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Abstract

We approach the problem of estimating the
parameters of a latent tree graphical model
from a hierarchical tensor decomposition
point of view. In this new view, the marginal
probability table of the observed variables is
treated as a tensor, and we show that: (i) the
latent variables induce low rank structures in
various matricizations of the tensor; (ii) this
collection of low rank matricizations induces
a hierarchical low rank decomposition of the
tensor. We further derive an optimization
problem for estimating (alternative) parame-
ters of a latent tree graphical model, allowing
us to represent the marginal probability table
of the observed variables in a compact and ro-
bust way. The optimization problem aims to
find the best hierarchical low rank approxi-
mation of a tensor in Frobenius norm.

For correctly specified latent tree graphical
models, we show that a global optimum of
the optimization problem can be obtained via
a recursive decomposition algorithm. This
algorithm recovers previous spectral algo-
rithms for hidden Markov models (Hsu et al.,
2009; Foster et al., 2012) and latent tree
graphical models (Parikh et al., 2011; Song
et al., 2011) as special cases, elucidating the
global objective these algorithms are opti-
mizing. For misspecified latent tree graph-
ical models, we derive a novel decomposition
based on our framework, and provide approx-
imation guarantee and computational com-
plexity analysis. In both synthetic and real
world data, this new estimator significantly
improves over the state-of-the-art.
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1. Introduction

Latent tree graphical models capture rich probabilistic
dependencies among random variables and find appli-
cations in various domains, such as modeling dynam-
ics, clustering, and topic modeling (Rabiner & Juang,
1986; Clark, 1990; Hoff et al., 2002; Blei et al., 2003).
Recently, there is an increasing interest in designing
spectral algorithms for estimating the parameters of
latent variable models (Hsu et al., 2009; Parikh et al.,
2011; Song et al., 2011; Foster et al., 2012). Com-
pared to Expectation-Maximization (EM) algorithms
(Dempster et al., 1977) traditionally used for the same
task, the advantages of spectral algorithms are their
computational efficiency and good theoretical guaran-
tees. Unlike EM, these spectral algorithms recover a
set of alternative parameters (rather than the origi-
nal parameters) which consistently estimate only the
marginal distributions of observed variables.

Previous spectral algorithms are carefully constructed
based on the linear algebraic properties of latent tree
graphical models. It is however unclear what objective
function these algorithms are optimizing and whether
they are robust when latent tree graphical models are
misspecified. Recently, Balle et al. (2012) provided
some partial answers to these questions by formulat-
ing the problem in terms of a regularized local loss
minimization and presenting their results in the set-
ting of weighted automata. However, it is still unclear
whether spectral algorithms can be interpreted from
a global loss minimization point of view as typically
used in iterative algorithms such as EM, and how to
further understand these algorithms from basic linear
algebraic point of view, using concepts such as low
rank approximations. Therefore, the goal of this pa-
per is to provide new insight to these questions.

Our first contribution is deriving a global objective
function and the optimization space for spectral algo-
rithms. More specifically, we approach the problem
of estimating the parameters of latent tree graphical
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models from a hierarchical tensor decomposition point
of view. In this new view, the marginal probability ta-
bles of the observed variables in latent tree graphical
models are treated as tensors, and we show that the
space of tensors associated with latent tree graphical
models has the following two properties: (i) various
matricizations of the tensor according to the edges of
the tree are low rank matrices; (ii) this collection of
low rank matricizations induces a hierarchical low rank
decomposition for the tensors. Overall, the optimiza-
tion problem aims to minimize the Frobenius norm of
the difference between the original tensor and a new
tensor from the space of hierarchical low rank tensors.

Our second contribution is showing that previous spec-
tral algorithms for hidden Markov models (Hsu et al.,
2009; Foster et al., 2012) and latent tree graphical
models (Parikh et al., 2011; Song et al., 2011) are spe-
cial cases of the proposed framework, which elucidates
the global objective these algorithms are optimizing
for. Essentially, these algorithms recursively apply a
low rank matrix decomposition result to solve the op-
timization problem. When the latent tree models are
correctly specified, these algorithms find a global op-
timum of the optimization problem.

When the latent tree models are misspecified, previous
spectral algorithms are no longer optimal. Our third
contribution is deriving a better decomposition algo-
rithm for these cases, based on our hierarchical low
rank tensor decomposition framework, and providing
some theoretical analysis. In both synthetic and real
world data, the new algorithm significantly improves
over previous state-of-the-art spectral algorithms.

2. Background

Latent tree graphical models (LTGM). We focus
on discrete latent variable models whose conditional
independence structures are undirected trees. We use
uppercase letters to denote random variables (Xi) and
lowercase letters for their instantiations (xi). A latent
tree graphical model defines a joint probability distri-
bution over a set of O observed variables {X1, . . . , XO}
and a set of H hidden variables {XO+1, . . . , XO+H}.
For simplicity, we assume that (I) all observed vari-
ables are leaves having n states, {1, . . . , n}, and all
hidden variables have k states, {1, . . . , k}, with k ≤ n.

