of hidden degree one.

Secondly, the research of partitionable kernels of hid-
den degree two is significantly attractive for two rea-
sons: It is an exploration to a new frontier of kernel
design, and we have good opportunities to discover
novel important kernels; Mapping kernels for hidden
degree two will be merely twice slower than the map-
ping kernels known so far in the literature.

Nevertheless, it is also a fact that we have a problem
to solve: The space of partitionable kernels of hidden
degree two might be too broad to find good kernels.
Since partitionable kernels of hidden degree one are

characterized to be k(x′,y′) = λ1−|x′|∏|x′|
d=1 κ(x

′
d, y

′
d),

we can perform an efficient linear search on λ to find
optimal kernels. By contrast, no such a characteriza-
tion is known for hidden degree two.

To solve this problem, we start with giving a math-
ematical characterization to the partitionable kernels
of hidden degree two. In fact, our main theorem (The-
orem 4) asserts: Any partitionable kernel κ of hidden
degree two belongs to one of three types; Furthermore,
a normal form pair (κ̃1, κ̃2) of partitionable kernels is
determined according to the type to which κ belongs,
and κ = aκ̃1 + bκ̃2 holds for some a, b ∈ R; (κ̃1, κ̃2)
includes at most one adjustable parameter β.

Interestingly, this theorem presents an efficient method
to tune partitionable kernels of hidden degree two:
We first divide the entire space for hidden degree two
into three subspaces, each of which corresponds to one
of the three types, and then evaluate cross validation
scores for tκ̃1 + (1− t)κ̃2 changing t in each subspace.
Thus, if (κ̃1, κ̃2) includes the parameter β, we can find
optimal kernels by means of the two-dimensional grid
search on t and β, for example. Otherwise, the faster
linear search on t can apply.

2. The theory of partitionable kernels

In this section, we outline the theory introduced by
Shin (2011), while Lemma 1 is a new result.

Like many other string kernels in the literature, a
partitionable kernel compares two strings of the same

length. Such a string kernel, called an integral kernel
for convenience, is represented as a series of kernels
κ[∗] = {κ[i] : Σi × Σi −→ R | i ∈ {0} ∪ N}. Σ is an
alphabet, and Σ0 is the singleton set of the null string
{∅}. A partitionable kernel is an integral kernel that
meets the condition specified in Definition 2, based on
the notion of partitions of string pairs (Definition 1).

Definition 1 Let x = x1 . . . xk ∈ Σk and y =
y1 . . . yk ∈ Σk. A two-partition of (x,y) is a pair
of string pairs ((xL,yL), (xR,yR)) such that xL =
x1 . . . xj, yL = y1 . . . yj, xR = xj+1 . . . xk and yR =
yj+1 . . . yk for some 0 ≤ j ≤ k. If j = 0, xL = yL = ∅;
If j = k, xR = yR = ∅.

For a family of integral kernels κ = (κ
[∗]
1 , . . . κ

[∗]
n), we

let κ[k](x,y) denote the n-dimensional row vector of

kernels
(
κ
[k]
1 (x,y), . . . , κ

[k]
n (x,y)

)
.

Definition 2 A family of integral kernels κ is said
to be partitionable, if, and only if, there exist n-
dimensional square matrices Q1, . . . ,Qn such that

κ
[k]
i (x,y) =

(
κ[|x

L|](xL,yL)
)
Qi

(
κ[|x

R|](xR,yR)
)
T

for ∀i = 1, . . . , n, ∀k ≥ 0, ∀x ∈ Σk, ∀y ∈ Σk and
∀((xL,yL), (xR,yR)), a two-partition of (x,y).

When an integral kernel κ[∗] is a member of a parti-
tionable family of integral kernels, we simply say that
κ[∗] is partitionable. Furthermore, if κ[∗] is partition-
able, we define its hidden degree, denoted by hd(κ[∗]),
as the minimum of n such that κ[∗] is a member of a
partitionable kernel family (κ

[∗]
1 , κ

[∗]
2 . . . , κ

[∗]
n). For the

constant function κ[∗] ≡ 0, we define hd(κ[∗]) = 0.

The partitionable kernel class is abundant, that is, in-
cludes an infinite number of instances.

Example 1 e
[∗]
0 , e

[∗]
1 , . . . , e

[∗]
∞ defined below are parti-

tionable, where κ : Σ× Σ → R is an arbitrary kernel.

e
[k]
d (x,y) =

1, if d = 0,

0, if d > k,∑
1≤i1<···<id≤k

d∏
j=1

κ(xij , yij), if 0 < d ≤ k,

e[k]∞ (x,y) =
k∏

i=1

κ(xi, yi).

