Supplementary Material for Spectral Experts for Estimating Mixtures of Linear Regressions

Arun Tejasvi Chaganty
Percy Liang

CHAGANTY@CS.STANFORD.EDU

PLIANG@CS.STANFORD.EDU

1. Review of Notation

Let $[n]=\{1, \ldots, n\}$ denote the first n positive integers.
We use $x^{\otimes p}$ to represent the p-th order tensor formed by taking the outer product of $x \in \mathbb{R}^{d}$; i.e. $x_{i_{1} \ldots i_{p}}^{\otimes p}=x_{i_{1}} \cdots x_{i_{p}}$. We will use $\langle\cdot, \cdot\rangle$ to denote the generalized dot product between two p-th order tensors: $\langle X, Y\rangle=\sum_{i_{1}, \ldots i_{p}} X_{i_{1}, \ldots i_{p}} Y_{i_{1}, \ldots i_{p}}$. A tensor X is symmetric if for all $i, j \in[d]^{p}$ which are permutations of each other, $X_{i_{1} \cdots i_{p}}=X_{j_{1} \cdots j_{p}}$ (all tensors in this paper will be symmetric). For a p-th order tensor $X \in\left(\mathbb{R}^{d}\right)^{\otimes p}$, the mode- i unfolding of X is a matrix, $X_{(i)} \in \mathbb{R}^{d \times d^{p-1}}$, whose j-th row contains all the elements of X whose i-th index is equal to j.

For a vector X, let $\|X\|_{\text {op }}$ denote the 2 -norm. For a matrix X, let $\|X\|_{*}$ denote the nuclear (trace) norm (sum of singular values), let $\|X\|_{F}$ denote the Frobenius norm (square root of sum of squares of singular values), let $\|X\|_{\text {max }}$ denote the max norm (elementwise maximum), let $\|X\|_{\text {op }}$ denote the operator norm (largest singular value), let $\sigma_{\min }(X)$ be the smallest singular value of X. For a tensor X, let $\|X\|_{*}=\frac{1}{p} \sum_{i=1}^{p}\left\|X_{(i)}\right\|_{*}$ denote the average nuclear norm over all p unfoldings, and let $\|X\|_{\mathrm{op}}=\frac{1}{p} \sum_{i=1}^{p}\left\|X_{(i)}\right\|_{\mathrm{op}}$ denote the average operator norm over all p unfoldings.

For a symmetric tensor $X \in\left(\mathbb{R}^{d}\right)^{\otimes p}$, let $\operatorname{cvec}(X) \in \mathbb{R}^{C_{d, p}}, C_{d, p}=\binom{d+p+1}{p}$ be the collapsed vectorization of distinct elements in X, for example, for $X \in \mathbb{R}^{d \times d}$, $\operatorname{cvec}(X)=\left(X_{i i}: i \in\right.$ $\left.[d] ; X_{i j}+X_{j i}: i, j \in[d], i<j\right)$. In general, each component of $\operatorname{cvec}(X)$ is indexed by a vector of counts $\left(c_{1}, \ldots, c_{d}\right)$ with total sum $\sum_{i} c_{i}=p$. The value of that component is $\sum_{k \in K(c)} X_{k_{1} \cdots k_{p}}$, where $K(c)=\left\{k \in[d]^{p}: \forall i \in[d], c_{i}=\left|\left\{j \in[p]: k_{j}=i\right\}\right|\right\}$ are the set of index vectors k with that count profile.

2. Regression

Let us review the regression problem set up in (Chaganty and Liang, 2013, Section 3). We assume we are given data $\left(x_{i}, y_{i}\right) \in \mathcal{D}_{p}$ generated by the following process,

$$
\begin{equation*}
y_{i}=\left\langle M_{p}, x_{i}^{\otimes p}\right\rangle+\eta_{p}\left(x_{i}\right), \tag{1}
\end{equation*}
$$

where $M_{p}=\sum_{h=1}^{k} \pi_{h} \beta_{h}^{\otimes p}$, the p-th order moments of β_{h} and $\eta_{p}(x)$ is zero mean noise. In particular, for $p \in\{1,2,3\}$, we showed that $\eta_{p}(x)$ were defined to be,

$$
\begin{align*}
& \eta_{1}(x)=\left\langle\beta_{h}-M_{1}, x\right\rangle+\epsilon \tag{2}\\
& \eta_{2}(x)=\left\langle\beta_{h}^{\otimes 2}-M_{2}, x^{\otimes 2}\right\rangle+2 \epsilon\left\langle\beta_{h}, x\right\rangle+\left(\epsilon^{2}-\mathbb{E}\left[\epsilon^{2}\right]\right) \tag{3}\\
& \eta_{3}(x)=\left\langle\beta_{h}^{\otimes 3}-M_{3}, x^{\otimes 3}\right\rangle+3 \epsilon\left\langle\beta_{h}^{\otimes 2}, x^{\otimes 2}\right\rangle+3\left(\epsilon^{2}\left\langle\beta_{h}, x\right\rangle-\mathbb{E}\left[\epsilon^{2}\right]\left\langle M_{1}, x\right\rangle\right)+\left(\epsilon^{3}-\mathbb{E}\left[\epsilon^{3}\right]\right) . \tag{4}
\end{align*}
$$

We assume that $\left\|x_{i}\right\| \leq R,\left\|\beta_{h}\right\| \leq L$ and $|\epsilon| \leq S$.
We then defined the observation operator $\mathfrak{X}_{p}\left(M_{p}\right): \mathbb{R}^{d^{8 p}} \rightarrow \mathbb{R}^{n}$,

$$
\begin{equation*}
\mathfrak{X}_{p}\left(M_{p} ; \mathcal{D}_{p}\right)_{i} \stackrel{\text { def }}{=}\left\langle M_{p}, x_{i}^{\otimes p}\right\rangle, \quad\left(x_{i}, y_{i}\right) \in \mathcal{D}_{p} \tag{5}
\end{equation*}
$$

which let us succinctly represent the low-rank regression problem as follows,

$$
\begin{equation*}
\min _{M_{p} \in \mathbb{R}^{d \otimes p}} \frac{1}{2 n}\left\|y-\mathfrak{X}_{p}\left(M_{p} ; \mathcal{D}_{p}\right)\right\|_{2}^{2}+\lambda_{p}\left\|M_{p}\right\|_{*} . \tag{6}
\end{equation*}
$$