The joint distribution of all variables in a latent tree
graphical model is fully characterized by a set of condi-
tional probability tables (CPTs). More specifically, we
can arbitrary select a node in the tree as root, and sort
the nodes in the tree in topological order. Then the set
of CPTs between nodes and their parents P (Xi|Xπi)
(the root node Xr has no parent, so P (Xr|Xπr

) =

P (Xr)) are sufficient to characterize the joint dis-

tribution, P (x1, . . . , xO+H) =
∏O+H
i=1 P (xi|xπi

). The
marginal distribution of the observed variables can be
obtained by summing out the latent ones,

P (x1, . . . , xO) =
∑

xO+1

. . .
∑

xO+H

∏O+H

i=1
P (xi|xπi).

Latent tree graphical models allow complex distribu-
tions over observed variables (e.g., clique models) to
be expressed in terms of more tractable joint models
over the augmented variable space. This is a signifi-
cant saving in model parametrization.

Latent tree graphical models as tensors. We
view the marginal distribution P (X1, . . . , XO) of a la-
tent tree model as a tensor P, each variable corre-
sponding to one mode of the tensor. The ordering of
the modes is not essential so we simply label them
using the corresponding random variables.

We can reshape (unfold) a tensor into a matrix by
grouping some of its modes into rows and the remain-
ing ones into columns. The resulting matrix has ex-
actly the same entries as the original tensor but they
are reordered. Let O = {X1, . . . , XO} be the set of
modes and I1 and I2 be two disjoint subsets with
O = I1 ∪I2. Similarly to the Matlab function,

PI1;I2 = reshape (P (X1, . . . , XO),I1)

denotes a matricization of P (X1, . . . , XO) for which
variables corresponding to I1 are mapped to rows and
those corresponding to I2 are mapped to columns.
Each row of the resulting matrix corresponds to an
assignment of the variables in I1. For instance,
P{X2};{X1,X3} = reshape(P (X1, X2, X3), {X2}), and
for simplicity we also use P{2};{1,3} to denote
P{X2};{X1,X3}. We arrange the row indexes such that
the values of variables with lower index change faster
than those with higher index. We similarly arrange
the column indexes. We will overload the reshape op-
eration to deal with matrices. For instance, we may
reshape P{1,2,3};{4} into P{1,2};{3,4} by shifting vari-
able X3 from rows to columns, i.e., P{1,2};{3,4} =
reshape(P{1,2,3};{4}, {X1, X2}).

3. Hierarchical Low Rank Structure

We will show that the latent tree structure T induces a
hierarchical low rank structure in P (X1, . . . , XO). We
will reshape this tensor into a collection of matrices,
each of which corresponding to an edge in the latent
tree. We will show that (i) although the sizes of these
matrices can be exponential in the number of variables,
the ranks of these matrices cannot exceed the number
of states k of the hidden variables; (ii) the low rank
structures of this collection of matricizations further
induce a hierarchical decomposition of the tensor.



Hierarchical Tensor Decomposition of Latent Tree Graphical Models

𝐹 1,2 ;{𝑒} 𝐹 𝑒 ;{3,4,5,6} 

 7 

 1  2  3  4  5  6 

 8 9  

 10 

𝑃 1,2 ;{3,4,5,6} 

𝑒 𝓣 

𝓣7 𝓣10 

𝑒′ 

 3  4  5  6 

 8 9  

 10 
𝑒′ 

 𝑒 
 7 

 1  2 

 𝑒 

𝓘2 
𝓘2

′  𝓘1 

𝓘2\𝓘2
′  

 7 

 1  2 

𝓣7
′  

 3  4  5  6 

 8 9  

 10 
𝑒′ 𝓣10

′  

Figure 1. Latent tree graphical model with 6 observed
variables {X1, . . . , X6} (shaded) and 4 hidden variables
{X7, . . . , X10} (transparent). We divide the tree T into
subtrees T ′

7 and T ′
10 by cutting primary edge e = (X7, X10).

By adding dummy variables Xe to each subtree, we obtain
T7 and T10, and the corresponding factors F{1,2};{e} and
F{e};{3,4,5,6}. The primary edges are the ones present in T .

3.1. Low Rank Matricizations of Tensors

Each edge in the latent tree corresponds to a pair of
variables (Xs, Xt) which induces a partition of the ob-
served variables into two groups, I1 and I2 (such that
O = I1 ∪ I2 and ∅ = I1 ∩ I2). One can imagine
splitting the latent tree into two subtrees by cutting
the edge. One group of variables reside in the first sub-
tree, and the other group in the second subtree. If we
unfold the tensor according to this partitioning, then

Theorem 1 Under condition I, rank(PI1;I2
) ≤ k.

Proof Due to the conditional independence struc-
ture induced by the latent tree, P (x1, . . . , xO) =∑
xs

∑
xt
P (I1|xs)P (xs, xt)P (I2|xt), which can be

written in a matrix form as

PI1;I2
= PI1|{s}P{s};{t}P

>
I2|{t}, (1)

where PI1|{s} = reshape(P (I1|Xs),I1), PI2|{t} =
reshape(P (I2|Xt),I2) and P{s};{t} = P (Xs, Xt).
P{s};{t} is a k × k matrix, so its rank is at most k.
Since the rank of a product of matrices cannot exceed
the rank of any of its factors, rank(PI1;I2

) ≤ k.

