
On the importance of initialization and momentum in deep learning

Figure 2. The trajectories of CM, NAG, and SGD are
shown. Although the value of the momentum is identi-
cal for both experiments, CM exhibits oscillations along
the high-curvature directions, while NAG exhibits no such
oscillations. The global minimizer of the objective is at
(0,0). The red curve shows gradient descent with the same
learning rate as NAG and CM, the blue curve shows NAG,
and the green curve shows CM. See section 2 of the paper.

Appendix

A.1 Derivation of Nesterov’s
Accelerated Gradient as a Momentum
Method

Nesterov’s accelerated gradient is an iterative algo-
rithm that was originally derived for non-stochastic
gradients. It is initialized by setting k = 0, a

0

= 1,
✓�1

= y
0

, y
0

to an arbitrary parameter setting, z
to an arbitrary parameter setting, and "�1

= ky
0

�
zk/krf(y

0

)�rf(z)k. It then repeatedly updates its
parameters with the following equations:

"
t

= 2�i"
t�1

(6)

(here i is the smallest positive integer for which

f(y
t

)� f(y
t

� 2�i"
t�1

rf(y
t

)) � 2�i"
t�1

krf(y
t

)k2

2
)

✓
t

= y
t

� "
t

rf(y
t

) (7)

a
t+1

=

✓
1 +

q
4a2

t

+ 1

◆
/2 (8)

y
t+1

= ✓
t

+ (a
t

� 1)(✓
t

� ✓
t�1

)/a
t+1

(9)

The above presentation is relatively opaque and could
be di�cult to understand, so we will rewrite these
equations in a more intuitive manner.

The learning rate "
t

is adapted to always be smaller
than the reciprocal of the “observed” Lipshitz coe�-
cient of rf around the trajectory of the optimization.
Alternatively, if the Lipshitz coe�cient of the deriva-
tive is known to be equal to L, then setting "

t

= 1/L

for all t is su�cient to obtain the same theoretical
guarantees. This method for choosing the learning
rate assumes that f is not noisy, and will result in
too-large learning rates if the objective is stochastic.

To understand the sequence a
t

, we note that the
function x !

�
1 +

p
4x2 + 1

�
/2 quickly approaches

x ! x + 0.5 from below as x ! 1, so a
t

⇡ (t + 4)/2
for large t, and thus (a

t

�1)/a
t+1

(from eq. 9) behaves
like 1� 3/(t+ 5).

Finally, if we define

v
t

⌘ ✓
t

� ✓
t�1

(10)

µ
t

⌘ (a
t

� 1)/a
t+1

(11)

then the combination of eqs. 9 and 11 implies:

y
t

= ✓
t�1

+ µ
t�1

v
t�1

which can be used to rewrite eq. 7 as follows:

✓
t

= ✓
t�1

+ µ
t�1

v
t�1

� "
t�1

rf(✓
t�1

+ µ
t�1

v
t�1

)
(12)

v
t

= µ
t�1

v
t�1

� "
t�1

rf(✓
t�1

+ µ
t�1

v
t�1

) (13)

where eq. 13 is a consequence of eq. 10. Alternatively:

v
t

= µ
t�1

v
t�1

� "
t�1

rf(✓
t�1

+ µ
t�1

v
t�1

) (14)

✓
t

= ✓
t�1

+ v
t

(15)

where µ
t

⇡ 1� 3/(t+5). (Nesterov, 1983) shows that
if f is a convex function with an L-Lipshitz contin-
uous derivative, then the above method satisfies the
following:

f(✓
t

)� f(✓⇤) 4Lk✓�1

� ✓⇤k2

(t+ 2)2
(16)

To understand the quadratic speedup obtained by the
momentum, consider applying momentum to a linear
function. In this case, the i-th step of the momentum
method will be of distance proportional to i; therefore
N steps could traverse a quadratically longer distance:
1 + 2 + · · ·+N = O(N2).

A.2 Details for Theorem 2.1

We will first formulate and prove a result which es-
tablishes the well known fact that first-order meth-
ods such CM and NAG are invariant to orthonormal
transformations (i.e. rotations) such as U . In partic-
ular, we will will show that the sequence of iterates
obtained by applying NAG and CM to the reparam-
eterized quadratic p, is given by U times sequence of
iterates obtained by applying NAG and CM to the
original quadratic q. Note that the only fact we use
about U at this stage is that it is orthonormal/unitary,
not that it diagonalizes q.

