
Supplementary material for “Gossip-based distributed stochastic
bandit algorithms ”

A. Proof of Lemma 4

Proof. The lemma can be proved using induction. First of all, note that
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where the last equality follows because of Lemma 3 since
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To complete the argument, one can readily check that
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< N2 . The last statement follows
simply from Lemma 3.

B. Proof of Lemma 5 (longer version)

Proof. The zero mean is a consequence of Lemma 3. To compute the variance, we have
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where (11) follows from Lemma 4 and the Cauchy-Schwarz inequality.

C. Proof of Theorem 1

Proof. One way to look at the proof is the following6. First, in (A) we analyze a version of �-GREEDY,
where N independent plays are allowed per iteration. This analysis follows closely the one given by Auer et al.
for �-GREEDY (Auer et al., 2002), and just requires only some trivial modifications. Then in (B) we relate
this to P2P-�-GREEDY, and we show that the difference is negligible. This requires significantly more
effort. In accordance with (A), assume that t ≥ cK/(d2N), use �t = cK

d2tN , and put x0 = N
2K

�T (t/2)−1
j=1 �j .

Now, the probability of choosing some arm i in iteration t at peer p is
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where i∗ = arg max1≤i≤K µi. The second term can be decomposed as
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The two terms on the right hand side are bounded the same way. However, at this point it is not possible to
continue like that in (Auer et al., 2002). The reason is that when using �-GREEDY, the weights are either 0
or 1, but using P2P-�-GREEDY they can take values with a much wider range (like N,N/2, N/2N−2, N/8+
1, etc.), thus the bias in the estimation of the expected reward cannot be handled as easily.7 It is thus time
to apply the separation mentioned at the beginning of proof.
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=T1 + T2 + T3 + T4 (15)

Let us first upper bound T1, which corresponds to considering (B) in (8). Let ηi
t denote the number of pulling

an arm i in the whole network following an exploration step up to iteration T (t/2)− 1. In other words ηi
t is

6The analogy is not perfect. It is only meant as an aid to intuition.
7Note that Ii

j,t = 1 depends both on sj,t and nj,t. 11



the number of times arm i was selected at random in every peers up to iteration T (t/2)− 1. Denoting by ζi
�

the �th reward received on arm i in the whole network, one can show that
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where (16) follows from the Hoeffding-bound, (17) can be obtained by using
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Let us continue with considering (A) in (8), that is, with bounding terms T2, T3 and T4. To upper bound
T2 one can use an argument similar to the one applied in Lemma 6 and obtain for
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E [T3] and E [T4] can be found in the same way using Lemma 5. Therefore,
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Finally, let us derive a bound on x0 for t ≥ t� = cK/(d2N). Recall that �t = cK
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Summing up, for an arm i �= i∗, at any peer j and in iteration t, we have
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D. The pseudocode of P2P-�-greedy.slim
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Algorithm 2 P2P-�-greedy.slim at peer j in iteration t

1: Receive Mj1,t = (Ij1,t, cj1,t, dj1,t, rj1,t, qj1,t, aj1,t, bj1,t) and Mj2,t = (Ij1,t, cj2,t, dj2,t, rj2,t, qj2,t, aj2,t, bj2,t)
from the two current neighbours

2: if Ij1,t = Ij2,t then
3: M�

j,t = AGGREGATE(Mj1,t,Mj1,t)
4: else
5: if cj1,t

dj1,t
≥ cj2,t

dj2,t
then � Select the better model

6: M�
j,t = M�

j1,t

7: else
8: M�

j,t = M�
j2,t

9: if I �j,t = Ij,t then
10: Pull arm Ij,t and receive reward ξj,t

11: Mj,t+1 = UPDATE(M�
j,t, ξj,t, t)

12: The model to be sent is Mj,t+1

13: else
14: Put �t = min

�
1,

cK
d2tN

�

15: With probability 1− �t let I = I{ c�j,t

d�j,t
>

cj,t

dj,t
}I �j,t + I{ c�j,t

d�j,t
<

cj,t

dj,t
}Ij,t (choose from M�

j,t and Mj,t the
one with the higher expected reward estimate) and with probability �t choose I = Ij,t