Theorem 1 implies that although the dimensions of the
matricizations are large, their rank is bounded by k.
For instance, P{I1};{I2} has size n|I1| × n|I2|, expo-
nential in the number of observed variables, but its
rank is at most k. Essentially, given a latent tree
graphical model, we obtain a collection of low rank
matricizations {PI1;I2

} of the tensor P (X1, . . . , XO),
each corresponding to an edge (Xs, Xt) of the tree.
More interestingly, the low rank structures of the ma-

Algorithm 1 decompose(P, T , E , k)

Input: tensorP, treeT , set of primary edges E, rankk.
Output: factors of a hierarchical rankk decomposition

of P, according to tree T and primary edges E .
1: Pick a primary edge e = (Xs, Xt) ⊂ E and:

– partition the tensor modes into {I1,I2},
– matricize the tensor P to PI1;I2 ,
– split the tree T into two subtrees T ′s and T ′t ,
– split E\e into Es and Et, w.r.t. the subtrees.

2: Decompose PI1;I2
as

PI1;I2 = FI1;{e} M F>I2;{e}, (2)

where rank(M) = k.
3: According to (2):

– associate the columns of the factors FI1;{e} and
FI2;{e} with a new label Xe,

– introduce a dummy “observed” leaf Xe to each
subtree (T ′s and T ′t ),

– join Xe with Xs in T ′s to form Ts;
join Xe with Xt in T ′t to form Tt,

– reshape FI1;{e} and FI2;{e} back to tensors Fs
and Ft, respectively, each mode corresponding to
either an observed or a dummy variable.

4: Call decompose(Fs, Ts, Es, k) if Es 6= ∅;
call decompose(Ft, Tt, Et, k) if Et 6= ∅.

tricizations also imply that the tensor can be decom-
posed hierarchically as we see later.

3.2. Hierarchical Low Rank Decomposition

We say that a tensor P has hierarchical rank k ac-
cording to a tree T with leaves corresponding to the
modes of P, if it can be exactly decomposed accord-
ing to Algorithm 1. The decomposition is carried out
recursively according to T and its primary edges E
(see Fig. 1 for notation). The end result of the hi-
erarchical (recursive) decomposition is a collection of
matrices and 3rd order tensors (or factors with 3 in-
dexes). By reshaping and combining these factors
in reverse order of the recursion, we can obtain the
original tensor P. Alternatively, one can think that
each entry in P is obtained by a sequence of sum
and product of factors. That is, P (x1, . . . , xO) =∑
xe

∏O
i=1 F (xi, ·)

∏
F(·, ·, ·), where the unspecified in-

dexes in F and F correspond to “dummy” variables,
and the summation ranges over all “dummy” variables
Xe. We denote H(T , k) the class of tensors P admit-
ting hierarchical rank k decomposition according to
tree T .1 Similar decompositions have also been pro-
posed in tensor community, but not for latent variable
models (Grasedyck, 2010; Oseledets, 2011).

1One can readily generalize this notation to decompo-
sitions where different factors can have different ranks.
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3.3. Low Rank Matricizations Induce
Hierarchical Low Rank Decomposition

Next, we show that if all matricizations of a tensor P
according to a tree T have rank at most k, then P
admits a hierarchical rank k decomposition, i.e., P ∈
H(T , k). We note that this property applies to a gen-
eral tensor P where the tensor modes {X1, . . . , XO}
are organized hierarchically into a tree structure T . A
latent tree graphical model is a special case. In gen-
eral, the low rank factors F and F in the hierarchical
decomposition do not have an interpretation as CPTs.
More specifically, we have the following theorem

Theorem 2 Let P be a tensor and T be a tree. If
rank(PI1;I2) ≤ k for every matricization PI1;I2 of P
according to an edge of T , then P admits a hierarchical
rank k decomposition, i.e., P ∈ H(T , k).

Proof Let the modes of the tensor be labeled as
X1, . . . , XO and {I1,I2} be a partition of the modes
according to an edge e of T . Since rank(PI1;I2) ≤ k,
it admits a rank k decomposition PI1;I2

= UV > (with
U and V having k columns), or in index form

P (x1, . . . , xO) =
∑

xe

U(xI1 , xe)V (xI2 , xe).

The matrix V can be expressed as V = P>I1;I2
(U†)> =

P>I1;I2
W or in index form

V (xI2
, xe) =

∑
xI1

P (xI1
, xI2

)W (xI1
, xe).