Let us also recall the adjoint of the observation operator, $\mathfrak{X}_{p}^{*}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{d^{p}}$,

$$
\begin{equation*}
\mathfrak{X}_{p}^{*}\left(\eta_{p} ; \mathcal{D}_{p}\right)=\sum_{x \in \mathcal{D}_{p}} \eta_{p}(x) x^{\otimes p} \tag{7}
\end{equation*}
$$

where we have used η_{p} to represent the vector $\left[\eta_{p}(x)\right]_{x \in \mathcal{D}_{p}}$.
Tomioka et al. (2011) showed that error in the estimated \hat{M}_{p} can be bounded as follows;
Lemma 1 (Tomioka et al. (2011), Theorem 1) Suppose there exists a restricted strong convexity constant $\kappa\left(\mathfrak{X}_{p}\right)$ such that

$$
\frac{1}{2 n}\left\|\mathfrak{X}_{p}(\Delta)\right\|_{2}^{2} \geq \kappa\left(\mathfrak{X}_{p}\right)\|\Delta\|_{F}^{2} \quad \text { and } \quad \lambda_{n} \geq \frac{\left\|\mathfrak{X}_{p}^{*}\left(\eta_{p}\right)\right\|_{\mathrm{op}}}{n}
$$

Then the error of \hat{M}_{p} is bounded as follows: $\left\|\hat{M}_{p}-M_{p}^{*}\right\|_{F} \leq \frac{\lambda_{n} \sqrt{k}}{\kappa\left(\mathcal{X}_{p}\right)}$.
In this section, we will derive an upper bound on $\kappa\left(\mathfrak{X}_{p}\right)$ and a lower bound on $\frac{1}{n}\left\|\mathfrak{X}_{p}^{*}\left(\eta_{p}\right)\right\|_{\mathrm{op}}$.
Lemma 2 (Lower bound on restricted strong convexity) Let $\Sigma_{p} \stackrel{\text { def }}{=} \mathbb{E}\left[\operatorname{cvec}\left(x^{\otimes p}\right)^{\otimes 2}\right]$. If

$$
n \geq \frac{16(p!)^{2} R^{4 p}}{\sigma_{\min }\left(\Sigma_{p}\right)^{2}}\left(1+\sqrt{\frac{\log (1 / \delta)}{2}}\right)^{2},
$$

then, with probability at least $1-\delta$,

$$
\kappa\left(\mathfrak{X}_{p}\right) \geq \frac{\sigma_{\min }\left(\Sigma_{p}\right)}{2} .
$$

Proof Recall the definition of $\kappa\left(\mathfrak{X}_{p}\right)$,

$$
\frac{1}{n}\left\|\mathfrak{X}_{p}(\Delta)\right\|_{2}^{2} \geq \kappa\left(\mathfrak{X}_{p}\right)\|\Delta\|_{F}^{2} .
$$

Expanding the definition of the observation operator:

$$
\frac{1}{n}\left\|\mathfrak{X}_{p}(\Delta)\right\|_{2}^{2}=\frac{1}{n} \sum_{(x, y) \in \mathcal{D}_{p}}\left\langle\Delta, x^{\otimes p}\right\rangle^{2} .
$$

Unfolding the tensors, letting $\hat{\Sigma}_{p} \stackrel{\text { def }}{=} \frac{1}{n} \sum_{(x, y) \in \mathcal{D}_{p}} \operatorname{cvec}\left(x^{\otimes p}\right)^{\otimes 2}, \frac{1}{n}\left\|\mathfrak{X}_{p}(\Delta)\right\|_{2}^{2}=\operatorname{tr}\left(\operatorname{cvec}(\Delta)^{\otimes 2} \hat{\Sigma}_{p}\right)$. We recall that each element of $\operatorname{cvec}(\Delta)$ aggregates elements with permuted indices, so $\|\operatorname{vec}(\Delta)\|_{2} \leq\|\operatorname{cvec}(\Delta)\|_{2} \leq p!\|\operatorname{vec}(\Delta)\|_{2}$. Then, we have

$$
\begin{align*}
\frac{1}{n}\left\|\mathfrak{X}_{p}(\Delta)\right\|_{2}^{2} & =\operatorname{tr}\left(\operatorname{cvec}(\Delta)^{\otimes 2} \hat{\Sigma}_{p}\right) \tag{8}\\
& \geq \sigma_{\min }\left(\hat{\Sigma}_{p}\right)\|\Delta\|_{F}^{2} \tag{9}
\end{align*}
$$

By Weyl's theorem,

$$
\sigma_{\min }\left(\hat{\Sigma}_{p}\right) \geq \sigma_{\min }\left(\Sigma_{p}\right)-\left\|\hat{\Sigma}_{p}-\Sigma_{p}\right\|_{\mathrm{op}}
$$

Since $\left\|\hat{\Sigma}_{p}-\Sigma_{p}\right\|_{\text {op }} \leq\left\|\hat{\Sigma}_{p}-\Sigma_{p}\right\|_{F}$, it suffices to show that the empirical covariance concentrates in Frobenius norm. Applying Lemma 5, with probability at least $1-\delta$,

$$
\left\|\hat{\Sigma}_{p}-\Sigma_{p}\right\|_{F} \leq \frac{2\left\|\Sigma_{p}\right\|_{F}}{\sqrt{n}}\left(1+\sqrt{\frac{\log (1 / \delta)}{2}}\right)
$$

Now we seek to control $\left\|\Sigma_{p}\right\|_{F}$. Since $\|x\|_{2} \leq R$, we can use the bound

$$
\left\|\Sigma_{p}\right\|_{F} \leq p!\left\|\operatorname{vec}\left(x^{\otimes p}\right)^{\otimes 2}\right\|_{F} \leq p!R^{2 p} .
$$

