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Abstract

Real world systems often have parameterized
controllers which can be tuned to improve
performance. Bayesian optimization meth-
ods provide for efficient optimization of these
controllers, so as to reduce the number of re-
quired experiments on the expensive physical
system. In this paper we address Bayesian
optimization in the setting where perfor-
mance is only observed through a stochastic
binary outcome – success or failure of the ex-
periment. Unlike bandit problems, the goal
is to maximize the system performance after
this offline training phase rather than min-
imize regret during training. In this work
we define the stochastic binary optimization
problem and propose an approach using an
adaptation of Gaussian Processes for classifi-
cation that presents a Bayesian optimization
framework for this problem. We propose an
experiment selection metric for this setting
based on expected improvement. We demon-
strate the algorithm’s performance on syn-
thetic problems and on a real snake robot
learning to move over an obstacle.

1. Introduction

Many real-world optimization tasks take the form of
an optimization problem where the number of objec-
tive function samples can be severely limited. This
often occurs with physical systems which are expen-
sive to test, such as choosing optimal parameters for
a robot’s control policy, or with design optimizations
which take considerable effort to evaluate, such as us-
ing computational fluid dynamics simulations to test
aircraft wing designs. In cases where the objective is a
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continuous real-valued function, the use of Bayesian se-
quential experiment selection metrics such as expected
improvement has lead to efficient optimization of these
objectives. A particular advantage of expected im-
provement is that it requires no tuning parameters.

We are interested in the problem setting where the ob-
jective is not a deterministic continuous-valued func-
tion, but a stochastic binary valued function. In the
case of a robot, instead of choosing parameters which
maximize locomotive speed, the task may be to choose
the parameters of a policy which maximize the prob-
ability of successfully moving over an obstacle, where
the success of this task is stochastic due to environ-
mental factors or small uncontrollable variations in the
commanded movements of the robot.

Inspired by the success of Bayesian optimization for
continuous problems, we propose using a similar
framework for the stochastic binary setting. This pa-
per begins with a definition of the stochastic binary
optimization problem and a brief overview of back-
ground material. We describe several existing algo-
rithms which could be applied to this problem and pro-
pose a selection metric for stochastic binary functions
based on expected improvement. Finally, we present a
summary of results from a comparison of these meth-
ods on a set of synthetic test functions, and apply the
proposed method to learn robust motions for a snake
robot to overcome obstacles.

The primary contributions of this paper are the defini-
tion of the stochastic binary optimization problem, the
application of Gaussian process classification (GPC) to
adapt Bayesian optimization methods to this problem
setting, and the definition of the expected improve-
ment for stochastic binary outputs. Secondary con-
tributions include the comparison of methods on syn-
thetic test functions and the optimization of a new
locomotive capability on a real snake robot.



Expensive Function Optimization with Stochastic Binary Outcomes

2. Related Work

For optimization problems where each function evalu-
ation is expensive (either requiring significant time or
resources) the choice of which point to sample becomes
more important than the speed at which a sample can
be chosen. To this end, Bayesian optimization of such
functions relies on a function regression method, such
as Gaussian processes (GPs) (Rasmussen & Williams,
2006), to predict the entire unknown objective from
limited sampled data. Given the information pro-
vided by this prediction of the true objective, the cen-
tral challenge is the exploration/exploitation tradeoff
– balancing the need to explore unknown areas of the
space with the need to refine the knowledge in areas
that are known to have high function values. Met-
rics such as the upper confidence bound (Auer et al.,
2002), probability of improvement (Žilinskas, 1992),
and expected improvement (Mockus et al., 1978) at-
tempt to trade off these conflicting goals. A compre-
hensive survey on past work in this subject is given
by Jones (2001). The existing literature primarily fo-
cuses on deterministic, continuous, real-valued func-
tions, rather than stochastic ones or ones with binary
outputs.

