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1. Review of Notation

Let [n] = {1, . . . , n} denote the first n positive integers.
We use x⊗p to represent the p-th order tensor formed by taking the outer product of

x ∈ Rd; i.e. x⊗pi1...ip = xi1 · · ·xip . We will use 〈·, ·〉 to denote the generalized dot product

between two p-th order tensors: 〈X,Y 〉 =
∑

i1,...ip
Xi1,...ipYi1,...ip . A tensor X is symmetric

if for all i, j ∈ [d]p which are permutations of each other, Xi1···ip = Xj1···jp (all tensors in
this paper will be symmetric). For a p-th order tensor X ∈ (Rd)⊗p, the mode-i unfolding
of X is a matrix, X(i) ∈ Rd×dp−1

, whose j-th row contains all the elements of X whose i-th
index is equal to j.

For a vector X, let ‖X‖op denote the 2-norm. For a matrix X, let ‖X‖∗ denote the
nuclear (trace) norm (sum of singular values), let ‖X‖F denote the Frobenius norm (square
root of sum of squares of singular values), let ‖X‖max denote the max norm (elementwise
maximum), let ‖X‖op denote the operator norm (largest singular value), let σmin(X) be
the smallest singular value of X. For a tensor X, let ‖X‖∗ = 1

p

∑p
i=1 ‖X(i)‖∗ denote the

average nuclear norm over all p unfoldings, and let ‖X‖op = 1
p

∑p
i=1 ‖X(i)‖op denote the

average operator norm over all p unfoldings.
For a symmetric tensor X ∈ (Rd)⊗p, let cvec(X) ∈ RCd,p , Cd,p =

(
d+p+1
p

)
be the collapsed

vectorization of distinct elements in X, for example, for X ∈ Rd×d, cvec(X) = (Xii : i ∈
[d];Xij + Xji : i, j ∈ [d], i < j). In general, each component of cvec(X) is indexed by a
vector of counts (c1, . . . , cd) with total sum

∑
i ci = p. The value of that component is∑

k∈K(c)Xk1···kp , where K(c) = {k ∈ [d]p : ∀i ∈ [d], ci = |{j ∈ [p] : kj = i}|} are the set of
index vectors k with that count profile.

2. Regression

Let us review the regression problem set up in (Chaganty and Liang, 2013, Section 3). We
assume we are given data (xi, yi) ∈ Dp generated by the following process,

yi = 〈Mp, x
⊗p
i 〉+ ηp(xi), (1)
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where Mp =
∑k

h=1 πhβ
⊗p
h , the p-th order moments of βh and ηp(x) is zero mean noise. In

particular, for p ∈ {1, 2, 3}, we showed that ηp(x) were defined to be,

η1(x) = 〈βh −M1, x〉+ ε (2)

η2(x) = 〈β⊗2h −M2, x
⊗2〉+ 2ε〈βh, x〉+ (ε2 − E[ε2]) (3)

η3(x) = 〈β⊗3h −M3, x
⊗3〉+ 3ε〈β⊗2h , x⊗2〉+ 3(ε2〈βh, x〉 − E[ε2]〈M1, x〉) + (ε3 − E[ε3]). (4)

We assume that ‖xi‖ ≤ R, ‖βh‖ ≤ L and |ε| ≤ S.
We then defined the observation operator Xp(Mp) : Rd⊗p → Rn,

Xp(Mp;Dp)i
def
= 〈Mp, x

⊗p
i 〉, (xi, yi) ∈ Dp, (5)

which let us succinctly represent the low-rank regression problem as follows,

min
Mp∈Rd⊗p

1

2n
‖y − Xp(Mp;Dp)‖22 + λp‖Mp‖∗. (6)

Let us also recall the adjoint of the observation operator, X∗p : Rn → Rdp ,

X∗p(ηp;Dp) =
∑
x∈Dp

ηp(x)x⊗p, (7)

where we have used ηp to represent the vector [ηp(x)]x∈Dp
.

Tomioka et al. (2011) showed that error in the estimated M̂p can be bounded as follows;

Lemma 1 (Tomioka et al. (2011), Theorem 1) Suppose there exists a restricted strong
convexity constant κ(Xp) such that

1

2n
‖Xp(∆)‖22 ≥ κ(Xp)‖∆‖2F and λn ≥

‖X∗p(ηp)‖op
n

.