On the importance of initialization and momentum in deep learning

Proposition 6.1. Let {(µ
i

, "
i

)}1
i=1

be an arbitrary se-

quence of learning rates, let x
0

, v
0

be an arbitrary ini-

tial position and velocity, and let {(x
i

, v
i

)}1
i=0

be the

sequence of iterates obtained by CM by optimizing q
starting from x

0

, v
0

, with the learning parameters µ
i

, "
i

at iteration i.

Next, let y
0

, w
0

be given by Ux
0

, Uv
0

, and let

{(y
i

, w
i

)}1
i=0

be the sequence of iterates obtained by

CM by optimizing p starting from y
0

, w
0

, with the

learning parameters µ
i

, "
i

at iteration i.

Then the following holds for all i:

y
i

= Ux
i

w
i

= Uv
i

The above also applies when CM is replaced with NAG.

Proof. First, notice that

x
i+1

= CM
x

(µ
i

, q, x
i

, v
i

)

v
i+1

= CM
v

(µ
i

, q, x
i

, v
i

)

and that

y
i+1

= CM
x

(µ
i

, p, y
i

, w
i

)

w
i+1

= CM
v

(µ
i

, p, y
i

, w
i

)

The proof is by induction. The claim is immediate
for i = 0. To see that it holds for i + 1 assuming i,
consider:

w
i+1

= w
i

+ "r
yip(yi)

= w
i

+ "Ur
xip(yi) (chain rule using y

i

= Ux
i

)

= w
i

+ "Ur
xiq(U

>y
i

) (definition of p)

= w
i

+ "Ur
xiq(xi

) (x
i

= U>y
i

)

= Uv
i

+ "Ur
xiq(xi

) (by induction)

= U(v
i

+ "r
xiq(xi

))

= Uv
i+1

Using the above, we get

y
i+1

= y
i

+ w
i+1

= Ux
i

+ Uv
i+1

= Ux
i+1

y
i+1

= y
i

+ w
i+1

= Ux
i

+ Uv
i+1

= Ux
i+1

This completes the proof for CM; the proof for NAG
is nearly identical.

Given this result, and reparameterization p of q ac-
cording to its eigencomponents, the results of Theorem
2.1 can thus be

Proof of Theorem 2.1. We first show that for separa-
ble problems, CM (or NAG) is precisely equivalent to
many simultaneous applications of CM (or NAG) to
the one-dimensional problems that correspond to each
problem dimension. We then show that for NAG, the
e↵ective momentum for a one-dimensional problem de-
pends on its curvature. We prove these results for one
step of CM or NAG, although these results generalize
to larger n.

Consider one step of CM
v

:

CM
v

(µ, p, y, v) = µv � "rp(y)

= (µ[v]
1

� "r
[y]1

p(y), . . . , µ[v]
n

� "r
[y]n

p(y))

= (µ[v]
1

� "r[p]
1

([y]
1

), . . . , µ[v]
n

� "r[p]
n

([y]
n

))

= (CM
v

(µ, [p]
1

, [y]
1

, [v]
1

), . . . , CM
v

(µ, [p]
n

, [y]
n

, [v]
n

))

This shows that one step of CM
v

on q is precisely
equivalent to n simultaneous applications of CM

v

to
the one-dimensional quadratics [q]

i

, all with the same
µ and ". A similar argument shows a single step of
each of CM

x

, on NAG
x

, and NAG
v

can be obtained
by applying each of them to the n one-dimensional
quadratics [q]

i

.

Next we show that NAG, applied to a one-dimensional
quadratic with a momentum coe�cient µ, is equiva-
lent to CM applied to the same quadratic and with
the same learning rate, but with a momentum co-
e�cient µ(1 � "�). We show this by expanding
NAG

v

(µ, [p]
i

, y, v) (where y and v are scalars):

NAG
v

(µ, [q]
i

, y, v) = µv � "r[p]
i

(y + µv)

= µv � "(�
i

(y + µv) + c
i

)

= µv � "�
i

µv � "(�
i

y + c
i

)

= µ(1� "�
i

)v � "r[p]
i

(y)

= CM
v

(µ(1� "�
i

), [p]
i

, v, y)

Since Eq. 2 is identical to 4, it follows that

NAG
x

(µ, [p]
i

, y, v) = CM
x

(µ(1� "�
i

), [p]
i

, y, v)

for all i.