Evidently, e
[k]
d is the elementary symmetric polyno-

mial of degree d over κ(x1, y1), . . . , κ(xk, yk), and

e
[∗]
d (x,y) =

∑
i+j=d e

[∗]
i (xL,yL) · e

[∗]
j (xR,yR) and

e
[∗]
∞(x,y) = e

[∗]
∞(xL,yL) · e[∗]∞(xR,yR) hold. Thus, we

have hd(e
[∗]
d) = d+ 1 and hd(e

[∗]
∞) = 1.

A New Frontier of Kernel Design for Structured Data

Example 2 illustrates the relation between partition-
able kernels and computation of mapping kernels.

Example 2 We determine Mx,y by Formula (1), and

let Kd(x, y) =
∑

(x′,y′)∈Mx,y
e
[∗]
d (x′,y′). Then,

Kd(x, y) =
∑

(x′,y′)∈M◦
x,y

e
[∗]
d (x′,y′) +Kd(x \ {x1}, y)

+Kd(x, y \ {y1})−Kd(x \ {x1}, y \ {y1})

holds, for the first characters x1 and y1 of x and y,
and M◦

x,y = {(x1x
′, y1y

′) | (x′,y′) ∈ Mx\{x1},y\{y1}}.
To obtain recurrence formulas to compute Kd, we need
to evaluate the first term. When d = ∞,∑
(x′,y′)∈M◦

x,y

e[∗]∞(x′,y′) = κ(x1, y1)K∞(x \ {x1}, y \ {y1})

follows from e
[∗]
∞(x1x

′, y1y
′) = κ(x1, y1)e

[∗]
∞(x′,y′).

Thus, we obtain Formula (3). For d = 0,∑
(x′,y′)∈M◦

x,y

e
[∗]
0 (x′,y′) = K0(x \ {x1}, y \ {y1}).

apparently holds. For d > 0,∑
(x′,y′)∈M◦

x,y

e
[∗]
d (x′,y′) = Kd(x \ {x1}, y \ {y1})

+ κ(x1, y1)Kd−1(x \ {x1}, y \ {y1}).

follows from e
[∗]
d (x1x

′, y1y
′) = e

[1]
0 (x1, y1)e

[∗]
d (x′,y′) +

e
[1]
1 (x1, y1)e

[∗]
d−1(x

′,y′). Thus, to compute Kd, we have
to compute K0, . . . ,Kd−1 together.

Theorem 2 generalizes the results of Example 2.

Theorem 2 (Shin (2011, Theorem 3)) Let Mx,y

be pretty decomposable and (κ
[∗]
1 , . . . , κ

[∗]
n) be a parti-

tionable kernel family. There exists a set of recurrence
formulas that reduces the computation of

Ki(x, y) =
∑

(x′,y′)∈Mx,y

κ
[∗]
i (x′,y′) for i = 1, . . . , n

to the computation of Kij (xj , yj) with j = 1, . . . , N
and ij ∈ {1, . . . , n}, such that at least one of xj and
yj is smaller than x or y.

Intuitively speaking, if a family of Mx,y is pretty de-
composable, any member Mx,y can be decomposed
into one or more Mxj ,yj

such that at least one of xj

and yj is smaller than x or y, and Mxj ,yj
’s are com-

bined with each other by means of the set union ∪
and the string concatenation ∥: For two string x′ and

x′′, x′∥x′′ means the canonical concatenation of x′

and x′′; For two sets S′ and S′′ of strings, we let
S′∥S′′ = {x′∥x′′ | x′ ∈ S′,x′′ ∈ S′′}. For example,
Mx,y by Formula (1) can be decomposed as

Mx,y =
(
Mx1,y1

∥Mx\{x1},y\{y1}

)
∪Mx,y\{y1}∪Mx\{x1},y.

For the formal definition, we ask the reader to refer
to Shin (2011, Definition 6). Furthermore, the follow-
ing are important to note: Almost all of the kernels
in the literature categorized as mapping kernels have
recurrence formulas due to Theorem 2, and the recur-
sive formulas can be explicitly derived from Qi (Shin,

2011, Lemma 1); If (κ
[∗]
1 , . . . , κ

[∗]
n) is a minimal par-

titionable family, we need to compute K1, . . . ,Kn si-

multaneously, where Ki is determined by κ
[∗]
i ; Hence,

hd(κ[∗]) is a factor to determine the complexity to com-
pute the mapping kernel K determined by κ[∗].