Then the error of M̂p is bounded as follows: ‖M̂p −M∗p ‖F ≤ λn
√
k

κ(Xp)
.

In this section, we will derive an upper bound on κ(Xp) and a lower bound on 1
n‖X

∗
p(ηp)‖op.

Lemma 2 (Lower bound on restricted strong convexity) Let Σp
def
= E[cvec(x⊗p)⊗2].

If

n ≥ 16(p!)2R4p

σmin(Σp)2

(
1 +

√
log(1/δ)

2

)2

,

then, with probability at least 1− δ,

κ(Xp) ≥
σmin(Σp)

2
.

2
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Proof Recall the definition of κ(Xp),

1

n
‖Xp(∆)‖22 ≥ κ(Xp)‖∆‖2F .

Expanding the definition of the observation operator:

1

n
‖Xp(∆)‖22 =

1

n

∑
(x,y)∈Dp

〈∆, x⊗p〉2.

Unfolding the tensors, letting Σ̂p
def
= 1

n

∑
(x,y)∈Dp

cvec(x⊗p)⊗2, 1
n‖Xp(∆)‖22 = tr(cvec(∆)⊗2Σ̂p).

We recall that each element of cvec(∆) aggregates elements with permuted indices, so
‖ vec(∆)‖2 ≤ ‖ cvec(∆)‖2 ≤ p!‖ vec(∆)‖2. Then, we have

1

n
‖Xp(∆)‖22 = tr(cvec(∆)⊗2Σ̂p) (8)

≥ σmin(Σ̂p)‖∆‖2F . (9)

By Weyl’s theorem,
σmin(Σ̂p) ≥ σmin(Σp)− ‖Σ̂p − Σp‖op.

Since ‖Σ̂p − Σp‖op ≤ ‖Σ̂p − Σp‖F , it suffices to show that the empirical covariance concen-
trates in Frobenius norm. Applying Lemma 5, with probability at least 1− δ,

‖Σ̂p − Σp‖F ≤
2‖Σp‖F√

n

(
1 +

√
log(1/δ)

2

)
.

Now we seek to control ‖Σp‖F . Since ‖x‖2 ≤ R, we can use the bound

‖Σp‖F ≤ p!‖ vec(x⊗p)⊗2‖F ≤ p!R2p.

Finally, ‖Σ̂p − Σp‖op ≤ σmin(Σp)/2 with probability at least 1− δ if,

n ≥ 16(p!)2R4p

σmin(Σp)2

(
1 +

√
log(1/δ)

2

)2

.

Lemma 3 (Upper bound on adjoint operator) With probability at least 1−δ, the fol-
lowing holds,

1

n
‖X∗1(η1)‖op ≤

2R(2LR+ S)√
n

(
1 +

√
log(3/δ)

2

)
1

n
‖X∗2(η2)‖op ≤

(4L2R2 + 2SLR+ 4S2)R2

√
n

(
1 +

√
log(3/δ)

2

)
1

n
‖X∗3(η3)‖op ≤

(8L3R3 + 3L2R2S + 6LRS2 + 2S3)R3

√
n

(
1 +

√
log(6/δ)

2

)

+ 3R4S2

(
4R(2LR+ S)

σmin(Σ1)
√
n

(
1 +

√
log(6/δ)

2

))
.

3
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It follows that, with probability at least 1− δ,

1

n
‖X∗p(ηp)‖op = O

(
LpSpR2pσmin(Σ1)

−1
√

log(1/δ)

n

)
,

for each p ∈ {1, 2, 3}.
Proof Let Êp[f(x, ε, h)] denote the empirical expectation over the examples in dataset Dp
(recall the Dp’s are independent to simplify the analysis). By definition,

1

n
‖X∗p(ηp)‖op =

∥∥∥Êp[ηp(x)x⊗p]
∥∥∥
op

for p ∈ {1, 2, 3}. To proceed, we will bound each ηp(x), defined in (2), (3) and (4) and use

Lemma 5 to bound ‖Êp[ηp(x)x⊗p]‖F . The Frobenius norm to bounds the operator norm,
completing the proof.