Finally, $\left\|\hat{\Sigma}_{p}-\Sigma_{p}\right\|_{\text {op }} \leq \sigma_{\min }\left(\Sigma_{p}\right) / 2$ with probability at least $1-\delta$ if,

$$
n \geq \frac{16(p!)^{2} R^{4 p}}{\sigma_{\min }\left(\Sigma_{p}\right)^{2}}\left(1+\sqrt{\frac{\log (1 / \delta)}{2}}\right)^{2}
$$

Lemma 3 (Upper bound on adjoint operator) With probability at least $1-\delta$, the following holds,

$$
\begin{aligned}
\frac{1}{n}\left\|\mathfrak{X}_{1}^{*}\left(\eta_{1}\right)\right\|_{\mathrm{op}} \leq & \frac{2 R(2 L R+S)}{\sqrt{n}}\left(1+\sqrt{\frac{\log (3 / \delta)}{2}}\right) \\
\frac{1}{n}\left\|\mathfrak{X}_{2}^{*}\left(\eta_{2}\right)\right\|_{\mathrm{op}} \leq & \frac{\left(4 L^{2} R^{2}+2 S L R+4 S^{2}\right) R^{2}}{\sqrt{n}}\left(1+\sqrt{\frac{\log (3 / \delta)}{2}}\right) \\
\frac{1}{n}\left\|\mathfrak{X}_{3}^{*}\left(\eta_{3}\right)\right\|_{\mathrm{op}} \leq & \frac{\left(8 L^{3} R^{3}+3 L^{2} R^{2} S+6 L R S^{2}+2 S^{3}\right) R^{3}}{\sqrt{n}}\left(1+\sqrt{\frac{\log (6 / \delta)}{2}}\right) \\
& +3 R^{4} S^{2}\left(\frac{4 R(2 L R+S)}{\sigma_{\min }\left(\Sigma_{1}\right) \sqrt{n}}\left(1+\sqrt{\frac{\log (6 / \delta)}{2}}\right)\right)
\end{aligned}
$$

It follows that, with probability at least $1-\delta$,

$$
\frac{1}{n}\left\|\mathfrak{X}_{p}^{*}\left(\eta_{p}\right)\right\|_{\mathrm{op}}=O\left(L^{p} S^{p} R^{2 p} \sigma_{\min }\left(\Sigma_{1}\right)^{-1} \sqrt{\frac{\log (1 / \delta)}{n}}\right)
$$

for each $p \in\{1,2,3\}$.
Proof Let $\hat{\mathbb{E}}_{p}[f(x, \epsilon, h)]$ denote the empirical expectation over the examples in dataset \mathcal{D}_{p} (recall the \mathcal{D}_{p} 's are independent to simplify the analysis). By definition,

$$
\frac{1}{n}\left\|\mathfrak{X}_{p}^{*}\left(\eta_{p}\right)\right\|_{\mathrm{op}}=\left\|\hat{\mathbb{E}}_{p}\left[\eta_{p}(x) x^{\otimes p}\right]\right\|_{\mathrm{op}}
$$

for $p \in\{1,2,3\}$. To proceed, we will bound each $\eta_{p}(x)$, defined in (2), (3) and (4) and use Lemma 5 to bound $\left\|\hat{\mathbb{E}}_{p}\left[\eta_{p}(x) x^{\otimes p}\right]\right\|_{F}$. The Frobenius norm to bounds the operator norm, completing the proof.
Bounding $\eta_{p}(x)$. Using the assumptions that $\left\|\beta_{h}\right\|_{2} \leq L,\|x\|_{2} \leq R$ and $|\epsilon| \leq S$, it is easy to bound each $\eta_{p}(x)$,

$$
\begin{aligned}
\eta_{1}(x)= & \left\langle\beta_{h}-M_{1}, x\right\rangle+\epsilon \\
\leq & \left\|\beta_{h}-M_{1}\right\|_{2}\|x\|_{2}+|\epsilon| \\
\leq & 2 L R+S \\
\eta_{2}(x)= & \left\langle\beta_{h}^{\otimes 2}-M_{2}, x^{\otimes 2}\right\rangle+2 \epsilon\left\langle\beta_{h}, x\right\rangle+\left(\epsilon^{2}-\mathbb{E}\left[\epsilon^{2}\right]\right) \\
\leq & \left\|\beta_{h}^{\otimes 2}-M_{2}\right\|_{F}\left\|x^{\otimes 2}\right\|_{F}+2\left|\epsilon\| \| \beta_{h}\left\|_{2}\right\| x \|_{2}+\left|\epsilon^{2}-\mathbb{E}\left[\epsilon^{2}\right]\right|\right. \\
\leq & (2 L)^{2} R^{2}+2 S L R+(2 S)^{2} \\
\eta_{3}(x)= & \left\langle\beta_{h}^{\otimes 3}-M_{3}, x^{\otimes 3}\right\rangle+3 \epsilon\left\langle\beta_{h}^{\otimes 2}, x^{\otimes 2}\right\rangle \\
& +3\left(\epsilon^{2}\left\langle\beta_{h}, x\right\rangle-\mathbb{E}\left[\epsilon^{2}\right]\left\langle\hat{M}_{1}, x\right\rangle\right)+\left(\epsilon^{3}-\mathbb{E}\left[\epsilon^{3}\right]\right) \\
\leq & \left\|\beta_{h}^{\otimes 3}-M_{3}\right\|_{F}\left\|x^{\otimes 3}\right\|_{F}+3 \mid \epsilon\| \| \beta_{h}^{\otimes 2}\left\|_{F}\right\| x^{\otimes 2} \|_{F} \\
& +3\left(\left|\epsilon^{2}\right|\left\|\beta_{h}\right\|_{F}\|x\|_{F}+\left|\mathbb{E}\left[\epsilon^{2}\right]\right|\left\|\hat{M}_{1}\right\|_{2}\|x\|_{2}\right)+\left|\epsilon^{3}\right|+\left|\mathbb{E}\left[\epsilon^{3}\right]\right| \\
\leq & (2 L)^{3} R^{3}+3 S L^{2} R^{2}+3\left(S^{2} L R+S^{2} L R\right)+2 S^{3} .
\end{aligned}
$$