A.3. Autoencoder Problem Details

We experiment with the three autoencoder problems
from Hinton & Salakhutdinov (2006), which are de-
scribed in Table 6.

A.4. RNN Problem Details

We considered 4 of the pathological long term de-
pendency “problems” from Hochreiter & Schmidhu-
ber (1997), which consist of artificial datasets designed
to have various non-trivial long-range dependencies.

On the importance of initialization and momentum in deep learning

Figure 3. In each figure, the vertical axis is time, and the horizontal axis are units. The leftmost figure shows the hidden
state sequences of an RNN on the addition problem with the aforementioned parameter initialization. Note the “gentle”
oscillations of the hidden states. The middle figure shows the hidden state sequence of the same RNN after 1000 parameter
updates. The hidden state sequence is almost indistinguishable, di↵ering by approximately 10�4 for each pixel, so despite
the little progress that has been made, the oscillations are preserved, and thus the parameter setting still have a chance of
solving the problem. The rightmost figure shows an RNN with the same initialization after 1000 parameter updates, where
the output biases were initialized to zero. Notice how the hidden state sequence has many fewer oscillations, although
both parameter settings fail to establish communication between the inputs and the target.

name dim size architecture
Curves 784 20,000 784-400-200-100-50-25-6
Mnist 784 60,000 784-1000-500-250-30
Faces 625 103,500 625-2000-1000-500-30

Table 6. The networks’ architectures and the sizes of the
datasets.

These were the 5-bit memorization task, the 20-bit
memorization task, the addition problem, and the mul-
tiplication problem. These artificial problems were
each designed to be impossible to learn with regular
RNNs using standard optimization methods, owing to
the presence of long-range temporal dependencies of
the target outputs on the early inputs. And in partic-
ular, despite the results of ?, they cannot be learned
with ESNs that have 100 conventional hidden units
(Jaeger, 2012)1.

In the 5-bit memorization problem, the input sequence
consists of 5 bits that are followed by a large number
of blank symbols. The target sequence consists of the
same 5 bits occurring at the end of the sequence, pre-
ceded by blanks. The 20-bit memorization problem is
similar to the 5-bit memorization problem, but the 5-
bits are replaced with ten 5-ary symbols, so that each
sequence contains slightly more than 20 bits of infor-

1Small ESNs that use leaky integration can achieve very
low training errors on these problems, but the leaky inte-
gration is well-suited for the addition and the multiplica-
tion but not the memorization problems.

Figure 4. The memorization and the addition problems.
The goal of the memorization problem is to output the
input bits in the correct order. The goal of the addition
and the multiplication problem is to output the sum (or
the product) of the two marked inputs.

mation. In the addition problem, the input sequence
consists of pairs (x, y) of real numbers presented in se-
quence, where each x is a drawn from U [0, 1] and each
y is a binary “marker” in {0, 1}. The final entry of the
target output sequence is determined as the sum of
the x component for the two pairs whose y component
is 1. The multiplication problem is analogous, and we
follow the precise format used by Martens & Sutskever
(2011). To achieve low error on each of these tasks the
RNN must learn to memorize and transform some in-
formation contained at the beginning of the sequence

On the importance of initialization and momentum in deep learning

within its hidden state, retaining it all of the way to the
end. This is made especially di�cult because there are
no easier-to-learn short or medium-term dependencies
that can act as hints to help the learning see the long-
term ones, and because of the noise in the addition
and the multiplication problems.

A.5 The e↵ect of bias centering

In our experiments, we observed that the hidden state
oscillations, which are likely important for relaying in-
formation across long distances, had a tendency to dis-
appear after the early stages of learning (see fig. 3),
causing the optimization to converge to a poor local
optimum. We surmised that this tendency was due
to fact that the smallest modification to the parame-
ters (as measured in the standard norm - the quantity
which steepest descent can be thought of as minimiz-
ing) that allowed the output units to predict the av-
erage target output, involved making the outputs con-
stant by way of making the hidden state constant. By
centering the target outputs, the initial bias is correct
by default, and thus the optimizer is not forced into
making this “poor early choice” that dooms it later
on.