Now the matrix V can be reshaped into a (|I2|+ 1)-
th order tensor V with a new tree Tt and a dummy
variable Xe. We will consider its unfolding according
to an edge e′ = (Xs′ , Xt′) in this new tree (and the
associated partition of tensor modes {I ′1,I ′2})

VI ′1,I
′
2

= reshape(V,I ′1)

and show that rank(VI ′1,I
′
2
) ≤ k holds. Suppose

I ′2 ⊂ I2 and its complement Ī ′2 = {1, . . . , O} \ I ′2.
Then matricizing the original tensor P according to
edge e′, we have PĪ ′2;I ′2

= reshape(P, Ī ′2) or in index

form (see Fig. 1 for notation)

P (x1, . . . , xO) =
∑

xe′
F (xĪ ′2

, xe′)G(xe′ , xI ′2
),

which also has rank k. Using this, we obtain

V (xI2 , xe) =
∑

xI1

W (xI1 , xe)P (xI1 , xI2)

=
∑
xI1

∑
xe′

W (xI1
, xe)F (xĪ ′2

, xe′)G(xe′ , xI ′2
).

=
∑

xe′
R(
{
xe, xI2\I ′2

}
, xe′)G(xe′ , xI ′2

)

and R(xe, xI2\I ′2 , xe′) =
∑

I1
W (xI1 , xe)F (xĪ ′2

, xe′).
Now row and column indexes of VI ′1;I ′2

are separated
and rank(VI ′1,I

′
2
) ≤ k. The process can be carried

out recursively until obtaining a hierarchical rank k
decomposition.

Theorem 2 suggests that the low rank constraints on
the matricizations of the original tensor P induce a
hierarchical low rank decomposition of P. This result
allows us to define the space of tensors H(T , k) using
the matricizations rather than the recursive decompo-
sition in Algorithm 1 or the factorization form.

4. Optimization Problem

Now we can write out an optimization problem which
recovers previous spectral algorithms as special cases
and suggests new algorithms. Given a tensor P which
might not admit a hierarchical low rank decomposition
as H(T , k), we seek the closest (in Frobenius norm)
hierarchical low rank tensor in H(T , k). That is,

min
Q
‖P −Q‖2F , s.t. Q ∈ H(T , k), (3)

where the constraint is equivalent to rank(QI1;I2) ≤ k
for all matricizations of Q according to edges of tree
T . In general, the optimization problem is not convex.

Learning the parameters of a latent tree graphical
model is a special case of optimization problem (3).
In this case, P is the joint probability tensor of the
observed variables, and we seek a hierarchical rank
k decomposition Q ∈ H(T , k) with tree structure T .
The question is whether we can design an efficient al-
gorithm for carrying out this hierarchical decomposi-
tion. Naively applying existing low rank decomposi-
tion techniques to the unfoldings of the tensor will re-
sult in algorithms with exponential computational cost
(O(nO) or even higher) since such algorithms typically
operate on all entries of the input matrix. Therefore,
the goal is to develop efficient low rank decomposition
algorithm that exploits the structure of the problem.

When P itself admits a hierarchical low rank decom-
position, P ∈ H(T , k), or P is indeed generated from
a (correctly specified) latent tree graphical model, we
can achieve ‖P − Q‖2F = 0. The solution is how-
ever usually not unique in terms of the factors in∑
xe

∏O
l=1 F (xl, ·)

∏
F(·, ·, ·), since we can easily gen-

erate different factors by applying invertible transfor-
mations. Many previous spectral algorithms are spe-
cial cases of this framework (§4.1).

An interesting question arises when P itself does
not admit a hierarchical low rank k′ decomposition
H(T , k′), but we want to obtain a Q ∈ H(T , k′)
which best approximates it (misspecified model with k′

smaller than the true rank). In this case, the optimiza-
tion is more difficult. Previous spectral algorithms in
general cannot achieve the best objective and lack ap-
proximation guarantees. In §4.2 we propose a new al-
gorithm to cope with this situation which has approxi-
mation guarantees and low computational complexity.
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4.1. Correctly Specified Models

Having the correct k, we can derive hierarchical low
rank decompositions with zero approximation error.
We first prove a matrix equality key to the decompo-
sition. It will be applied recursively according to the
latent tree structure, each time reducing the size of the
latent tree (and the joint probability tables). This re-
cursive algorithm also provides a new view of previous
spectral algorithms for latent tree graphical models.

Theorem 3 Let matrix P ∈ Rl×m have rank k. Let
A ∈ Rl×k and B ∈ Rm×k be such that rank(A>P ) = k
and rank(PB) = k. Then P = PB (A>PB)−1 A>P .

Proof Let the singular value decomposition of P be

P =
(
U U⊥

)(Σ 0
0 0

)(
V V⊥

)>
= UΣV >, where

U ∈ Rl×k and V ∈ Rm×k have orthonormal columns,
U⊥ and V⊥ are their orthogonal complements and Σ ∈
Rk×k is a diagonal nonsingular matrix. Then A and B
can be represented A = UC+U⊥D andB = V E+V⊥F
respectively, where C,E ∈ Rk×k. Then we obtain

A>P = C>ΣV >, PB = UΣE, A>PB = C>ΣE.

Note that since rank(A>P ) = rank(V >B) = k, then
C and E are nonsingular. Finally, we prove the claim

PB (A>PB)−1 A>P = UΣE (C>ΣE)−1 C>ΣV >

= UΣEE−1Σ−1C−>C>ΣV >

noting that the r.h.s equals UΣV > = P .