We have used inequality $\left\|M_{1}-\beta_{h}\right\|_{2} \leq 2 L$ above.
Bounding $\left\|\hat{\mathbb{E}}\left[\eta_{p}(x) x^{\otimes p}\right]\right\|_{F}$. We may now apply the above bounds on $\eta_{p}(x)$ to bound $\left\|\eta_{p}(x) x^{\otimes p}\right\|_{F}$, using the fact that $\|c X\|_{F} \leq c\|X\|_{F}$. By Lemma 5, each of the following holds with probability at least $1-\delta_{1}$,

$$
\begin{aligned}
\left\|\hat{\mathbb{E}}_{1}\left[\eta_{1}(x) x\right]\right\|_{2} & \leq \frac{2 R(2 L R+S)}{\sqrt{n}}\left(1+\sqrt{\frac{\log \left(1 / \delta_{1}\right)}{2}}\right) \\
\left\|\hat{\mathbb{E}}_{2}\left[\eta_{2}(x) x^{\otimes 2}\right]\right\|_{F} & \leq \frac{\left(4 L^{2} R^{2}+2 S L R+4 S^{2}\right) R^{2}}{\sqrt{n}}\left(1+\sqrt{\frac{\log \left(1 / \delta_{2}\right)}{2}}\right) \\
\left\|\hat{\mathbb{E}}_{3}\left[\eta_{3}(x) x^{\otimes 3}\right]-\mathbb{E}\left[\eta_{3}(x) x^{\otimes 3} \mid x\right]\right\|_{F} & \leq \frac{\left(8 L^{3} R^{3}+3 L^{2} R^{2} S+6 L R S^{2}+2 S^{3}\right) R^{3}}{\sqrt{n}}\left(1+\sqrt{\frac{\log \left(1 / \delta_{3}\right)}{2}}\right) .
\end{aligned}
$$

Recall that $\eta_{3}(x)$ does not have zero mean, so we must bound the bias:

$$
\begin{aligned}
\left\|\mathbb{E}\left[\eta_{3}(x) x^{\otimes 3} \mid x\right]\right\|_{F} & =\left\|3 \mathbb{E}\left[\epsilon^{2}\right]\left\langle M_{1}-\hat{M}_{1}, x\right\rangle x^{\otimes 3}\right\|_{F} \\
& \leq 3 \mathbb{E}\left[\epsilon^{2}\right]\left\|M_{1}-\hat{M}_{1}\right\|_{2}\|x\|_{2}\left\|x^{\otimes 3}\right\|_{F} .
\end{aligned}
$$

Note that in all of this, both \hat{M}_{1} and M_{1} are treated as constants. Further, by applying Lemma 1, we have a bound on $\left\|M_{1}-\hat{M}_{1}\right\|_{2}$. So, with probability at least $1-\delta_{3}$,

$$
\left\|\mathbb{E}\left[\eta_{3}(x) x^{\otimes 3} \mid x\right]\right\|_{F} \leq 3 R^{4} S^{2}\left(\frac{4 R(2 L R+S)}{\sigma_{\min }\left(\Sigma_{1}\right) \sqrt{n}}\left(1+\sqrt{\frac{\log \left(1 / \delta_{3}\right)}{2}}\right)\right) .
$$

Finally, taking $\delta_{1}=\delta / 3, \delta_{2}=\delta / 3, \delta_{3}=\delta / 6$, and taking the union bound over the bounds for $p \in\{1,2,3\}$, we get our result.

3. Tensor Decomposition

Once we have estimated the moments from the data through regression, we apply the robust tensor eigen-decomposition algorithm to recover the parameters, β_{h} and π. However, the algorithm is guaranteed to work only for symmetric matrices with (nearly) orthogonal eigenvectors, so as a first step, we will need to whiten the third-order moment tensor using the second moments. Once we get the eigenvalues and eigenvectors from this orthogonal tensor, we have to undo the transformation by applying an un-whitening step. In this section, we present error bounds for each step, and combine them to prove the following lemma,

Lemma 4 (Tensor Decomposition with Whitening) Let $M_{3}=\sum_{h=1}^{k} \pi_{h} \beta_{h}^{\otimes 3}$. Let $\| \hat{M}_{2}-$ $M_{2} \|_{\text {op }}$ and $\left\|\hat{M}_{3}-M_{3}\right\|_{\text {op }}$ both be less than

$$
\frac{3 \sigma_{k}\left(M_{2}\right)^{3 / 2}}{10 k \pi_{\max }^{5 / 2}\left(24 \frac{\left\|M_{3}\right\|_{\mathrm{op}}}{\sigma_{k}\left(M_{2}\right)}+2 \sqrt{2}\right)} \epsilon,
$$

and,

$$
\frac{\sigma_{k}\left(M_{2}\right)}{\left\|M_{2}\right\|_{\mathrm{op}}^{1 / 2}\left(4 \sqrt{3 / 2}+8 k \pi_{\max } \sigma_{k}\left(M_{2}\right)^{-1 / 2}\left(24 \frac{\left\|M_{3}\right\|_{\mathrm{op}}}{\sigma_{k}\left(M_{2}\right)}+2 \sqrt{2}\right)\right)} \epsilon,
$$

for some ϵ such that

$$
\begin{align*}
\epsilon \leq & \min \left\{\left(4 \sqrt{3 / 2}\left\|M_{2}\right\|_{\mathrm{op}}^{1 / 2} \sigma_{k}\left(M_{2}\right)^{-1} \varepsilon_{M_{2}}\right.\right. \tag{10}\\
& \left.+8\left\|M_{2}\right\|_{\mathrm{op}}^{1 / 2} k \pi_{\max } \sigma_{k}\left(M_{2}\right)^{-3 / 2}\left(24 \frac{\left\|M_{3}\right\|_{\mathrm{op}}}{\sigma_{k}\left(M_{2}\right)}+2 \sqrt{2}\right)\right) \frac{\sigma_{k}\left(M_{2}\right)}{2} \tag{11}\\
& \left(\frac{2 \pi_{\max }^{3 / 2}}{3} 5 k \pi_{\max } \sigma_{k}\left(M_{2}\right)^{-3 / 2}\left(24 \frac{\left\|M_{3}\right\|_{\mathrm{op}}}{\sigma_{k}\left(M_{2}\right)}+2 \sqrt{2}\right)\right) \frac{\sigma_{k}\left(M_{2}\right)}{2} \tag{12}\\
& \frac{1}{2 \sqrt{\pi_{\max }}} \tag{13}\\
& \} \tag{14}
\end{align*}
$$