Bounding ηp(x). Using the assumptions that ‖βh‖2 ≤ L, ‖x‖2 ≤ R and |ε| ≤ S, it is easy
to bound each ηp(x),

η1(x) = 〈βh −M1, x〉+ ε

≤ ‖βh −M1‖2‖x‖2 + |ε|
≤ 2LR+ S

η2(x) = 〈β⊗2h −M2, x
⊗2〉+ 2ε〈βh, x〉+ (ε2 − E[ε2])

≤ ‖β⊗2h −M2‖F ‖x⊗2‖F + 2|ε|‖βh‖2‖x‖2 + |ε2 − E[ε2]|
≤ (2L)2R2 + 2SLR+ (2S)2

η3(x) = 〈β⊗3h −M3, x
⊗3〉+ 3ε〈β⊗2h , x⊗2〉

+ 3
(
ε2〈βh, x〉 − E[ε2]〈M̂1, x〉

)
+ (ε3 − E[ε3])

≤ ‖β⊗3h −M3‖F ‖x⊗3‖F + 3|ε|‖β⊗2h ‖F ‖x
⊗2‖F

+ 3
(
|ε2| ‖βh‖F ‖x‖F +

∣∣E[ε2]
∣∣ ‖M̂1‖2‖x‖2

)
+ |ε3|+

∣∣E[ε3]
∣∣

≤ (2L)3R3 + 3SL2R2 + 3(S2LR+ S2LR) + 2S3.

We have used inequality ‖M1 − βh‖2 ≤ 2L above.

Bounding
∥∥∥Ê[ηp(x)x⊗p]

∥∥∥
F
. We may now apply the above bounds on ηp(x) to bound

‖ηp(x)x⊗p‖F , using the fact that ‖cX‖F ≤ c‖X‖F . By Lemma 5, each of the following
holds with probability at least 1− δ1,∥∥∥Ê1[η1(x)x]

∥∥∥
2
≤ 2R(2LR+ S)√

n

(
1 +

√
log(1/δ1)

2

)
∥∥∥Ê2[η2(x)x⊗2]

∥∥∥
F
≤ (4L2R2 + 2SLR+ 4S2)R2

√
n

(
1 +

√
log(1/δ2)

2

)
∥∥∥Ê3[η3(x)x⊗3]− E[η3(x)x⊗3 | x]

∥∥∥
F
≤ (8L3R3 + 3L2R2S + 6LRS2 + 2S3)R3

√
n

(
1 +

√
log(1/δ3)

2

)
.
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Recall that η3(x) does not have zero mean, so we must bound the bias:

‖E[η3(x)x⊗3 | x]‖F = ‖3E[ε2]〈M1 − M̂1, x〉x⊗3‖F
≤ 3E[ε2]‖M1 − M̂1‖2‖x‖2‖x⊗3‖F .

Note that in all of this, both M̂1 and M1 are treated as constants. Further, by applying
Lemma 1, we have a bound on ‖M1 − M̂1‖2. So, with probability at least 1− δ3,

‖E[η3(x)x⊗3 | x]‖F ≤ 3R4S2

(
4R(2LR+ S)

σmin(Σ1)
√
n

(
1 +

√
log(1/δ3)

2

))
.

Finally, taking δ1 = δ/3, δ2 = δ/3, δ3 = δ/6, and taking the union bound over the bounds
for p ∈ {1, 2, 3}, we get our result.

3. Tensor Decomposition

Once we have estimated the moments from the data through regression, we apply the
robust tensor eigen-decomposition algorithm to recover the parameters, βh and π. However,
the algorithm is guaranteed to work only for symmetric matrices with (nearly) orthogonal
eigenvectors, so as a first step, we will need to whiten the third-order moment tensor using
the second moments. Once we get the eigenvalues and eigenvectors from this orthogonal
tensor, we have to undo the transformation by applying an un-whitening step. In this
section, we present error bounds for each step, and combine them to prove the following
lemma,

Lemma 4 (Tensor Decomposition with Whitening) Let M3 =
∑k

h=1 πhβ
⊗3
h . Let ‖M̂2−

M2‖op and ‖M̂3 −M3‖op both be less than

3σk(M2)
3/2

10kπ
5/2
max

(
24
‖M3‖op
σk(M2)