We can recursively apply Theorem 3 according
to Algorithm 1. We only need to let P =
P{I1};{I2}, and replace the r.h.s. of equation (2) by

PB (A>PB)−1 A>P , with

FI1;{e} = PB, FI2;{e} = A>P, M = (A>PB)−1,

Furthermore, we will choose A and B such that PB
and A>P are easy to compute. In particular, when P
is the reshaped probability matrix, A and B are chosen
to marginalize (or sum) out certain variables.

The latent tree model in Fig. 1. First, let us
examine the case n = k, and all pairwise marginal
distributions are invertible. Then we can reshape
the joint probability table P (X1, . . . , X6) according to
edge e = (X7, X10) and decompose the unfolding to

P{1,2};{3,4,5,6}︸ ︷︷ ︸
P

= P{1,2};{3}︸ ︷︷ ︸
PB

P−1
{2};{3}︸ ︷︷ ︸

(A>PB)−1

P{2};{3,4,5,6}︸ ︷︷ ︸
A>P

,

where A = In ⊗ 1n sums out variable X1, and B =
1n⊗1n⊗1n⊗In sums out variables X4, X5 and X6 (In
is the n×n identity matrix, 1n is a vector of all ones of
length n). We call the variables appearing in the the
middle matrix (X2 and X3) the linker variables. The
choice of linker variables is arbitrary as long as they
reside in different sides of edge e. Carrying out such

decomposition recursively,

P{2,3,4};{5,6} = P{2,3,4};{5} P
−1
{4};{5} P{4};{5,6}

where A = In ⊗ 1n ⊗ 1n, and B = 1n ⊗ In. And then

P{3,4};{2,5} = P{3,4};{2} P
−1
{4};{2} P{4};{2,5}

where A = In ⊗ 1n and B = 1n ⊗ In. In the end only
second and third order factors are left, and no further
reduction of the order of the tensor can be made.

When k < n, the middle matrices for the
linker variables are no longer invertible.
For instance, P{2};{3} has size n × n, but
P (x2, x3) =

∑
x10

P (x2|x10)P (x10)P (x3|x10) which
means rank(P{2};{3}) ≤ k < n. In this case, we
can use a slightly modified A and B matrices and
Theorem 3 still applies. More specifically, we will
introduce matrices U2 and V3 with orthonormal
columns such that U>2 P{2};{3}V3 is invertible, and this
leads to the following decomposition of P{1,2};{3,4,5,6}

P{1,2};{3}V3︸ ︷︷ ︸
PB

(U>2 P{2};{3}V3)−1︸ ︷︷ ︸
(A>PB)−1

U>2 P{2};{3,4,5,6}︸ ︷︷ ︸
A>P

,

where A = (In ⊗ 1n)U2 and B = (1n ⊗ 1n ⊗ 1n ⊗
In)V3 perform marginalization and projection simul-
taneously. A natural choice for U2 and V3 is provided
by the singular value decomposition of P{2};{3}, i.e.,

P{2};{3} = U2ΣV >3 . Likewise, we can carry out such
decomposition recursively with U and V matrices in-
troduced in each decomposition.

A nice feature of the above recursive decomposition
algorithm is that it never needs to access all entries in
the tensor and it only works on small linker matrices
(e.g., inverting P{2};{3}). This hierarchical decompo-
sition also provides latent tree graphical models with
a representation using only marginal distributions of
triplets of observed variables. Furthermore, many pre-
vious spectral algorithms become special cases.

Parikh et al. (2011); Song et al. (2011) pro-
posed spectral algorithms for general latent tree graph-
ical models. The main difference between their
approach and our framework is in the linker ma-
trix. For instance, P{1,2};{3,4,5,6} is decomposed as

P{1,2};{3}V3(P{2};{3}V3)†P{2};{3,4,5,6} in their method

where † is the pseudo inverse. We note that

(P{2};{3}V3)† = (U>2 P{2};{3}V3)−1U2 (4)

which is the k ≤ n case under our framework.

Hsu et al. (2009); Foster et al. (2012) derived
spectral algorithms for hidden Markov models which
are special latent tree graphical models. The build-
ing block for the reduced dimension model of Foster
et al. (2012) coincides with the decomposition from
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Theorem 3 although they derived their model from
a very different perspective. Furthermore, they show
that their model is equivalent to that of Hsu et al.
(2009) by making use of the relation in (4).

4.2. Misspecified Models

The algorithms we discussed in §4.1 assume that P it-
self admits a hierarchical rank k decomposition, i.e.,
P ∈ H(T , k). In practice, we do not know the exact
hierarchical rank k for P, and we want to obtain an
approximate latent tree graphical model by using a k′

different from the true k (usually, k′ < k). In this
case, it becomes difficult to obtain a global optimum
of the optimization problem in (3). And these spectral
algorithms no longer have performance guarantees. In
this section, we will consider a particular type of mis-
specification in models: P ∈ H(T , k), but we supply
the algorithms with a k′ such that k′ < k, where we
design a new algorithm with provable guarantees.