Similarly, we found it necessary to center the inputs

to reliably solve the multiplication problem; the mo-
mentum methods were unable to solve this problem
without input centering. We speculate that the reason
for this is that the inputs associated with the multipli-
cation problem are positive, causing the hidden state
to drift in the direction of the input-to-hidden vector,
which in turn leads to saturation of the hidden state.
When the inputs are centered, the net input to the hid-
den units will initial be closer to zero when averaged
over a reasonable window of time, thus preventing this
issue.

Figure 3 shows how the hidden state sequence evolves
when the output units are not centered. While the
oscillations of the RNN’s hidden state are preserved
if the output bias is initialized to be the mean of the
targets, they disappear if the output bias is set to zero
(in this example, the mean of the targets is 0.5). This
is a consequence of the isotropic nature of stochastic
gradient descent which causes it to minimize the L

2

distance of its optimization paths, and of the fact that
the L

2

-closest parameter setting that outputs the av-
erage of the targets is obtained by slightly adjusting
both the biases and making the hidden states constant,
to utilize the hidden-to-output weights.

A.6 Hybrid HF-Momentum approach

Our hybrid HF-momentum algorithm, is characterized
by the following changes to the original approach out-
lined by Martens (2010): we disposed of the line search

and used a fixed learning rate of 1 which, after some
point chosen by hand, we gradually decayed to zero us-
ing a simple schedule; we gradually increased the value
of the decay constant (similarly to how we increased
µ); and we used smaller minibatches, while computing
the gradient only on the current minibatch (as opposed
to the full dataset - as is commonly done with HF).
Analogously to our experiments with momentum, we
adjusted the settings near the end of optimization (af-
ter the transient phase) to improve fine-grained local
convergence/stochastic estimation. In particular, we
switched back to using a more traditional version of
HF along the lines of the one described by Martens
(2010), which involved using much larger minibatches,
or just computing the gradient on more data/the entire
training set, raising the learning rate back to 1 (or as
high as the larger minibatches permit), etc., and also
decreasing the L2 weight decay to squeeze out some
extra performance.

The results of these experiments were encouraging, al-
though preliminary, and we report them in Table 1,
noting that they are not directly comparable to the
experiments performed with CM and NAG due to the
of use incomparable amounts of computation (fewer
iterations, but with large minibatches).

For each autoencoder training task we ran we hand-
designed a schedule for the learning rate ("), decay
constant (µ), and minibatch size (s), after a small
amount of trial and error. The details for CURVES
and MNIST are given below.

For CURVES, we first ran HF iterations with 50 CG
steps each, for a total of 250k CG steps, using " = 1.0,
µ = 0.95 and with gradient and curvature products
computed on minibatches consisting of 1/16th of the
training set. Next, we increased µ to 0.999 and an-
nealed " according to the schedule 500/(t � 4000).
The error reach 0.0094 by this point, and from here
we tuned the method to achieve fine local conver-
gence, which we achieved primarily through running
the method in full batch mode. We first ran HF for
100k total CG steps with the number of CG steps per
update increased to 200, µ lowered to 0.995, and "
raised back to 1 (which was stable because we were
running in batch mode) . The error reach 0.087 by
this point. Finally, we lowered the L2 weight decay
from 2e-5 (which was used in (Martens, 2010)) to near
zero and ran 500k total steps more, to arrive at an
error of 0.058.

For MNIST, we first ran HF iterations with 50 CG
steps each, for a total of 25k CG steps, using " = 1.0,
µ = 0.95 and with gradient and curvature products
computed on minibatches consisting of 1/20th of the
training set. Next, we increased µ to 0.995, " was an-
nealed according to 250/t, and the method was run for
another 225k CG steps. The error reach 0.81 by this

On the importance of initialization and momentum in deep learning

Figure 5. Comparison of NAG and CG on a damped
quadratic objective from the middle of HF. The plot shows
that while CG is considerably more e↵ective than NAG at
opitimizing the kinds of quadratic approximation that oc-
cur during neural network learning, although the di↵erence
is not dramatic. Note that we truncated CG after 120 steps
because this is the number of steps that would be typically
used by HF at this stage of learning.

point. Finally, we focused on achieving fine conver-
gence and started computing the gradient on the full
training set (but still computing the curvature prod-
ucts on minibatches of size 1/20th). With " set back
to 1, we ran another 125k total CG steps to achieve
a final error of 0.69. The L2 weight decay was set to
1e-5 for the entirety of training.