Then, there exists a permutation of indices such that the parameter estimates found in step 2 of Chaganty and Liang (2013, Algorithm 1) satisfy the following with probability at least $1-\delta$,

$$
\begin{aligned}
\|\hat{\pi}-\pi\|_{\infty} & \leq \epsilon \\
\left\|\hat{\beta}_{h}-\beta_{h}\right\|_{2} & \leq \epsilon .
\end{aligned}
$$

for all $h \in[k]$.
Proof We will use the general notation, $\varepsilon_{X} \stackrel{\text { def }}{=}\|\hat{X}-X\|_{\text {op }}$ to represent the error of the estimate, \hat{X}, of X in the operator norm.

Step 1: Whitening Let W and \hat{W} be the whitening matrices for M_{2} and \hat{M}_{2} respectively. Also define W^{\dagger} and \hat{W}^{\dagger} to be their pseudo-inverses.

We will first show that the whitened tensors $T=M_{3}(W, W, W)$ and $\hat{T}=\hat{M}_{3}(\hat{W}, \hat{W}, \hat{W})$ are symmetric with orthogonal eigenvectors. Recall that $M_{2}=\sum_{h} \pi_{h} \beta_{h}^{\otimes 2}$, and thus $W \beta_{h}=$ $\frac{v_{h}}{\sqrt{\pi_{h}}}$, where v_{h} form an orthonormal basis. Applying the whitening transform to M_{3}, we get,

$$
\begin{align*}
M_{3} & =\sum_{h} \pi_{h} \beta_{h}^{\otimes 3} \tag{15}\\
M_{3}(W, W, W) & =\sum_{h} \pi_{h}\left(W \beta_{h}\right)^{\otimes 3} \tag{16}\\
& =\sum_{h} \frac{1}{\sqrt{\pi_{h}}} v_{h}^{\otimes 3} . \tag{17}
\end{align*}
$$

Consequently, T has orthogonal eigenvectors, with eigenvalues $1 / \sqrt{\pi_{h}}$.

Let us now study how far \hat{T} differs from T, in terms of the errors of M_{2} and M_{3}. To do so, we use the triangle inequality to break the difference into a number of simple terms,

$$
\begin{aligned}
\varepsilon_{T}= & \left\|M_{3}(W, W, W)-\hat{M}_{3}(\hat{W}, \hat{W}, \hat{W})\right\|_{\mathrm{op}} \\
\leq & \left\|M_{3}(W, W, W)-M_{3}(W, W, \hat{W})\right\|_{\mathrm{op}}+\left\|M_{3}(W, W, \hat{W})-M_{3}(W, \hat{W}, \hat{W})\right\|_{\mathrm{op}} \\
& +\left\|M_{3}(W, \hat{W}, \hat{W})-M_{3}(\hat{W}, \hat{W}, \hat{W})\right\|_{\mathrm{op}}+\left\|M_{3}(\hat{W}, \hat{W}, \hat{W})--\hat{M_{3}}(\hat{W}, \hat{W}, \hat{W})\right\|_{\mathrm{op}} \\
\leq & \left\|M_{3}\right\|_{\mathrm{op}}\|W\|_{\mathrm{op}}^{2} \varepsilon_{W}+\left\|M_{3}\right\|_{\mathrm{op}}\|\hat{W}\|_{\mathrm{op}}\|W\|_{\mathrm{op}} \varepsilon_{W}+\left\|M_{3}\right\|_{\mathrm{op}}\|\hat{W}\|_{\mathrm{op}}^{2} \varepsilon_{W}+\varepsilon_{M_{3}}\|\hat{W}\|_{\mathrm{op}}^{3} \\
\leq & \left\|M_{3}\right\|_{\mathrm{op}}\left(\|W\|_{\mathrm{op}}^{2}+\|\hat{W}\|_{\mathrm{op}}\|W\|_{\mathrm{op}}+\|\hat{W}\|_{\mathrm{op}}^{2}\right) \varepsilon_{W}+\varepsilon_{M_{3}}\|\hat{W}\|_{\mathrm{op}}^{3}
\end{aligned}
$$

We can relate $\|\hat{W}\|$ and ε_{W} to $\varepsilon_{M_{2}}$ using using Proposition 6. The conditions on $\varepsilon_{M_{2}}$ imply that $\varepsilon_{M_{2}}<\sigma_{k}\left(M_{2}\right) / 2$, giving us,

$$
\begin{aligned}
\|\hat{W}\|_{\mathrm{op}} & \leq \sqrt{2} \sigma_{k}\left(M_{2}\right)^{-1 / 2} \\
\varepsilon_{W} & \leq 4 \sigma_{k}\left(M_{2}\right)^{-3 / 2} \varepsilon_{M_{2}} .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\varepsilon_{T} & \leq 6\left\|M_{3}\right\|_{\mathrm{op}}\|W\|_{\mathrm{op}}^{2}\left(4 \sigma_{k}\left(M_{2}\right)^{-3 / 2}\right) \varepsilon_{M_{2}}+\varepsilon_{M_{3}} 2 \sqrt{2}\|W\|_{\mathrm{op}}^{3} \\
& \leq 24\left\|M_{3}\right\|_{\mathrm{op}} \sigma_{k}\left(M_{2}\right)^{-5 / 2} \varepsilon_{M_{2}}+2 \sqrt{2} \sigma_{k}\left(M_{2}\right)^{-3 / 2} \varepsilon_{M_{3}} \\
& \leq \sigma_{k}\left(M_{2}\right)^{-3 / 2}\left(24 \frac{\left\|M_{3}\right\|_{\mathrm{op}}}{\sigma_{k}\left(M_{2}\right)}+2 \sqrt{2}\right) \max \left\{\varepsilon_{M_{2}}, \varepsilon_{M_{3}}\right\} .
\end{aligned}
$$