Active learning (c.f. the survey of Settles (2009)), how-
ever, is primarily focused on learning the binary class
membership of a set of unlabeled data points. In gen-
eral, this work focuses on accurately learning the class
membership of all of the unlabeled points with high
confidence, which is inefficient if the loss function is
asymmetric, i.e. if it is more important to identify
successes than failures. Of particular interest is the
active binary-classification problem discussed in (Gar-
nett et al., 2011); this problem focuses on finding a
Bayesian optimal policy for identifying a particular
class, but assumes deterministic class membership.

A particularly relevant set of subtopics in the bandit
literature is continuous-armed bandits (Agrawal, 1995;
Auer et al., 2007; Kleinberg & Upfal, 2008) or met-
ric bandits (Bubeck et al., 2011b); these both have
a similar problem structure to that described in our
work. Metric-armed bandits embed the “arms” of the
classic multi-arm bandit problem into a metric space,
allowing a potentially uncountably infinite number of
arms. These arms are often constrained to generate re-
sponses via an underlying (often Lipschitz continuous)
probability function. The focus of bandit work is min-
imizing asymptotic bounds on the cumulative regret in
an online setting, whereas we are not concerned with
errors incurred during training, but rather the perfor-
mance of the algorithm recommendation after an of-
fline training phase. The recent work of (Bubeck et al.,

2011a) begins to address the problem we describe here
by investigating bounds on the simple regret (predic-
tive quality of the model after training) as compared
to bounds on cumulative regret, but the results in this
paper aim to characterize the spaces in which cumula-
tive regret can be minimized rather than the definition
of practical algorithms for the simple regret case.

3. Problem Definition

The problem we attempt to solve is analagous to min-
imizing simple regret for a continuous-armed bandit
that recieves a 1/0 binomial reward, with a budget of
n function evaluations.

More formally, we state it as follows: given an in-
put (parameter) space X ⊂ R and an unknown func-
tion π : X → [0, 1] which represents the underlying
binomial probability of success of an experiment, the
learner sequentially chooses a series of points x =
{x1, x2 . . . xn |xi ∈ X} at which to run these exper-
iments. After choosing each xi, the learner recieves
feedback yi where yi = 1 with probability π(xi) and
yi = 0 with probability 1−π(xi). Note that the choice
of xi is made with knowledge of {y1, y2 . . . yi−1}. The
goal of the learner is to recommend, after n experi-
ments, a point xr which minimizes the (typically un-
known) error, or simple regret, maxx∈X π(x) − π(xr);
this is equivalent to maximizing π(xr).

4. Background

4.1. Bayesian Optimization

In Bayesian optimization of a continuous real-valued
deterministic function, the goal is to find xbest which
maximizes1 the function f : X → R. The process relies
on a probabilistic model f̂ of the underlying function f
which is generated from the data; often GPs are used
for this model.

The optimization also relies on a selection metric
(sometimes referred to as an infill criterion) which, at
each iteration, selects the next point to sample. The
algorithm is essentially an iterative process – at each
step i, fit a model based on x and y, select a next xi,
and evaluate xi on the true function f to obtain yi;
see Alg. 1. The critical parameter then is the metric
which is maximized to choose the next point.

The idea of expected improvement (Mockus et al.,
1978) has been used as such a selection metric, and
has been popularized by Jones in his Efficient Global

1When referencing other work in this field, note that
often the goal is to minimize rather than maximize f .
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Algorithm 1 Bayesian Optimization

x := space-filling design of k points
y := {}
for i = 1 to k do

addToList(y,f(x{i})
end for
for i = k + 1 to n do
f̂ := conditionGP(x,y)

xi := argmaxX metric(f̂(x))
addToList(x,xi)
addToList(y,f(xi))

end for

Optimization algorithm (1998)2. Given a function es-

timate f̂ , improvement is defined as

I(f̂(x)) = max(f̂(x)− ybest, 0), (1)

where ybest was the maximizer of the previously sam-
pled y. Because the GP defines f̂ as a posterior dis-
tribution over potential f , the expectation over these
function estimates defines the expected improvement,

EI(x) = E[I(f̂(x))], (2)

=

∫ ∞
−∞

pxf (y) max(y − ybest, 0)dy,

= (f̂xµ − ybest)
(

1− Φ((ybest − f̂xµ )/f̂xσ )
)

+ f̂xσφ((ybest − f̂xµ )/f̂xσ ),

where pxf is the posterior probability density function

at f̂(x), and f̂xµ and f̂xσ are the mean and standard
deviation of this pdf.