16: Pull arm I and receive reward ξj,t

17: if I = Ij,t then � The arm chosen is based on the model received
18: Mj,t+1 = UPDATE(Mj,t, ξj,t, t)
19: M�

j,t+1 = STEP(M�
j,t, t)

20: else
21: Mj,t+1 = STEP(Mj,tt)
22: M�

j,t+1 = UPDATE(M�
j,t, ξj,t, t)

23: if cj,t+1
dj,t+1

>
c�j,t+1
d�j,t+1

then
24: The model to be sent is Mj,t+1

25: else
26: The model to be sent is M�

j,t+1

27: function AGGREGATE( M� = (I �, c�, d�, r�, q�, a�, b�) ,M�� = (I ��, c��, d��, r��, q��, a��, b��))
28: c = (1/2)(c� + c��), d = (1/2)(d� + d��)
29: r = (1/2)(r� + r��), q = (1/2)(q� + q��)
30: f = (1/2)(a� + a��), g = (1/2)(b� + b��)
31: I = I � = I ��

32: return M = (I, c, d, r, q, a, b)

33: function UPDATE((M = (I, c, d, r, q, a, b) , ξ, t))
34: if t is power of 2 then
35: c = c + r, d = d + q

36: r = a, q = b

37: a = b = 0
38: a = a + Nξ

39: b = b + N

40: return M
41: function STEP((M = (I, c, d, r, q, a, b) , t))
42: if t is power of 2 then
43: c = c + r, d = d + q

44: r = a, q = b

45: a = b = 0
46: return M

14



E. Lower bounds

E.1. The cost of information spreading

The following example demonstrates that the term Ω(min(t, N) log N) appearing in our regret bound is
unavoidable in some settings.
Example 7. Consider the following scenario. N is large, K = N � for some constant � > 0, one arm is
constant 1, the rest return constant 0. Then, with high probability (> 1/2), in the first (�/10) log N rounds at
least the half of the peers will not be able to find the optimal arm. Indeed, let Nt denote the number of arms in
iteration t that know which is the optimal arm. The expected number of arms that discover the optimal arm
via exploration is N1−� per round, meanwhile the number of arms that know about it because this information
was forwarded to them by some other peers is at most 2Nt−1 in time t. Thus, after � log3(N/2) iterations,
the expected number of peers that know the optimal arm is at most N/2. Consequently, the cumulated regret
is at least tN/2 in iterations t = 1, . . . , � log3(N/2).

The above argument also sheds some light on the huge jump in the regret in Figure 2 for the case N = 1000,
compared to the two other cases: the regret must grow (roughly) linearly during the first N log3 10 arm
pulls.

E.2. Detereministic algorithms can be suboptimal

The following example demonstrates why randomization is beneficial in the P2P setting. According to it,
deterministic algorithms (like UCB, MOSS, etc.) cannot be applied directly, without generating too large
regret. Note also that it is not clear what the suitable randomization for these algorithms would be. (Also
consult the following subsection about the necessity of using delays. This further suggests the need for
randomization that would avoid generating too large regret in an very long epochs where the estimates don’t
change significantly.)
Example 8. Consider the folowing setting. N = K large, one arm returns constantly 1, the rest returns
constantly 1/(2K), 1/(2K − 1), . . . , 1/(2K + 1) respectively. Then UCB will repeat the same thing at each
pear. Assume that each arm is pulled once already, but don’t count it in the regret.

Now, as each peer has exactly the same estimates for each arm, each of them will pull the same arm. However,
due to the deterministic nature of the rewards, the new estimates will be again exatly the same at each peer,
and even the information sharing will not change this. Therefore, from now on, each peer will do exactly the
same as any other peers. Thus bad decisions will have N times the effect they should.

More precisely, UCB will obviously pull each arm again at least once in the first O(N) round. This leads to
a regret of size Ω(NK) = Ω(N2).

However, the regret of P2P-�-greedy is significantly less in the first 2o(N) rounds.

Although the above example is quite extreme, it successfully highlights the risk of using deterministic algo-
rithms in a P2P setting: exploratory, suboptimal actions might be chosen by many peers at the same time
in parallel, leading to an unnecessarily large regret.