Step 2: Decomposition We have constructed T to be a symmetric tensor with orthogonal eigenvectors. We can now apply the results of Anandkumar et al. (2012, Theorem 5.1) to bound the error in the eigenvalues, λ_{W}, and eigenvectors, ω, returned by the robust tensor power method;

$$
\begin{align*}
\left\|\lambda_{W}-\hat{\lambda}_{W}\right\|_{\infty} & \leq \frac{5 k \varepsilon_{T}}{\left(\lambda_{W}\right)_{\min }} \tag{18}\\
\left\|\omega_{h}-\hat{\omega}_{h}\right\|_{2} & \leq \frac{8 k \varepsilon_{T}}{\left(\lambda_{W}\right)_{\min }^{2}} \tag{19}
\end{align*}
$$

for all $h \in[k]$, where $\left(\lambda_{W}\right)_{\min }$ is the smallest eigenvalue of T.
Step 3: Unwhitening Finally, we need to invert the whitening transformation to recover π and β_{h} from λ_{W} and ω_{h}. Let us complete the proof by studying how this inversion relates the error in π and β to the error in λ_{W} and ω.

First, we will bound the error in the $\beta \mathrm{s}$,

$$
\begin{align*}
\left\|\hat{\beta}_{h}-\beta_{h}\right\|_{2} & =\left\|\hat{W}^{\dagger} \hat{\omega}-W^{\dagger} \omega\right\|_{2} \\
& \leq \varepsilon_{W^{\dagger}}\left\|\hat{\omega}_{h}\right\|_{2}+\left\|W^{\dagger}\right\|_{2}\left\|\hat{\omega}_{h}-\omega_{h}\right\|_{2} \tag{Triangleinequality}
\end{align*}
$$

Once more, we can apply the results of Proposition 6, with the assumptions on $\varepsilon_{M_{2}}$, to get,

$$
\begin{aligned}
\left\|\hat{W}^{\dagger}\right\|_{\mathrm{op}} & \leq \sqrt{3 / 2}\left\|M_{2}\right\|_{\mathrm{op}}^{1 / 2} \\
\varepsilon_{W^{\dagger}} & \leq 4 \sqrt{3 / 2}\left\|M_{2}\right\|_{\mathrm{op}}^{1 / 2} \sigma_{k}\left(M_{2}\right)^{-1} \varepsilon_{M_{2}} .
\end{aligned}
$$

Chaganty Liang

Thus,

$$
\begin{aligned}
\left\|\hat{\beta}_{h}-\beta_{h}\right\|_{2} \leq & 4 \sqrt{3 / 2}\left\|M_{2}\right\|_{\mathrm{op}}^{1 / 2} \sigma_{k}\left(M_{2}\right)^{-1} \varepsilon_{M_{2}}+8\left\|M_{2}\right\|_{\mathrm{op}}^{1 / 2} \frac{k \varepsilon_{T}}{\left(\lambda_{W}\right)_{\min }^{2}} \\
\leq & 4 \sqrt{3 / 2}\left\|M_{2}\right\|_{\mathrm{op}}^{1 / 2} \sigma_{k}\left(M_{2}\right)^{-1} \varepsilon_{M_{2}} \\
& +8\left\|M_{2}\right\|_{\mathrm{op}}^{1 / 2} k \pi_{\max } \sigma_{k}\left(M_{2}\right)^{-3 / 2}\left(24 \frac{\left\|M_{3}\right\|_{\mathrm{op}}}{\sigma_{k}\left(M_{2}\right)}+2 \sqrt{2}\right) \max \left\{\varepsilon_{M_{2}}, \varepsilon_{M_{3}}\right\}
\end{aligned}
$$

Next, let us bound the error in π,

$$
\begin{aligned}
\left|\hat{\pi}_{h}-\pi_{h}\right| & =\left|\frac{1}{\left(\lambda_{W}\right)_{h}^{2}}-\frac{1}{\left(\hat{\lambda}_{W}\right)_{h}^{2}}\right| \\
& =\left|\frac{\left(\left(\lambda_{W}\right)_{h}+\left(\hat{\lambda}_{W}\right)_{h}\right)\left(\left(\lambda_{W}\right)_{h}-\left(\hat{\lambda}_{W}\right)_{h}\right)}{\left(\lambda_{W}\right)_{h}^{2}\left(\hat{\lambda}_{W}\right)_{h}^{2}}\right| \\
& \leq \frac{\left(2\left(\lambda_{W}\right)_{h}-\left\|\lambda_{W}-\hat{\lambda}_{W}\right\|_{\infty}\right)}{\left(\lambda_{W}\right)_{h}^{2}\left(\left(\lambda_{W}\right)_{h}+\left\|\lambda_{W}-\hat{\lambda}_{W}\right\|_{\infty}\right)^{2}}\left\|\lambda_{W}-\hat{\lambda}_{W}\right\|_{\infty}
\end{aligned}
$$

Recall that $\left(\lambda_{W}\right)_{h}=\pi_{h}^{-1 / 2}$, so the assumptions that ϵ imply that $\left\|\lambda_{W}-\hat{\lambda}_{W}\right\|_{\infty} \leq\left(\lambda_{W}\right)_{\min } / 2$. This allows us to simplify the above expression as follows,

$$
\begin{aligned}
\left|\hat{\pi}_{h}-\pi_{h}\right| & \leq \frac{(3 / 2)\left(\lambda_{W}\right)_{h}}{(3 / 2)^{2}\left(\lambda_{W}\right)_{h}^{4}}\left\|\lambda_{W}-\hat{\lambda}_{W}\right\|_{\infty} \\
& \leq \frac{2}{3\left(\lambda_{W}\right)_{h}^{3}} \frac{5 k \varepsilon_{T}}{\left(\lambda_{W}\right)_{\min }^{2}} \\
& \leq \frac{2 \pi_{\max }^{3 / 2}}{3} 5 k \pi_{\max } \sigma_{k}\left(M_{2}\right)^{-3 / 2}\left(24 \frac{\left\|M_{3}\right\|_{\mathrm{op}}}{\sigma_{k}\left(M_{2}\right)}+2 \sqrt{2}\right) \max \left\{\varepsilon_{M_{2}}, \varepsilon_{M_{3}}\right\}
\end{aligned}
$$