4.2. Gaussian Processes for Classification

One of the key ideas behind Bayesian optimization
is the probabilistic modeling of the unknown func-
tion. Below we briefly describe the adaptation of GPs,
which provide such a model in the continuous regres-
sion case, to a classification setting. This provides a
similar probabilistic model for the underlying function
in the stochastic binary case. More in-depth coverage
of these ideas may be found in (Rasmussen & Williams,
2006).

Adapting GPs for a space of binary response variables
uses concepts from linear binary classification. Lin-
ear logistic regression and linear probit regression use

2One contribution of this algorithm is initialization of
x via an optimal space-filling experimental design.

the logistic and the probit, respectively, as response
functions σ to convert a linear model with a range of
(−∞,∞) to an output that lies within [0, 1] (i.e., a
valid probability). Therefore, given a linear regression
model y = wTx, the predicted class probability π̂(x)
is σ(wx). The choice of w for the latent linear regres-
sion model is typically accomplished via maximizing
the likelihood of the data given the model.

Similarly, a GP can generate outputs in the range
(−∞,∞), and by using a response function σ can con-
vert these outputs to values which can be interpreted
as class probabilities. In particular, the latent GP f̂
defines a Gaussian probability density function pxf for
each x ∈ X (as well as joint Gaussian pdfs for any set
of points in X). We define the corresponding proba-
bility density over class probability functions as pxπ.

Note that although the response function σ maps from
the latent space F to the class probability space Π,
pxπ(ȳ) 6= pxf (σ−1(ȳ)) (where ȳ is a class probability in
Π, not a 0/1 sample). Instead, due to the change of
variables,

pxπ(ȳ) = pxf (σ−1(ȳ))
δσ−1

δȳ
(ȳ). (3)

In this work, we will assume that σ is the standard nor-
mal cumulative density function; however, any mono-
tonically increasing function mapping from R to the
unit interval can be used.

Finally, because we do not observe values of f directly,
the inference step for conditioning our GP posterior
on the sampled observations x = {xi} and y = {yi}
requires computing the following integral to determine
the posterior f̂ at x∗:

p(f̂∗|x,y, x∗) =

∫
p(f̂∗|x, x∗, f∗)p(f∗|x,y)df∗ (4)

In this equation, f∗ represents the GP prior on the la-
tent function at x∗. Unfortunately, the second term
in the integrand represents a non-Gaussian likelihood
which makes this integral analytically intractable; ap-
proximate inference methods for GP classification rely
on approximating this with a Gaussian. Advan-
tages and disadvantages of different approximations
are discussed in (Nickisch & Rasmussen, 2008); we use
Minka’s expectation propagation (EP) method (2001)
due to its accuracy and reasonable speed.
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4.2.1. Expectation of Posterior on Success
Probability

As noted above, pxπ(ȳ) 6= pxf (σ−1(ȳ)) due to the non-
linearity of σ. Because of this, the expectation of the
posterior over the success probability, E[pxπ], is not gen-
erally equal to σ(E[pxf ]). To calculate the former, we
use the definition of expectation along with a change-
of-variables substitution (π = σ(f) and ȳ = σ(z)) to
take this integral in the latent space (where approxi-
mations for the standard normal CDF can be used):

E[pxπ] =

∫ 1

0

ȳpxπ(ȳ)dȳ (5)

=

∫ 1

0

ȳpxf (σ−1(ȳ))
δσ−1

δȳ
(ȳ)dȳ

=

∫ σ−1(1)

σ−1(0)

σ(z)pxf (z)
δσ−1

δȳ
(σ(z))

δσ

δz
(z)dz

=

∫ ∞
−∞

σ(z)pxf (z)dz (6)

As noted in section 3.9 of (Rasmussen & Williams,
2006), if σ is the Gaussian cumulative density function,
this can be rewritten as

E[pxπ] = Φ

 E[pxf ]√
1 + V[pxf ]

 . (7)

For notational simplicity, we define π̄(x) = E[pxπ] for
use later in the paper.