When k′ < k, the matrix decomposition result used in
previous spectral algorithms in general produces only
an approximation, i.e., P ≈ PB (A>PB)−1 A>P .
Furthermore, given A and B (or given the edge where
we split the tree), the middle linker matrix M =
(A>PB)−1 is no longer the best choice. Instead, we
will use a new linker matrix (Yu & Schuurmans, 2011)

M∗ = argmin
rank(M)≤k′

∥∥P − PB M A>P
∥∥2

F
, (5)

which has a closed form expression as

M∗ = (PB)
† (
UBU

>
B P VAV

>
A

)
(k′)

(
A>P

)†
, (6)

where A>P = UAΣAV
>
A , PB = UBΣBV

>
B and (·)(k′)

denotes the truncation of its matrix argument at k′-th
singular value. When k′ = k, the new decomposition
reduces to the decomposition in §4.1.

We can apply P ≈ (PB)M∗(A>P ) recursively ac-
cording to Algorithm 1. Again, we only need to let
P = P{I1};{I2}, and replace the right hand side of

equation (2) by (PB) M∗ (A>P ) with

FI1;{e} = PB, FI2;{e} = A>P, M = M∗.

Here we no longer have an exact decomposition in each
step of the recursion, and the final hierarchical decom-
position is an approximation to the original tensor.

For the model in Fig. 1, its joint probability tensor
P (X1, . . . , X6) can be decomposed as

P{1,2};{3,4,5,6}︸ ︷︷ ︸
P

≈ P{1,2};{3}︸ ︷︷ ︸
PB

M∗{2};{3} P{2};{3,4,5,6}︸ ︷︷ ︸
A>P

,

where A and B are set as before, and the matrix
M∗{2};{3} has rank k′ and it minimizes ‖P{1,2};{3,4,5,6}−
P{1,2};{3}MP{2};{3,4,5,6}‖2F . Such decomposition are

then carried out recursively on P{2};{3,4,5,6} and so on
until only second and third order tensors are left. In
the end, we obtain a set of low order tensors, and by
combining them backwards we obtain an approxima-
tion to the original tensor.

5. Analysis of the Decomposition for
Misspecified Models

We provide further analysis of the properties of the hi-
erarchical decomposition in Algorithm 1 for misspec-
ified models, including approximation guarantees, a
sketch analysis of the sample complexity and compu-
tational complexity.

5.1. Approximation Guarantee

Applying Algorithm 1 with equation (6) in the mis-
specified case does not provide a global optimal so-
lution. It only constructs a particular Q ∈ H(T , k′)
based on P. Nonetheless, we can provide an approx-
imation guarantee which was considered in previous
spectral algorithms.

Theorem 4 Let the matricizations of P ∈ H(T , k)
according to edge ei of the latent tree T be Pi,
and its best rank k′ approximation error be εi =
minrank(R)≤k′ ‖Pi −R‖

2
F . Let Q ∈ H(T , k′) be a hier-

archical rank k′ decomposition using Algorithm 1 and
equation (6). Assume rank(PB) = rank(A>P ) =
rank(P ) in all recursive applications of (6), then

‖P −Q‖2F ≤ dε, (7)

where ε = max {εi,∀ei} and d is the number of edges.

Proof Suppose in each iteration we choose the edge
to split in such a way that only one subtree needs
to be further decomposed. We denote PL = PB =
FI1;{e} and PR = A>P = FI2;{e} for quantities in
equation (2). This means that we further decompose

PR as P̃R, but not PL. Then the approximation error
‖P −Q‖2F can be bounded as

‖P − PL M∗ P̃R‖2F = ‖P − PLM∗(P̃R − PR + PR)‖2F
= ‖P − PLM∗PR‖2F + ‖PLM∗(P̃R − PR)‖2F (8)

≤ ε+ ‖PLM∗(P̃R − PR)‖2F ≤ ε+ . . . = dε. (9)

where in (8), we used (P − PLM
∗PR)>PLM

∗ = 0;

in (9), we used ‖PLM∗(P̃R − PR)‖2F ≤ ε and applied
induction on the edges in the latent tree.

Furthermore, under similar conditions, the new hier-
archical decomposition is close to optimal.

Theorem 5 Let Q∗ = argminQ∈H(T ,k′) ‖P −Q‖F
and Q ∈ H(T , k′) be obtained from Algorithm 1 based

on equation (6). Then ‖Q − P‖2F ≤ d ‖Q∗ − P‖2F
where d is the number of edges in the latent tree T .
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Proof In Theorem 4, εi := minrank(R)=k′ ‖Pi −R‖
2
F is

the error for the best rank k′ approximation to unfold-
ing Pi. However, Q∗ minimizes the same objective but
with more constraints. Hence εi ≤ ε∗ = ‖Q∗ − P‖2F
for all ei. Using Theorem 4, this proves the claim.