Partitionable string kernels have many other good
properties: The space of partitionable kernels is closed
under addition, scalar multiplication and multiplica-
tion; In particular, hd(κ[∗]+λ[∗]) ≤ hd(κ[∗])+hd(λ[∗]),
hd(cκ[∗]) = hd(κ[∗]) and hd(κ[∗] · λ[∗]) ≤ hd(κ[∗]) ·
hd(λ[∗]) hold; If κ

[1]
1 , . . . , κ

[1]
n are all positive definite

and Qi’s are all non-negative, κ
[∗]
1 , . . . , κ

[∗]
n are all pos-

itive definite; If Qi’s are all symmetric, κ
[∗]
1 , . . . , κ

[∗]
n

are all symmetric, that is, κ
[k]
i (x1 . . . xk, y1 . . . yk) =

κ
[k]
i (xσ(1) . . . xσ(k), yσ(1) . . . yσ(k)) holds for arbitrary k

and permutation σ ∈ Sk.

In addition, Theorem 3 characterizes the partitionable
kernels of hidden degree one.

Theorem 3 (Theorem 2, (Shin, 2011))
hd(κ[∗]) = 1, if, and only if, κ[k](x,y) =

(κ[0])1−k
∏k

i=1 κ
[1](xi, yi).

Lemma 1 is a new result, and asserts that κ
[k]
i (x,y) is

a homogeneous polynomial in κ
[1]
j (xℓ, yℓ).

Lemma 1 For a partitionable family (κ
[∗]
1 , . . . , κ

[∗]
n)

with associated matrices Q1, . . . ,Qn, the following
holds for k > 2, where Qi[a, b] denotes the (a, b)-
element of Qi.

κ
[k]
i (x,y) =

n∑
j1=1

· · ·
n∑

jk=1

[
k∏

b=1

κ
[1]
jb
(xb, yb) ·

(
n∑

ℓ1=1

· · ·
n∑

ℓk−2=1

Qi[j1, ℓ1] ·
k−2∏
a=2

Qℓa−1 [ja, ℓa] ·Qℓk−2
[jk−1, jk]

)]

Proof. Follows from κ
[k]
i = κ[1]Qi

(
κ[k−1]

)
T and the

mathematical induction on k. □

A New Frontier of Kernel Design for Structured Data

Table 1. Definition of κ̃1 and κ̃2

Type I

ci:j1,...,jk =

1, if k = 0;

1, if k ≥ 1 and j1 = · · · = jk = i;

0, otherwise.

Type II

c1:j1,...,jk =

1, if k = 0;

β
o2(j1...,jk)

2 , if k ≥ 1 and 2 | o2(j1, . . . , jk);
0, if k ≥ 1 and 2 ∤ o2(j1, . . . , jk).

c2:j1,...,jk =

{
β

o2(j1,...,jk)−1

2 , if k ≥ 1 and 2 ∤ o2(j1, . . . , jk);
0, otherwise.

Type III

c1:j1,...,jk = 1 for o2(j1, . . . , jk) = 0;
c1:j1,...,jk = βFo2(j1,...,jk)−2(β) for o2(j1, . . . , jk) > 0.
c2:j1,...,jk = Fo2(j1,...,jk)−1(β).

F−2(x) =
1
x
, F−1(x) = 0, Fn(x) = Fn−1(x) + xFn−2(x)

Table 2. Q1 and Q2 for Type I, II and III

Type I Type II Type III

Q1 =

[
1 0
0 0

] [
1 0
0 β

] [
1 0
0 β

]
Q2 =

[
0 0
0 1

] [
0 1
1 0

] [
0 1
1 1

]

3. Characterization of partitionable
kernels with hidden degree two

3.1. The main theorem

Although partitionable kernels with hidden degree
higher than one will definitely produce novel mapping
kernels, too high hidden degrees will result in compu-
tationally unfeasible mapping kernels. This motivates
us to study the case of hidden degree two.

Theorem 4 If κ[∗] is partitionable with hidden de-
gree two, κ[∗] is a linear combination of a kernel pair

(κ̃
[∗]
1 , κ̃

[∗]
2) of Type I, Type II or Type III determined by

Table 1 and 2. We use the following notation:

κ̃
[k]
i (x,y) =

∑
(j1,...,jk)∈{1,2}k

ci:j1,...,jk κ̃
[1]
j1
(x1, y1) · · · κ̃[1]

jk
(xk, yk)

o2(j1, . . . , jk) = |{ℓ | jℓ = 2, ℓ = 1, . . . , k}| and

F−2(x) =
1

x
, F−1(x) = 0,

Fn(x) = Fn−1(x) + xFn−2(x) for n ≥ 0.

Example 3 The kernel e
[∗]
1 (x,y) =

∑∗
i=1 κ(xi, yi) is

a partitionable kernel of hidden degree two, and belongs

to Type II. In fact, if we let β = 0, κ̃
[1]
1 = 1 and

κ̃
[1]
2 = κ, we have κ̃

[∗]
1 = e

[∗]
0 and κ̃

[∗]
2 = e

[∗]
1 .