+ 2
√

2
) ε,

and,

σk(M2)

‖M2‖1/2op

(
4
√

3/2 + 8kπmaxσk(M2)−1/2
(

24
‖M3‖op
σk(M2)

+ 2
√

2
)) ε,

5
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for some ε such that

ε ≤ min

{(
4
√

3/2‖M2‖1/2op σk(M2)
−1εM2 (10)

+ 8‖M2‖1/2op kπmaxσk(M2)
−3/2

(
24
‖M3‖op
σk(M2)

+ 2
√

2

))
σk(M2)

2
, (11)(

2π
3/2
max

3
5kπmaxσk(M2)

−3/2
(

24
‖M3‖op
σk(M2)

+ 2
√

2

))
σk(M2)

2
, (12)

1

2
√
πmax

(13)}
. (14)

Then, there exists a permutation of indices such that the parameter estimates found in
step 2 of Chaganty and Liang (2013, Algorithm 1) satisfy the following with probability at
least 1− δ,

‖π̂ − π‖∞ ≤ ε
‖β̂h − βh‖2 ≤ ε.

for all h ∈ [k].

Proof We will use the general notation, εX
def
= ‖X̂ − X‖op to represent the error of the

estimate, X̂, of X in the operator norm.

Step 1: Whitening Let W and Ŵ be the whitening matrices for M2 and M̂2 respectively.
Also define W † and Ŵ † to be their pseudo-inverses.

We will first show that the whitened tensors T = M3(W,W,W ) and T̂ = M̂3(Ŵ , Ŵ , Ŵ )
are symmetric with orthogonal eigenvectors. Recall that M2 =

∑
h πhβ

⊗2
h , and thus Wβh =

vh√
πh

, where vh form an orthonormal basis. Applying the whitening transform to M3, we
get,

M3 =
∑
h

πhβ
⊗3
h (15)

M3(W,W,W ) =
∑
h

πh(Wβh)⊗3 (16)

=
∑
h

1
√
πh
v⊗3h . (17)

Consequently, T has orthogonal eigenvectors, with eigenvalues 1/
√
πh.

6
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Let us now study how far T̂ differs from T , in terms of the errors of M2 and M3. To do
so, we use the triangle inequality to break the difference into a number of simple terms,

εT = ‖M3(W,W,W )− M̂3(Ŵ , Ŵ , Ŵ )‖op
≤ ‖M3(W,W,W )−M3(W,W, Ŵ )‖op + ‖M3(W,W, Ŵ )−M3(W, Ŵ , Ŵ )‖op

+ ‖M3(W, Ŵ , Ŵ )−M3(Ŵ , Ŵ , Ŵ )‖op + ‖M3(Ŵ , Ŵ , Ŵ )−−M̂3(Ŵ , Ŵ , Ŵ )‖op
≤ ‖M3‖op‖W‖2opεW + ‖M3‖op‖Ŵ‖op‖W‖opεW + ‖M3‖op‖Ŵ‖2opεW + εM3‖Ŵ‖3op
≤ ‖M3‖op(‖W‖2op + ‖Ŵ‖op‖W‖op + ‖Ŵ‖2op)εW + εM3‖Ŵ‖3op

We can relate ‖Ŵ‖ and εW to εM2 using using Proposition 6. The conditions on εM2 imply
that εM2 < σk(M2)/2, giving us,

‖Ŵ‖op ≤
√

2σk(M2)
−1/2

εW ≤ 4σk(M2)
−3/2εM2 .

Thus,

εT ≤ 6‖M3‖op‖W‖2op(4σk(M2)
−3/2)εM2 + εM32

√
2‖W‖3op

≤ 24‖M3‖opσk(M2)
−5/2εM2 + 2

√
2σk(M2)

−3/2εM3

≤ σk(M2)
−3/2

(
24
‖M3‖op
σk(M2)

+ 2
√

2

)
max{εM2 , εM3}.

Step 2: Decomposition We have constructed T to be a symmetric tensor with orthog-
onal eigenvectors. We can now apply the results of Anandkumar et al. (2012, Theorem
5.1) to bound the error in the eigenvalues, λW , and eigenvectors, ω, returned by the robust
tensor power method;

‖λW − λ̂W ‖∞ ≤
5kεT

(λW )min
(18)

‖ωh − ω̂h‖2 ≤
8kεT

(λW )2min

, (19)

for all h ∈ [k], where (λW )min is the smallest eigenvalue of T .