We complete the proof by requiring that the bounds $\varepsilon_{M_{2}}$ and $\varepsilon_{M_{3}}$ imply that $\|\hat{\pi}-\pi\|_{\infty} \leq$ ϵ and $\left\|\hat{\beta}_{h}-\beta_{h}\right\|_{2} \leq \epsilon$, i.e.

$$
\max \left\{\varepsilon_{M_{2}}, \varepsilon_{M_{3}}\right\} \leq \frac{3 \sigma_{k}\left(M_{2}\right)^{3 / 2}}{10 k \pi_{\max }^{5 / 2}\left(24 \frac{\left\|M_{3}\right\|_{\mathrm{op}}}{\sigma_{k}\left(M_{2}\right)}+2 \sqrt{2}\right)} \epsilon
$$

as well as,

$$
\max \left\{\varepsilon_{M_{2}}, \varepsilon_{M_{3}}\right\} \leq \frac{\sigma_{k}\left(M_{2}\right)}{\left\|M_{2}\right\|_{\mathrm{op}}^{1 / 2}\left(4 \sqrt{3 / 2}+8 k \pi_{\max } \sigma_{k}\left(M_{2}\right)^{-1 / 2}\left(24 \frac{\left\|M_{3}\right\|_{\mathrm{op}}}{\sigma_{k}\left(M_{2}\right)}+2 \sqrt{2}\right)\right)} \epsilon
$$

4. Basic Lemmas

Lemma 5 (Concentration of vector norms) Let $X, X_{1}, \cdots, X_{n} \in \mathbb{R}^{d}$ be i.i.d. samples from some distribution with bounded support $\left(\|X\|_{2} \leq M\right.$ with probability 1). Then with probability at least $1-\delta$,

$$
\begin{equation*}
\left\|\frac{1}{n} \sum_{i=1}^{n} X_{i}-\mathbb{E}[X]\right\|_{2} \leq \frac{2 M}{\sqrt{n}}\left(1+\sqrt{\frac{\log (1 / \delta)}{2}}\right) \tag{20}
\end{equation*}
$$

Proof Define $Z_{i}=X_{i}-\mathbb{E}[X]$.
The quantity we want to bound can be expressed as follows:

$$
\begin{equation*}
f\left(Z_{1}, Z_{2}, \cdots, Z_{n}\right)=\left\|\frac{1}{n} \sum_{i=1}^{n} Z_{i}\right\|_{2} . \tag{21}
\end{equation*}
$$

Let us check that f satisfies the bounded differences inequality:

$$
\begin{align*}
\left|f\left(Z_{1}, \cdots, Z_{i}, \cdots, Z_{n}\right)-f\left(Z_{1}, \cdots, Z_{i}^{\prime}, \cdots, Z_{n}\right)\right| & \leq \frac{1}{n}\left\|Z_{i}-Z_{i}^{\prime}\right\|_{2} \tag{22}\\
& =\frac{1}{n}\left\|X_{i}-X_{i}^{\prime}\right\|_{2} \tag{23}\\
& \leq \frac{2 M}{n}, \tag{24}
\end{align*}
$$

by the bounded assumption of X_{i} and the triangle inequality.
By McDiarmid's inequality, with probability at least $1-\delta$, we have:

$$
\begin{equation*}
\mathbb{P}[f-\mathbb{E}[f] \geq \epsilon] \leq \exp \left(\frac{-2 \epsilon^{2}}{\sum_{i=1}^{n}(2 M / n)^{2}}\right) \tag{25}
\end{equation*}
$$

Re-arranging:

$$
\begin{equation*}
\left\|\frac{1}{n} \sum_{i=1}^{n} Z_{i}\right\|_{2} \leq \mathbb{E}\left[\left\|\frac{1}{n} \sum_{i=1}^{n} Z_{i}\right\|_{2}\right]+M \sqrt{\frac{2 \log (1 / \delta)}{n}} \tag{26}
\end{equation*}
$$

Now it remains to bound $\mathbb{E}[f]$. By Jensen's inequality, $\mathbb{E}[f] \leq \sqrt{\mathbb{E}\left[f^{2}\right]}$, so it suffices to bound $\mathbb{E}\left[f^{2}\right]$:

$$
\begin{align*}
\mathbb{E}\left[\frac{1}{n^{2}}\left\|\sum_{i=1}^{n} Z_{i}\right\|^{2}\right] & =\mathbb{E}\left[\frac{1}{n^{2}} \sum_{i=1}^{n}\left\|Z_{i}\right\|_{2}^{2}\right]+\mathbb{E}\left[\frac{1}{n^{2}} \sum_{i \neq j}\left\langle Z_{i}, Z_{j}\right\rangle\right] \tag{27}\\
& \leq \frac{4 M^{2}}{n}+0 \tag{28}
\end{align*}
$$

where the cross terms are zero by independence of the Z_{i} 's.
Putting everything together, we obtain the desired bound:

$$
\begin{equation*}
\left\|\frac{1}{n} \sum_{i=1}^{n} Z_{i}\right\| \leq \frac{2 M}{\sqrt{n}}+M \sqrt{\frac{2 \log (1 / \delta)}{n}} . \tag{29}
\end{equation*}
$$

Remark: The above result can be directly applied to the Frobenius norm of a matrix M because $\|M\|_{F}=\|\operatorname{vec}(M)\|_{2}$.