Example 4 The kernel (e
[∗]
∞ · e

[∗]
1)(x,y) =∏∗

i=1 κ1(xi, yi)
(∑∗

i=1 κ2(xi, yi)
)

is also a parti-
tionable kernel of hidden degree two, and belongs

to Type II. In fact, if we let β = 0, κ̃
[1]
1 = κ1 and

κ̃
[1]
2 = κ1κ2, we have κ̃

[∗]
1 = e

[∗]
∞ and κ̃

[∗]
2 = e

[∗]
∞ · e[∗]1 .

3.2. Preliminaries

We show some preliminary results that we will use to
prove Theorem 4.

When kernels forming a partitionable family are lin-
early transformed, the conversion rules for the associ-
ated matrices are given as follows.

Lemma 2 For a partitionable kernel family

(κ
[∗]
1 , . . . , κ

[∗]
n), we replace κ

[∗]
1 with κ̃[∗] =

∑n
i=1 aiκ

[∗]
i

such that a1 ̸= 0. Further, we let

Q′
i[1, 1] =

Qi[1, 1]

a21
, Q′

i[j, 1] =
Qi[j, 1]

a1
− ajQi[1, 1]

a21

Q′
i[1, k] =

Qi[1, k]

a1
− akQi[1, 1]

a21
and

Q′
i[j, k] = Qi[j, k]−

ajQi[1, k]

a1
− akQi[j, 1]

a1

+
ajakQi[1, 1]

a21
for 2 ≤ j, k ≤ n.

Then, the kernel family (κ̃[∗], κ
[∗]
2 , . . . , κ

[∗]
n) is also par-

titionable with associated matrices Q̃1, . . . , Q̃n deter-
mined by Q̃1 =

∑n
i=0 aiQ

′
i and Q̃i = Q′

i for i =
2, . . . , n.

The following lemmas show important properties of
Q1 and Q2 assuming n = 2. Their proofs are given in
Appendix Appendix A and Appendix B.

Lemma 3 If hd(κ[∗]) = 2, Q1 and Q2 are symmetric.

Lemma 4 If hd(κ[∗]) = 2, there exists a partitionable

kernel family (κ
[∗]
1 , κ

[∗]
2) such that κ[∗] is a linear com-

bination of κ
[∗]
1 and κ

[∗]
2 , and the associated matrix Q1

is diagonal.

3.3. A proof to Theorem 4

By Lemma 4, κ[∗] is a linear combination of some par-

titionable kernel family (κ
[∗]
1 , κ

[∗]
2) with Q1 =

[
α 0
0 β

]
and Q2 =

[
δ ϕ
ϕ ϵ

]
. First, α ̸= 0 holds, since hd(κ[∗]) =

A New Frontier of Kernel Design for Structured Data

1 would follow from κ
[∗]
1 = κ

[0]
2 βκ

[∗]
2 , otherwise. Sec-

ondly, we can assume α = 1, since we can modify Q1

into Q1 =

[
1 0
0 αβ

]
by replacing κ

[∗]
1 with ακ

[∗]
1 . As-

suming α = 1, we evaluate κ
[3]
1 in two different ways

as follows.

κ
[3]
1 (x,y) = κ

[2]
1 ((x1, x2), (y1, y2))κ

[1]
1 (x3, y3)

+ βκ
[2]
2 ((x1, x2), (y1, y2))κ

[1]
2 (x3, y3)

= κ
[1]
1 (x1, y1)κ

[1]
1 (x2, y2)κ

[1]
1 (x3, y3)

+ βκ
[1]
2 (x1, y1)κ

[1]
2 (x2, y2)κ

[1]
1 (x3, y3)

+ βδκ
[1]
1 (x1, y1)κ

[1]
1 (x2, y2)κ

[1]
2 (x3, y3)

+ βϕκ
[1]
1 (x1, y1)κ

[1]
2 (x2, y2)κ

[1]
2 (x3, y3)

+ βϕκ
[1]
2 (x1, y1)κ

[1]
1 (x2, y2)κ

[1]
2 (x3, y3)

+ βϵκ
[1]
2 (x1, y1)κ

[1]
2 (x2, y2)κ

[1]
2 (x3, y3)

κ
[3]
1 (x,y) = κ

[1]
1 (x1, y1)κ

[2]
1 ((x2, x3), (y2, y3))

+ βκ
[1]
2 (x1, y1)κ

[2]
2 ((x2, x3), (y2, y3))

= κ
[1]
1 (x1, y1)κ

[1]
1 (x2, y2)κ

[1]
1 (x3, y3)

+ βκ
[1]
1 (x1, y1)κ

[1]
2 (x2, y2)κ

[1]
2 (x3, y3)