Step 3: Unwhitening Finally, we need to invert the whitening transformation to recover
π and βh from λW and ωh. Let us complete the proof by studying how this inversion relates
the error in π and β to the error in λW and ω.

First, we will bound the error in the βs,

‖β̂h − βh‖2 = ‖Ŵ †ω̂ −W †ω‖2
≤ εW †‖ω̂h‖2 + ‖W †‖2‖ω̂h − ωh‖2. (Triangle inequality)

Once more, we can apply the results of Proposition 6, with the assumptions on εM2 , to
get,

‖Ŵ †‖op ≤
√

3/2‖M2‖1/2op

εW † ≤ 4
√

3/2‖M2‖1/2op σk(M2)
−1εM2 .

7
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Thus,

‖β̂h − βh‖2 ≤ 4
√

3/2‖M2‖1/2op σk(M2)
−1εM2 + 8‖M2‖1/2op

kεT
(λW )2min

≤ 4
√

3/2‖M2‖1/2op σk(M2)
−1εM2

+ 8‖M2‖1/2op kπmaxσk(M2)
−3/2

(
24
‖M3‖op
σk(M2)

+ 2
√

2

)
max{εM2 , εM3}.

Next, let us bound the error in π,

|π̂h − πh| =

∣∣∣∣∣ 1

(λW )2h
− 1

(λ̂W )2h

∣∣∣∣∣
=

∣∣∣∣∣∣
(

(λW )h + (λ̂W )h

)(
(λW )h − (λ̂W )h

)
(λW )2h(λ̂W )2h

∣∣∣∣∣∣
≤ (2(λW )h − ‖λW − λ̂W ‖∞)

(λW )2h

(
(λW )h + ‖λW − λ̂W ‖∞

)2 ‖λW − λ̂W ‖∞.
Recall that (λW )h = π

−1/2
h , so the assumptions that ε imply that ‖λW−λ̂W ‖∞ ≤ (λW )min/2.

This allows us to simplify the above expression as follows,

|π̂h − πh| ≤
(3/2)(λW )h
(3/2)2(λW )4h

‖λW − λ̂W ‖∞

≤ 2

3(λW )3h

5kεT
(λW )2min

≤ 2π
3/2
max

3
5kπmaxσk(M2)

−3/2
(

24
‖M3‖op
σk(M2)

+ 2
√

2

)
max{εM2 , εM3}.

We complete the proof by requiring that the bounds εM2 and εM3 imply that ‖π̂−π‖∞ ≤
ε and ‖β̂h − βh‖2 ≤ ε, i.e.

max{εM2 , εM3} ≤
3σk(M2)

3/2

10kπ
5/2
max

(
24
‖M3‖op
σk(M2)

+ 2
√

2
) ε,

as well as,

max{εM2 , εM3} ≤
σk(M2)

‖M2‖1/2op

(
4
√

3/2 + 8kπmaxσk(M2)−1/2
(

24
‖M3‖op
σk(M2)

+ 2
√

2
)) ε.

8
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4. Basic Lemmas

Lemma 5 (Concentration of vector norms) Let X,X1, · · · , Xn ∈ Rd be i.i.d. samples
from some distribution with bounded support (‖X‖2 ≤ M with probability 1). Then with
probability at least 1− δ,∥∥∥∥∥ 1

n

n∑
i=1

Xi − E[X]

∥∥∥∥∥
2

≤ 2M√
n

(
1 +

√
log(1/δ)

2

)
. (20)

Proof Define Zi = Xi − E[X].
The quantity we want to bound can be expressed as follows:

f(Z1, Z2, · · · , Zn) =

∥∥∥∥∥ 1

n

n∑
i=1

Zi

∥∥∥∥∥
2

. (21)

Let us check that f satisfies the bounded differences inequality:

|f(Z1, · · · , Zi, · · · , Zn)− f(Z1, · · · , Z ′i, · · · , Zn)| ≤ 1

n
‖Zi − Z ′i‖2 (22)