5.2. Computational Complexity

When we are provided finite samples only, let P̂ be
the finite sample estimate of P needed in the decom-
position in Algorithm 1. The major computations of
the algorithm are repeatedly computing M∗ in equa-
tion (5). First, we observe

argminrank(M)≤k′ ‖P̂ − (P̂B)M(A>P̂ )‖F
= argminrank(M)≤k′ ‖Q>BP̂QA −RBMR>A‖F

where P̂B = QBRB and A>P̂ = R>AQ
>
A are QR-

factorizations, and RB , RA ∈ Rn×n are small square
matrices. We note that QR-factorization is generally
faster than SVD, and after QR-factorization, we can
then compute SVD for much smaller matrices in equa-
tion (6). Second, matrix BP̂ (similarly A>P̂ and P̂ )
is the unfolding of certain joint probability table, and
is extremely sparse: the number of nonzero entries is
not larger than the number of data points and much
smaller than the size of the matrix P̂ (which can be
O(nO)). We can exploit this fact and use sparse matrix
operations. For instance, the QR-factorization needs
to work only on the nonzero entries. This gives us a
QB which has just a small number of nonzero rows
(no larger than the number of data points). Although
this new algorithm is more expensive than the previ-
ous spectral algorithms, it is still much faster than the
EM algorithm as we observed in the experiments.

5.3. Sample Complexity

Given m samples, we only have a finite sample esti-
mate P̂ of the the joint probability tensor P. Then we
hierarchically decompose P̂ into Q̂ using Algorithm 1.
The Frobenius norm difference between Q̂ and the true
P can be decomposed into two terms

‖Q̂ − P‖F ≤ ‖Q̂ − Q‖F︸ ︷︷ ︸
estimation error

+ ‖Q − P‖F︸ ︷︷ ︸
approximation error

, (10)

where Q is the hierarchical decomposition of P us-
ing Algorithm 1. The result in Theorem 4 shows that
the approximation error is bounded by

√
dε. Fur-

thermore ε is determined by the tail of the singu-
lar values of the matricizations Pi of P. That is
ε = max{

∑
j>k′ σj(Pi),∀ei} where σj(·) returns the

j-th singular value of its argument. We can see that
when k′ = k, ε = 0 and the approximation error is 0.
In general, when k′ < k, the number of nonzero singu-
lar value of Pi can be exponential in its size, which is
about O(nO). If the singular values decays very fast,

then the approximation error can still be small.

Estimation error can be bounded in two main steps:
first, the empirical estimators for all joint probabil-
ity matrices needed in the hierarchical decomposition
have nice finite sample guarantees, typically of order
O(m−1/2); second, the estimation errors can accumu-
late as we combine lower order tensor components to
form the final joint probability tensor. For the mo-
ment, we do not yet have a complete sample complex-
ity analysis, which deserves a full treatment in a sep-
arate paper. In sketch, we expand the error for the
first iteration of the recursive decomposition (PL, PR
and P̃R are defined similarly as in Theorem 4, and the
versions with hat are finite sample counterparts):

‖Q − Q̂‖F ≤ ‖P̂L M̂∗
̂̃
PR − PL M∗ P̃R‖F

≤ ‖PL M∗ (
̂̃
PR − P̃R)‖F + ‖(P̂L M̂∗ − PL M∗) P̃R‖F

+ ‖(P̂L M̂∗ − PL M∗) (
̂̃
PR − P̃R)‖F

-
σ1(P )

σk(PR)
‖ ̂̃PR − P̃R‖F +

σ1(P )

σk(PR)
‖P̂ − P‖F

where in the last inequality, we have ignored higher
order error terms and use - to denote “approximately
larger”. The occurrence of the k-th singular value PR
in the denominator is due to the pseudo-inverse term
in M∗ (see equation (6)). Then the error analysis
for the subsequent steps of recursion can be carried

out on ‖ ̂̃PR − P̃R‖F . Based on this sketch, the er-
ror will accumulate exponentially with respect to the
number of recursion, resulting in a sample complexity
of O(cOm−1/2) where c is some constant dependent on
the singular values. However, in our experiments, we
did not observe such exponential degradation.

6. Experiments

We compare the new algorithm with EM (Dempster
et al., 1977) and spectral algorithms of Hsu et al.
(2009); Parikh et al. (2011).

Synthetic data. We generate synthetic data from
latent tree models with different topologies: non-
homogeneous hidden Markov models (NH HMM), ran-
dom and balanced binary latent tree graphical models.
We experimented with a variety of observed states n,
hidden states k and approximation state k′.

For an experiment on a given tree type with N train-
ing points, we randomly generate 10 sets of model pa-
rameters and sample N training points and 1000 test
points for each parameter set. For EM, we learn the
CPTs (with 5 restarts) based on the training points
and the true latent tree topology, and then perform in-
ference on test points using message passing. Conver-
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Figure 2. Error (top plots) and training time (bottom plots) in estimating the marginal probability tables of observed
variables in latent tree graphical models when the models are misspecified. The setting of each experiment is denoted
using a quadruple {O,n, k, k′}.

gence for EM is determined by measuring the change
in the log likelihood at iteration t (denoted by f(t))

over the average: |f(t)−f(t−1)|
avg(f(t),f(t−1)) ≤ 10−4. We measure

the performance of estimating the joint probability of

observed variables using ε = |P̂ (x1,...,xO)−P (x1,...,xO)|
P (x1,...,xO) ,

and we vary the training sample size N from 200 to
100,000, and plot the test error for inference in Fig. 2.