+ βδκ
[1]
2 (x1, y1)κ

[1]
1 (x2, y2)κ

[1]
1 (x3, y3)

+ βϕκ
[1]
2 (x1, y1)κ

[1]
1 (x2, y2)κ

[1]
2 (x3, y3)

+ βϕκ
[1]
2 (x1, y1)κ

[1]
2 (x2, y2)κ

[1]
1 (x3, y3)

+ βϵκ
[1]
2 (x1, y1)κ

[1]
2 (x2, y2)κ

[1]
2 (x3, y3)

By comparing the coefficients of the terms, we obtain
β = βϕ and βδ = 0. In the same way, we can obtain

βδ = 0 and ϕ(ϕ− 1) = ϵδ, by evaluating κ
[3]
2 . Finally,

we have two cases to investigate: Case 1. β = 0 and
ϕ(ϕ − 1) = ϵδ; Case 2. β ̸= 0, δ = 0 and ϕ = 1. We
investigate these cases.

Case 1. If ϵ ̸= 0, we replace κ
[∗]
2 with ϕκ

[∗]
1 +

ϵκ
[∗]
2 . Due to Lemma 2, Q2 is converted into Q2 =[
ϕ+ δϵ− ϕ2 0

0 1

]
=

[
0 0
0 1

]
. This yields Type I.

If ϵ = 0, ϕ = 1 follows from ϕ(ϕ− 1) = ϵδ. We convert

Q2 into Q2 =

[
δ − 2δ + δ 1

1 0

]
=

[
0 1
1 0

]
by replacing

κ
[∗]
2 with δκ

[∗]
1 + κ

[∗]
2 . This is a special case of Type II.

Case 2. Since ϵ = 0 indicates Type II, we investigate

the case of ϵ ̸= 0. We can convertQ2 intoQ2 =

[
0 1
1 1

]
by replacing κ

[∗]
2 with ϵκ

[∗]
2 . This yields Type III.

The assertion on ci:j1,...,jk for Type I is a corollary
to Theorem 3. On the other hand, the assertions for
Type II and Type III can be verified by mathematical
induction on k.

Type II. For x′ = x′′x′
k and y′ = y′′y′k, we have

κ̃
[k]
1 (x′,y′) =

κ̃
[k−1]
1 (x′′,y′′)κ̃

[1]
1 (x′

k, y
′
k) + βκ̃

[k−1]
2 (x′′,y′′)κ̃

[1]
2 (x′

k, y
′
k),

κ̃
[k]
2 (x′,y′) =

κ̃
[k−1]
1 (x′′,y′′)κ̃

[1]
2 (x′

k, y
′
k) + κ̃

[k−1]
2 (x′′,y′′)κ̃

[1]
1 (x′

k, y
′
k).

If jk = 1, ci:j1,...,jk = ci:j1,...,jk−1
and

o2(j1, . . . , jk) = o2(j1, . . . , jk−1) hold, and, if jk = 2,
c1:j1,...,jk = βc2:j1,...,jk−1

, c2:j1,...,jk = c1:j1,...,jk−1
and

o2(j1, . . . , jk) = o2(j1, . . . , jk−1) + 1 hold. Hence, the
assertion follows from the hypothesis of induction.

Type III. In the same way, we have

κ̃
[k]
1 (x′,y′) =

κ̃
[k−1]
1 (x′′,y′′)κ̃

[1]
1 (x′

k, y
′
k) + βκ̃

[k−1]
2 (x′′,y′′)κ̃

[1]
2 (x′

k, y
′
k),

κ̃
[k]
2 (x′,y′) = κ̃

[k−1]
1 (x′′,y′′)κ̃

[1]
2 (x′

k, y
′
k)

+ κ̃
[k−1]
2 (x′′,y′′)κ̃

[1]
1 (x′

k, y
′
k) + κ̃

[k−1]
2 (x′′,y′′)κ̃

[1]
2 (x′

k, y
′
k).

If jk = 1, ci:j1,...,jk = ci:j1,...,jk−1
and o2(j1, . . . , jk) =

o2(j1, . . . , jk−1) hold, and, if jk = 2, c1:j1,...,jk =
βc2:j1,...,jk−1

, c2:j1,...,jk = c1:j1,...,jk−1
+ c2:j1,...,jk−1

and
o2(j1, . . . , jk) = o2(j1, . . . , jk−1) + 1 hold. Hence, the
assertion follows from the hypothesis of induction. In
particular, if jk = 2, we have the following by the re-
currence formula with respect to Fn(x).

c2:j1,...,jk = βFo2(j1,...,jk)−3(β) + Fo2(j1,...,jk)−2(β)

= Fo2(j1,...,jk)−1(β)

4. How to tune kernels

Theorem 4 asserts that a partitionable kernel κ[∗]

with hidden degree two is determined by the follow-
ing parameters: Type, a pair of character-wise ker-

nels (κ̃
[1]
1 , κ̃

[1]
2), β to define κ̃

[∗]
1 and κ̃

[∗]
2 , if Type II or

Type III is chosen, and t of κ[∗] = tκ̃
[∗]
1 + (1− t)κ̃

[∗]
1 .