5. Baseline Algorithms

Using GPC to model this problem allows us to in-
fer a posterior probability distribution π̂ over the un-
known true function π from observing several (xi, yi),
and also to obtain a posterior over a latent function
f̂ . Although this latent function could technically be
used for experiment selection, it does not have a di-
rect probabalistic interpretation except through the
response function σ.

As baselines to compare against the binary expected
improvement metric we propose in §6, we use a uni-
form random experiment selection method along with
the following approaches.

First, as upper confidence bounds (UCB) methods are
often used in bandit and expensive optimization prob-
lems (e.g., (Auer et al., 2002)), we compare against

UCB on the latent function f̂ , with β a tuneable met-

ric parameter:

UCBβf (x) = f̂µ(x) + βf̂σ(x) (8)

For comparison, we also test the standard expected
improvement metric in the latent space, EIf , and on a
GP directly fit to the binary data. For the former, be-
cause we are not directly observing the sampled func-
tion value we must redefine the ybest term in the im-
provement quantity from Eqn. (1) as

ybest = max
x
{σ−1(π̄(x))}, (9)

where x is all sampled xi. This represents the latent
space projection of the maximizer of π̄(x) at the pre-
viously sampled points.

Finally, we compare against the continuous-armed
bandit algorithm UCBC (Upper Confidence Bound for
Continuous-armed bandits) proposed in (Auer et al.,
2007). This algorithm divides X into a set of n equal-
sized intervals, and runs the multi-arm bandit UCB
algorithm to select the interval from which to sam-
ple. The point to sample is then chosen uniformly at
random from this interval. Recommendations for how
to choose the algorithm parameter n are given in the
paper.

6. Expected Improvement for Binary
Responses

In the case of stochastic binomial feedback, the no-
tion of improvement that underlies the definition of
expected improvement must change. Because the only
potential values for yi are 1 and 0, after the first 1 is
sampled ybest would be set to 1. Because there is no
possibility for a returned value higher than 1, the im-
provement (and therefore the expected improvement)
would then be identically zero for each x ∈ X.

Instead, we query the GP posterior at each point in x,
and let

π̂max = max
x

π̄(x). (10)

As the 0 and 1 responses are samples from a Bernoulli
distribution with mean π(x), we define the improve-
ment as if we could truly sample the underlying mean.
Choosing this rather than conditioning our improve-
ment on 0/1 is consistent with the fact that our π̂max
represents a probability, not a single sample of 0/1. In
this case,
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Iπ(π(x)) = max(π(x)− π̂max, 0) (11)

To calculate the expected improvement, we follow a
similar procedure to that in §4.2.1 to calculate the ex-
pecation of Iπ(π(x)):

EIπ(π̂(x)) =

∫ 1

π̂max

(ȳ − π̂max)pxπ(ȳ)dȳ (12)

=

∫ ∞
σ−1(π̂max)

(σ(z)− π̂max)pxf (z)dz

Unfortunately, the marginalization trick that allowed
us to evaluate this integral and obtain a solution only
requiring the Gaussian CDF in the case of π̄ (Eqn. (7))
does not work because these integrals are not from −∞
to ∞; fortunately these are one dimensional integrals
regardless of the dimension of X and are easy to nu-
merically evaluate in practice.

7. Empirical Results on Synthetic
Functions

7.1. Synthetic Test Functions

To validate the performance of our expected improve-
ment metric for stochastic binary outputs, we created
several synthetic test functions on which we could run
a large number of optimizations. Shown in Fig. 1 are
three of these functions, these exhibit properties such
as multiple local optima and a narrow global optimum
to challenge optimization algorithms; moreover, they
are stochastic (π(x) /∈ {0, 1}) over much of X.