=
1

n
‖Xi −X ′i‖2 (23)

≤ 2M

n
, (24)

by the bounded assumption of Xi and the triangle inequality.
By McDiarmid’s inequality, with probability at least 1− δ, we have:

P[f − E[f ] ≥ ε] ≤ exp

(
−2ε2∑n

i=1(2M/n)2

)
. (25)

Re-arranging: ∥∥∥∥∥ 1

n

n∑
i=1

Zi

∥∥∥∥∥
2

≤ E

[∥∥∥∥∥ 1

n

n∑
i=1

Zi

∥∥∥∥∥
2

]
+M

√
2 log(1/δ)

n
. (26)

Now it remains to bound E[f ]. By Jensen’s inequality, E[f ] ≤
√
E[f2], so it suffices to

bound E[f2]:

E

 1

n2

∥∥∥∥∥
n∑
i=1

Zi

∥∥∥∥∥
2
 = E

[
1

n2

n∑
i=1

‖Zi‖22

]
+ E

 1

n2

∑
i 6=j
〈Zi, Zj〉

 (27)

≤ 4M2

n
+ 0, (28)

where the cross terms are zero by independence of the Zi’s.
Putting everything together, we obtain the desired bound:∥∥∥∥∥ 1

n

n∑
i=1

Zi

∥∥∥∥∥ ≤ 2M√
n

+M

√
2 log(1/δ)

n
. (29)

9
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Remark: The above result can be directly applied to the Frobenius norm of a matrix
M because ‖M‖F = ‖ vec(M)‖2.

Proposition 6 (Perturbation Bounds on Whitening Matrices) Let A be a rank-k
d × d matrix, Ŵ be a d × k matrix that whitens Â, i.e. Ŵ T ÂŴ = I. Suppose Ŵ TAŴ =
UDUT , then define W = ŴUD−

1
2UT . Note that W is also a d× k matrix that whitens A.

Let αA = εA
σk(A)

.
Then,

‖Ŵ‖op ≤
‖W‖op√
1− αA

‖Ŵ †‖op ≤ ‖W †‖op
√

1 + αA

εW ≤ 2‖W‖op
αA

1− αA
εW † ≤ 2‖W †‖op

√
1 + αA

αA
1− αA

.

Proof First, note that for a matrix W that whitens A = V ΣV T , W = V Σ−
1
2V T and

W † = V Σ−
1
2V T . This allows us to bound the operator norms of Ŵ and Ŵ † in terms of W

and W †,

‖Ŵ‖op =
1√
σk(Â)

≤ 1√
σk(A)− εA

(By Weyl’s Theorem)

≤ ‖W‖op√
1− αA

‖Ŵ †‖op =

√
σ1(Â)

≤
√
σmax(A) + εA (By Weyl’s Theorem)

≤
√

1 + αA‖W †‖op.
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To find εW , we will exploit the rotational invariance of the operator norm.

εW = ‖Ŵ −W‖op
= ‖WUD

1
2UT −W‖op (W = UD−

1
2UT )

≤ ‖W‖op‖I − UD
1
2UT ‖op (Sub-multiplicativity)

≤ ‖W‖op‖I −D‖op
= ‖W‖op‖I − UDUT ‖op (Rotational invariance)

≤ ‖W‖op‖Ŵ T ÂkŴ − Ŵ TAŴ‖op (By definition)

≤ ‖W‖op(‖Ŵ T (Âk − Â)Ŵ‖op + ‖Ŵ T (Â−A)Ŵ‖op)

≤ ‖W‖op‖Ŵ‖2op(σk+1(Â) + εA)

≤ 2‖W‖op‖Ŵ‖2opεA (Since σk+1(A) = 0)

≤ 2‖W‖op
αA

1− αA
. (Using bound on ‖Ŵ‖op)

Similarly, we can bound the error on the un-whitening transform, W †,

εW † = ‖Ŵ † −W †‖op
= ‖Ŵ †UD

1
2UT −W †‖op

≤ ‖Ŵ †‖op‖I − UD
1
2UT ‖op

≤ 2‖Ŵ †‖op‖Ŵ‖2opεA (From derivation of εW )

≤ 2‖W †‖op
√

1 + αA
αA

1− αA
.
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