To tune kernels, we first select κ̃
[1]
1 and κ̃

[1]
2 , and then

to search optimal t and β.

4.1. Selecting κ̃
[1]
1 and κ̃

[1]
2

The character-wise (label) kernels that are used in
the literature are limited: Constant functions λ, Kro-
necker’s delta function δx′,y′ and their multiplication

A New Frontier of Kernel Design for Structured Data

λδx′,y′ are the most common, and Gaussian function

e−
|x′−y′|2

2σ2 can be used, when labels are real numbers.

Since our target kernel is a linear combination of κ̃
[∗]
1

and κ̃
[∗]
2 , it is natural to select κ̃

[1]
1 and κ̃

[1]
2 from these

common candidates.

For example, let Mx,y be the one defined for the all-
subsequence kernel (Section 1), and hence, (x′,y′) ∈
Mx,y is a pair of substrings such that |x′| = |y′| = k. If

we let κ̃
[1]
2 (x′, y′) = δx′,y′ in Example 3, κ̃

[k]
2 (x′,y′) =∑k

i=1 δx′
i,y

′
i
gives the number of the identical charac-

ter pairs between x′ and y′. Hence, the resulting
mapping kernel counts the pairs of substring pairs of
the same length using the number of identical char-
acter pairs as weights, whereas the all-subsequence
kernel uses λk as weights. In the same way, if we

let κ̃
[1]
1 (x′, y′) = κ̃

[1]
2 (x′, y′) = λδx′,y′ in Example 4,

κ̃
[k]
2 (x′,y′) = λk ·

∏k
i=1 δx′

i,y
′
i
·
(∑k

i=1 1
)

holds, and

hence, we have κ̃
[k]
2 (x′,y′) = λk · k, if x′ = y′, and

κ̃
[k]
2 (x′,y′) = 0, otherwise.

4.2. Searching optimal t and β

After determining κ̃1 and κ̃2, the combination of cross
validation and grid search will be effective to search op-
timal values for adjustable parameters (Chang & Lin,
2001).

For this purpose, it is desirable to calculate Gram ma-

trices of κ̃
[1]
1 and κ̃

[1]
2 collectively, so that the elements

are polynomials in β rather than simple numeric val-
ues. This significantly improves the efficiency of the
search, since we can avoid recalculating kernel val-
ues with expensive dynamic-programming-based algo-
rithms, whenever the value of β is changed.

To perform cross validation, we assume to use C-SVM
in this paper. Thus, the adjustable parameters that
we can change include t, β and the regularization pa-
rameter C of C-SVM. In addition, if we use adjustable

character-wise kernels for κ̃
[1]
i , such as λδx′,y′ , the as-

sociated parameters can be included.

When the number of the adjustable parameters to ex-
amine is d, we perform the d-dimensional grid search.
The most significant advantage of using the grid search
consists in the fact that we can take advantage of par-
allel computation to accelerate the search.

5. Empirical result

It is important to answer when and how mapping
kernels with the novel partitionable kernels that we
study in this paper are effective. Although large-

scale experiments are necessary to answer this ques-
tion, we only ran a preliminary experiment, using
three datasets retrieved from the KEGG/GLYCAN
database (Hashimoto et al., 2006), which contain gly-
can structures, represented as rooted ordered trees and
annotated relating to colon cancer, cystic fibrosis and
leukemia cells. Table 3 describes these datasets. The
size of a tree is the number of the vertices, the height
is the length of the longest downward path, and the
degree is the maximum number of child vertices.

We use five kernels for trees, referred to as
Count, Weighted, Type I, II and III. Count
counts the identical pairs of substructures (forests)

(KCnt =
∑

(x′,y′)∈Mx,y

∏|x′|
i=1 δx′

i,y
′
i
), while Weighted

counts the same substructure pairs with the de-
cay factor 1

2 (Kuboyama et al., 2006) (KWght =∑
(x′,y′)∈Mx,y

∏|x′|
i=1

1
2δx′

i,y
′
i
). Mx,y denotes the set of

isomorphic substructure pairs. On the other hand,
Type I (tKTi,1 + (1 − t)KTi,2), Type II (tKTii,1 +
(1 − t)KTii,2) and Type III (tKTiii,1 + (1 − t)KTiii,2)
are mapping kernels defined with partitionable kernels
of hidden degree two, whose specification is given in
Table 4. To make the experiment simple, we assume
β = 0, instead of searching an optimal value for β.