Proposition 6 (Perturbation Bounds on Whitening Matrices) Let A be a rank-k $d \times d$ matrix, \hat{W} be a $d \times k$ matrix that whitens \hat{A}, i.e. $\hat{W}^{T} \hat{A} \hat{W}=I$. Suppose $\hat{W}^{T} A \hat{W}=$ $U D U^{T}$, then define $W=\hat{W} U D^{-\frac{1}{2}} U^{T}$. Note that W is also a $d \times k$ matrix that whitens A. Let $\alpha_{A}=\frac{\varepsilon_{A}}{\sigma_{k}(A)}$.

Then,

$$
\begin{aligned}
\|\hat{W}\|_{\mathrm{op}} & \leq \frac{\|W\|_{\mathrm{op}}}{\sqrt{1-\alpha_{A}}} \\
\left\|\hat{W}^{\dagger}\right\|_{\mathrm{op}} & \leq\left\|W^{\dagger}\right\|_{\mathrm{op}} \sqrt{1+\alpha_{A}} \\
\varepsilon_{W} & \leq 2\|W\|_{\mathrm{op}} \frac{\alpha_{A}}{1-\alpha_{A}} \\
\varepsilon_{W^{\dagger}} & \leq 2\left\|W^{\dagger}\right\|_{\mathrm{op}} \sqrt{1+\alpha_{A}} \frac{\alpha_{A}}{1-\alpha_{A}} .
\end{aligned}
$$

Proof First, note that for a matrix W that whitens $A=V \Sigma V^{T}, W=V \Sigma^{-\frac{1}{2}} V^{T}$ and $W^{\dagger}=V \Sigma^{-\frac{1}{2}} V^{T}$. This allows us to bound the operator norms of \hat{W} and \hat{W}^{\dagger} in terms of W and W^{\dagger},

$$
\begin{array}{rlr}
\|\hat{W}\|_{\mathrm{op}} & =\frac{1}{\sqrt{\sigma_{k}(\hat{A})}} \\
& \leq \frac{1}{\sqrt{\sigma_{k}(A)-\varepsilon_{A}}} & \tag{ByWeyl'sTheorem}\\
& \leq \frac{\|W\|_{\mathrm{op}}}{\sqrt{1-\alpha_{A}}} & \\
\left\|\hat{W}^{\dagger}\right\|_{\mathrm{op}} & =\sqrt{\sigma_{1}(\hat{A})} & \\
& \leq \sqrt{\sigma_{\max }(A)+\varepsilon_{A}} & \\
& \leq \sqrt{1+\alpha_{A}}\left\|W^{\dagger}\right\|_{\mathrm{op}} . & \text { (By Weyl's Theorem) }
\end{array}
$$

To find ε_{W}, we will exploit the rotational invariance of the operator norm.

$$
\begin{array}{rlr}
\varepsilon_{W} & =\|\hat{W}-W\|_{\mathrm{op}} & \left(W=U D^{-\frac{1}{2}} U^{T}\right) \\
& =\left\|W U D^{\frac{1}{2}} U^{T}-W\right\|_{\mathrm{op}} & (\text { Sub-multiplicativity }) \\
& \leq\|W\|_{\mathrm{op}}\left\|I-U D^{\frac{1}{2}} U^{T}\right\|_{\mathrm{op}} & \\
& \leq\|W\|_{\mathrm{op}}\|I-D\|_{\mathrm{op}} & \text { (Rotational invariance) } \\
& =\|W\|_{\mathrm{op}}\left\|I-U D U^{T}\right\|_{\mathrm{op}} & \text { (By definition) } \\
& \leq\|W\|_{\mathrm{op}}\left\|\hat{W}^{T} \hat{A}_{k} \hat{W}-\hat{W}^{T} A \hat{W}\right\|_{\mathrm{op}} & \\
& \leq\|W\|_{\mathrm{op}}\left(\left\|\hat{W}^{T}\left(\hat{A}_{k}-\hat{A}\right) \hat{W}\right\|_{\mathrm{op}}+\left\|\hat{W}^{T}(\hat{A}-A) \hat{W}\right\|_{\mathrm{op}}\right) & \\
& \leq\|W\|_{\mathrm{op}}\|\hat{W}\|_{\mathrm{op}}^{2}\left(\sigma_{k+1}(\hat{A})+\varepsilon_{A}\right) & \\
& \leq 2\|W\|_{\mathrm{op}}\|\hat{W}\|_{\mathrm{op}}^{2} \varepsilon_{A} & \text { (Since } \left.\sigma_{k+1}(A)=0\right)
\end{array}
$$

$$
\leq 2\|W\|_{\mathrm{op}} \frac{\alpha_{A}}{1-\alpha_{A}}
$$

Similarly, we can bound the error on the un-whitening transform, W^{\dagger},

$$
\begin{aligned}
\varepsilon_{W^{\dagger}} & =\left\|\hat{W}^{\dagger}-W^{\dagger}\right\|_{\mathrm{op}} \\
& =\left\|\hat{W}^{\dagger} U D^{\frac{1}{2}} U^{T}-W^{\dagger}\right\|_{\mathrm{op}} \\
& \leq\left\|\hat{W}^{\dagger}\right\|_{\mathrm{op}}\left\|I-U D^{\frac{1}{2}} U^{T}\right\|_{\mathrm{op}} \\
& \leq 2\left\|\hat{W}^{\dagger}\right\|_{\mathrm{op}}\|\hat{W}\|_{\mathrm{op}}^{2} \varepsilon_{A} \\
& \leq 2\left\|W^{\dagger}\right\|_{\mathrm{op}} \sqrt{1+\alpha_{A}} \frac{\alpha_{A}}{1-\alpha_{A}} .
\end{aligned}
$$

$$
\text { (From derivation of } \varepsilon_{W} \text {) }
$$

References

Anima Anandkumar, Rong Ge, Daniel Hsu, Sham M. Kakade, and Matus Telgarsky. Tensor decompositions for learning latent variable models. CoRR, abs/1210.7559, 2012.
A. Chaganty and P Liang. Spectral experts for estimating mixtures of linear regressions. International Conference on Machine Learning, 2013.
R. Tomioka, T. Suzuki, K. Hayashi, and H. Kashima. Statistical performance of convex tensor decomposition. Advances in Neural Information Processing Systems (NIPS), page 137, 2011.