Besides that, we have also made some experiments to test some direct adaptations of UCB to P2P networks.
The results are summarized in Fig. 3. The algorithms we have compared are the P2P-�-Greedy, UCB in
a stand alone-version (denoted as UCB), UCB in a P2P setting with the same weight sharing method that
was used by P2P-�-Greedy (denoted UCB Merge), and finally UCB in a P2P setting with the same
weight sharing and the delayment method that is also used by P2P-�-Greedy (denoted P2P UCB). The
results demonstrate nicely the phenomenon mentioned above: due to the parallelization the UCB-based
methods indeed have much larger regret. It is even more so when the delaying is applied. Although at first
glance it might seem to contradict the argument in the next subsection about the necessity of using delays,
in fact it does not: it only shows that randomness and delaying method are really helpful when applied
combined. And the reason for P2P UCB having much worse performance than UCB Merge is that, due
to the delaying, whenever the estimates at the end of some epoch suggest to pull a suboptimal arm (i.e., it
is an exploratory step), P2P UCB pulls that same arm throughout the whole epoch.
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Figure 3. Comparison of �-greedy and UCB in terms of regret. We used the PerfectOverlay protocol in 3(a)
and the Newscast protocol in 3(b).

E.3. The necessity of using delays

Algorithm P2P-�-Gr-merge(N) (where N = 10, 100, 1000 denotes the number of peers in the various
experiments) does exactly the same as P2P-�-Greedy, but without the delaying. More precisely, in time t

peer j uses si
j,t

�
1, t

�
/ni

j,t

�
1, t

�
to estimate the expected reward at arm i, and not on ci

j,t/di
j,t = si

j,t

�
1, T (t/2)−

1
�
/ni

j,t

�
1, T (t/2)− 1

�
. Its performance is shown in Figure 1. From that it is quite apparent that the delay

applied in our P2P-�-Greedy is really crucial.

Although it is much harder to argue formally in favor of applying the delay, we try to give some intuition
on what causes this really big difference in the performance.
Example 9. Consider the scenario when N = K large, the first arm returns constantly 0.9, and the rest of
the arms have Bernoully distribution with parameter 0.8.

Consider a suboptimal arm i that is pulled only a few times so far, and assume that the weights of all the
rewards for it are well spread. More precisely, assume that the sum of the weights of the rewards for arm i

does not exceed N1/2 at any peer. Now, if some peer j pulls arm i again in iteration t0, the resulting reward
ξ will have weight 1 at j. Consequently the new reward would clearly dominate the estimate. Assuming
furthermore that ξ = 1 (which has quite large, 0.8 probability), j will very likely pull arm i again. What is
more, the weight for ξ will be higher than N1/2 at any peer it reaches (that is, higher then the sum of all the
previous rewards at any given peer) even after log(N/2) iterations.

Furthermore, one can easily show that, with high probability, ξ will not reach the same peer twice during
rounds t0, t0 + 1, . . . , t0 + �(log N)/2�− 1. Indeed, let Nt denote the set of peers that ξ has reached in rounds
t0, t0 + 1, . . . , t. Then |Nt0 | = 1 holds obviously, and |Nt| = 1 + 2 + · · · + 2t−t0 = 2t−t0+1 − 1 if and only if
no peer is reached twice during rounds t0, t0 + 1, . . . , t. Now, for t ≤ t0 + (log N)/2− 1

P
�
|Nt| = 2t−t0+1 − 1
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�
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N
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��
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�22(t−t0+1)/N

≥ 4−22(t−t0+1)/N

16



Thus

P
���Nt0+�(log N)/2�−1

�� ≥
√

N

�
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�

≥ 4−(1/N)(1+4+···+4�(log N)/2�) ≥ 1/16

Summing up, there is a high probability that some suboptimal arm i is pulled, and that the resulting reward
ξ causes at Ω(

√
N) peers the estimate for i to be larger then the estimate for the optimal arm at least once

during the following log4 N rounds. Therefore, unless some other suboptimal arms also get pulled during
these rounds, the cumulated regret during these rounds will be Ω(

√
N), just because of pulling arm i.

If this is repeated for all the suboptimal arms, then it can lead to a cumulated regret of size N3/2.

The effect is thus similar to the one described in Example 8.
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