The steps of the experiment are as follows: We ran-
domly generate five pairs of training and test data
subsets from each dataset, train C-SVM with the
training subsets, and then measure AUC (Area Un-
der Curve) of ROC (Receiver Operation Characteris-
tic) curve with the test subsets. During training C-
SVM, we optimize the regularization parameter C for
C-SVM, and the parameter t for theType I, II and III
kernels, by means of cross validation and grid search.

Table 5 shows the results. We should note that Type
II showed good performance for Cystic-Fibrosis, while
the other kernels could show only poor performance.
Cystic-Fibrosis is characterized by the highest average
degree, and hence, contains trees with more compli-
cated structures than the other two datasets.

The runtime scores with MacBook Air show thatType
I, II and III were 5 times slower than the others on
average: Type I, II and III commonly took around
20, 30 and 600 seconds to generate the Gram matri-
ces for Colon-Cancer, Cystic-Fibrosis and Leukemia,
respectively.

6. Future work

Characterizing the class of partitionable kernels with
hidden degree three still interests us. Also, intensive
experiments using a variety of datasets will justify the

A New Frontier of Kernel Design for Structured Data

Table 3. Features of the datasets used

Dataset # of Examples Average Size Average Height Average Degree

Colon-Cancer 134 8.4 5.6 1.46
Cystic-Fibrosis 160 8.3 5.0 1.52
Leukemia 442 13.5 7.4 1.42

Table 4. Definitions of the partitionable kernels used

Kernels κ̃
[1]
1 κ̃

[1]
2 β Details (Mx,y is the set of isomorphic subforest pairs)

Type I δx′,y′ 1 N/A KTi,1(x, y) = KCnt(x, y),KTi,2(x, y) =
∑

(x′,y′)∈Mx,y

1

Type II δx′,y′ δx′,y′ 0.0 KTii,1(x, y) = KCnt(x, y),KTii,2(x, y) =
∑

(x′,y′)∈Mx,y

∣∣x′∣∣ · |x′|∏
i=1

δx′
i,y

′
i

Type III δx′,y′ δx′,y′ 0.0 KTiii,1(x, y) = KCnt(x, y),KTiii,2(x, y) =
∑

(x′,y′)∈Mx,y

(
2|x

′| − 1
)
·
|x′|∏
i=1

δx′
i,y

′
i

Table 5. Average AUC-ROC

Dataset Count Weighted Type I Type II Type III

Colon-Cancer 0.941 0.940 0.941 0.903 0.864
Cystic-Fibrosis 0.735 0.745 0.738 0.796 0.756
Leukemia 0.937 0.937 0.937 0.892 0.856

effectiveness of partitionable kernels.

Appendix A. A proof to Lemma 3

Since
(
κ
[0]
1 κ

[1]
2 − κ

[0]
2 κ

[1]
1

)
(Qi[1, 2]−Qi[2, 1]) = 0

follows from κ
[1]
i =

(
κ
[1]
1 , κ

[1]
2

)
Qi

(
κ
[0]
1 , κ

[0]
2

)
T =(

κ
[0]
1 , κ

[0]
2

)
Qi

(
κ
[1]
1 , κ

[1]
2

)
T, it suffices to prove the as-

sertion assuming κ
[0]
1 κ

[1]
2 − κ

[0]
2 κ

[1]
1 = 0 and κ[∗]01 ̸= 0.

We claim κ
[0]
1 κ

[k]
2 − κ

[0]
2 κ

[k]
1 = 0, and prove it by math-

ematical induction on k: If this claim is true, κ
[∗]
1 and

κ
[∗]
2 are linearly dependent, and we can letQi diagonal.

By the hypothesis of induction we have

κ
[k]
i =

(
κ
[1]
1 , κ

[1]
2

)
Qi

(
κ
[k−1]
1 , κ

[k−1]
2

)
T

=
κ
[1]
1

κ
[0]
1

·
(
κ
[0]
1 , κ

[0]
2

)
Qi

(
κ
[1]
0 , κ

[0]
2

)
T · κ

[k−1]
1

κ
[0]
1

The claim follows, as (κ
[0]
1 , κ

[0]
2)Qi(κ

[0]
1 , κ

[0]
2)T = κ

[0]
i .

Appendix B. A proof to Lemma 4

Let (κ
[∗]
1 = κ[∗], κ

[∗]
2) be a partitionable kernel family

with Q1 =

[
α, γ
γ, β

]
and Q2 =

[
δ, ϕ
ϕ, ϵ

]
.