Fig. 2 shows that our new algorithm performs the best
when the sample sizes grows. Although EM performs
the best for small training sizes, its performance levels
off when the sample sizes go beyond 5,000 and our new
algorithm overtakes EM. Furthermore, in our experi-
ments when both n and k are reasonably large, previ-
ous spectral algorithms become less stable. In terms
of training time, the new algorithm is more expensive
than previous spectral algorithms, but still much faster
than the EM algorithm.

Genome sequence data. We next consider
the task of predicting poly(A) motifs in DNA se-
quences (Kalkatawi et al., 2012) and consider the
AATAAA variant of the motif. This is a binary se-
quence classification problem (either the sequence has
the motif or it doesn’t). For each sequence, we take a
contiguous subsequence of 100 nucleotides, which we
model as a non-homogeneous hidden Markov model
with n = 4 observed states(A, T , C, G). We then
vary the training set size from 500 to 9500, while the
test set size is fixed to 800. We compare our approach
with EM and spectral for both k′ = 2 and k′ = 3. The
classification results are shown in Fig. 3. For k′ = 2, all
algorithms are relatively comparable. For k′ = 3, our
new approach and EM also perform comparably. How-
ever, spectral algorithm performs considerably worse
as the number of hidden states increases.
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Figure 3. Results on poly(A) dataset. O: the number of
observed variables, n: the number of states for observed
variables, k′: number of hidden states supplied to the algo-
rithms. New : refers to our new hierarchical decomposition
algorithm using (6).

7. Conclusions

We approach the problem of estimating the param-
eters of a latent tree graphical model from a hierar-
chical low rank tensor decomposition point of view.
Based on this new view, we derive the global opti-
mization problem underlying many existing spectral
algorithms for latent tree graphical models. We show
that these existing algorithms obtain a global opti-
mum when the models are correctly specified. How-
ever, when the models are misspecified, these spectral
algorithms are no longer optimal. Based on our frame-
work, we derived a new decomposition algorithm with
provable approximation guarantee and show the em-
pirical advantages of our approach. In future, we will
perform statistical analysis of this new algorithm and
investigate potentially better algorithm.

Acknowledgments: Research supported by Georgia Tech

Startup Fund; NSF IIS1218749; US government; ERC

Grant 258581; Belgian Network DYSCO - IAP VII; NSF

Graduate Fellowship 0946825; NIH 1R01GM093156.



Hierarchical Tensor Decomposition of Latent Tree Graphical Models

References

Balle, Borja, Quattoni, Ariadna, and Carreras, Xavier.
Local loss optimization in operator models: A new
insight into spectral learning. In Proceedings of
the International Conference on Machine Learning,
2012.

Blei, D., Ng, A., and Jordan, M. Latent Dirichlet
allocation. Journal of Machine Learning Research,
3:993–1022, January 2003.

Clark, A. Inference of haplotypes from PCR-amplified
samples of diploid populations. Molecular Biology
and Evolution, 7(2):111–122, 1990.

Dempster, A. P., Laird, N. M., and Rubin, D. B. Max-
imum likelihood from incomplete data via the EM
algorithm. Journal of the Royal Statistical Society
B, 39(1):1–22, 1977.

Foster, D.P., Rodu, J., and Ungar, L.H. Spectral di-
mensionality reduction for hmms. Arxiv preprint
arXiv:1203.6130, 2012.

Grasedyck, Lars. Hierarchical singular value decompo-
sition of tensors. SIAM Journal on Matrix Analysis
and Applications, 31(4):2029–2054, 2010.

Hoff, Peter D., Raftery, Adrian E., and Handcock,
Mark S. Latent space approaches to social network
analysis. Journal of the American Statistical Asso-
ciation, 97(460):1090–1098, 2002.

Hsu, D., Kakade, S., and Zhang, T. A spectral al-
gorithm for learning hidden markov models. In
Proc. Annual Conf. Computational Learning The-
ory, 2009.

Kalkatawi, M., Rangkuti, F., Schramm, M., Jankovic,
B.R., Kamau, A., Chowdhary, R., Archer, J.A.C.,
and Bajic, V.B. Dragon polya spotter: predictor
of poly (a) motifs within human genomic dna se-
quences. Bioinformatics, 28(1):127–129, 2012.

Oseledets, IV. Tensor-train decomposition. SIAM
Journal on Scientific Computing, 33(5):2295–2317,
2011.

Parikh, A., Song, L., and Xing, E. P. A spectral al-
gorithm for latent tree graphical models. In Pro-
ceedings of the International Conference on Machine
Learning, 2011.

Rabiner, L. R. and Juang, B. H. An introduction to
hidden Markov models. IEEE ASSP Magazine, 3
(1):4–16, January 1986.

Song, L., Parikh, A., and Xing, E.P. Kernel embed-
dings of latent tree graphical models. In Advances in
Neural Information Processing Systems, volume 25,
2011.

Yu, Y. and Schuurmans, D. Rank/norm regularization
with closed-form solutions: Application to subspace
clustering. In Conference on Uncertainty in Artifi-
cial Intelligence, 2011.