If β ̸= 0, by Lemma 2, we see that replacing κ
[∗]
2 with

γ
βκ

[∗]
1 + κ

[∗]
2 transforms Q1 into

Q1 = Q′
1 =

[
α− 2 γ

β γ + γ2

β2 β γ − γ
ββ

γ − γ
ββ β

]
=

[detQ1

β 0

0 β

]
.

If β = 0, replacing κ
[∗]
1 with κ

[∗]
1 +xκ

[∗]
2 transforms Q1

into Q1 = Q′
1 + xQ′

2, where

Q′
1 =

[
α γ − xα

γ − xα −2xγ + x2α

]
and

Q′
2 =

[
δ ϕ− xδ

ϕ− xδ ϵ− 2xϕ+ x2δ

]
.

In particular, we haveQ1[2, 2] = δx3+(α−2ϕ)x2+(ϵ−
2γ)x. If δ2 + (α− 2ϕ)2 + (ϵ− 2γ)2 ̸= 0, we can choose
x so that Q1[2, 2] ̸= 0, and we can reduce the current

case to the case of β ̸= 0. Otherwise, by replacing κ
[∗]
1

with κ
[∗]
1 + γ

ϕκ
[∗]
2 (if ϕ = 0, there is nothing to prove),

we obtain

Q′
1 =

[
α γ − αγ

ϕ

γ − αγ
ϕ −2γ2

ϕ + αγ2

ϕ2

]
=

[
α −γ
−γ 0

]
and

Q′
2 =

[
0 ϕ

ϕ ϵ− 2γϕ
ϕ

]
=

[
0 ϕ
ϕ 0

]
.

Hence, Q1 is modified to

Q′
1 +

γ

ϕ
Q′

2 =

[
α −γ + ϕγ

ϕ

−γ + ϕγ
ϕ 0

]
=

[
α 0
0 0

]
.

A New Frontier of Kernel Design for Structured Data

References

Berg, C., Christensen, J. P. R., and Ressel, R. Har-
monic Analysis on semigroups. Theory of positive
definite and related functions. Springer, 1984.

Chang, C.-C. and Lin, C.-J. Libsvm:
a library for support vector machines.
http://www.csie.ntu.edu.tw/˜cjlin/libsvm/, 2001.

Collins, M. and Duffy, N. Convolution kernels for nat-
ural language. In Advances in Neural Information
Processing Systems 14 [Neural Information Process-
ing Systems: Natural and Synthetic, NIPS 2001],
pp. 625–632. MIT Press, 2001.

Cortes, C., Haffner, P., and Mohri, M. Rational ker-
nels: Theory and algorithm. Journal of Machine
Learning Research, 1:1–50, 2004.

Hashimoto, K., Goto, S., Kawano, S., Aoki-Kinoshita,
K. F., and Ueda, N. Kegg as a glycome informatics
resource. Glycobiology, 16:63R – 70R, 2006.

Haussler, D. Convolution kernels on discrete struc-
tures. UCSC-CRL 99-10, Dept. of Computer Sci-
ence, University of California at Santa Cruz, 1999.

Kashima, H. and Koyanagi, T. Kernels for semi-
structured data. In the 9th International Conference
on Machine Learning (ICML 2002), pp. 291–298,
2002.

Kuboyama, T., Shin, K., and Kashima, H. Flexi-
ble tree kernels based on counting the number of
tree mappings. In Proc. of Machine Learning with
Graphs, 2006.

Leslie, C. S., Eskin, E., and Stafford Noble, W. The
spectrum kernel: A string kernel for SVM protein
classification. In Pacific Symposium on Biocomput-
ing, pp. 566–575, 2002.

Lodhi, H., Shawe-Taylor, J, Cristianini, N, and H.,
Watkins C. J. C. Text classification using string
kernels. Advances in Neural Information Processing
Systems (NIPS 2000), 13, 2001.

Lu, S. Y. A tree-to-tree distance and its application
to cluster analysis. IEEE Transactions on Pattern
Analysis and Machine Intelligence (PAMI), 1:219―
224, 1979.

Shin, K. and Kuboyama, T. A generalization of Haus-
sler’s convolution kernel – Mapping kernel. In ICML
2008, 2008.

Shin, K. and Kuboyama, T. A generalization of Haus-
sler’s convolution kernel – Mapping kernel and its
application to tree kernels. J. Comput. Sci. Tech-
nol, 25(5)::1040–1054, 2010.

Shin, K. Partitionable kernels for mapping kernels. In
ICDM 2011, pp. 645–654, 2011.

Täı, K. C. The tree-to-tree correction problem. JACM,
26(3):422–433, July 1979.

Wagner, R.A. and Fischer, M.J. The string-to-string
correction problem. JACM, 21(1):168–173, 1974.

Zhang, K. Algorithms for the constrained editing
distance between ordered labeled trees and related
problems. PR, 28(3):463–474, March 1995.