7.2. Experimental Setup

To compare the various algorithms, we allowed each
algorithm to sequentially choose a series of x =
{x1, x2 . . . x50}, with feedback of yi generated from a
Bernoulli distribution with mean π(x) (according to
the test function) after each choice of xi. This was
completed 100 times for each test function.

For our random selection baseline, at each step i, a ran-
dom point was chosen and evaluated. For the baseline
EIf and UCBf metrics (which used the latent GP) as
well as the proposed EIπ metric, the standard Bayesian
optimization framework described in Alg. 1 was used
with an initial Latin hypercube sampling of 5 points.
The UCB baseline tests were run with various values
of the β parameter from 0.5 to 10; 1 was found to work
as well or better than other values and was used for
the comparison here. The maximization of the met-
ric was done by evaluating the metric on a dense grid

over the space; in practice and in higher dimensions
one would typically apply another global optimization
method to obtain the maximizer.

Often in the Bayesian optimization framework, the co-
variance function and hyperparameters of the GP are
chosen at each iteration through likelihood maximiza-
tion; we chose to use a simple squared exponential co-
variance with fixed hyperparameters (length scale of
e0.75 and signal variance of e5) to reduce the variance
in algorithm performance due to optimization of this
likelihood function. The GP inference step (including
the expectation propagation step) was done using the
Gaussian Processes for Machine Learning MATLAB
software package (Rasmussen & Williams).

For comparison with the continuous-armed bandit lit-
erature, we implemented the UCBC algorithm de-
scribed in (Auer et al., 2007); the algorithm param-
eter of n was chosen as recommended therein for un-
known functions, n = (T/ln(T ))1/4 = 2, assuming the
number of samples T = 50. We also ran UCBC with
n = 10, but did not get appreciably different perfor-
mance.

Our binary Bayesian optimization MATLAB code
used to run these experiments, including implementa-
tions of the algorithms described herein, is available
at http://www.mtesch.net/ICML2013/, along with
more complete results with varied algorithm param-
eters on a wider variety of benchmark test functions.

7.3. Measuring Performance

To obtain a measure of the algorithm’s performance
at step i, we use the natural Bayesian recommenda-
tion strategy of choosing the point which has the high-
est expected probability of success E[pxπ] given knowl-
edge only of the sampled points {x1, x2 . . . xi} and
{y1, y2 . . . yi}. In practice, one may wish to optimize a
utility function that also considers risk (e.g., the un-
certainty in that probability).

After choosing xbest = argmaxX E[pxπ], this point is
evaluated on the underlying true success probability
function π, and the resulting value π(xbest) is given
as the expected performance of the algorithm at step
i. For the random selection and UCBC3 algorithms
which do not have a notion of π̂, a GP was fit to the
data collected by the algorithm to obtain this π̂ using
the same parameters as for the Bayesian optimization
algorithms.

3UCBC does not define a recommendation strategy; the
natural choice of a point uniformly at random from the
interval with the highest mean performed very poorly and
was therefore omitted from the results.

http://www.mtesch.net/ICML2013/
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Figure 1. A number of synthetic test functions were created for algorithm comparison and validation. The equations for

the three 1-D functions referenced in this paper are: Test Function 1: Φ
(

sin(x) − cos(3x)/4 + x3−13x2−29x−55
50

)
Test

Function 2: sin(5x/4)/4 − cos(3(x − 1)/5)/20 − 5x3+54x2−179x+159
100

Test Function 3: 3Φ((−40x + 7)/16)/4 + φ(x −
9/2)/2 + 5φ(2x− 15)/2

7.4. Comparison of Results

In Fig. 2, we plot the average performance over 100
runs of the proposed stochastic binary expected im-
provement EIπ as well as the random baseline and
the continuous-armed bandit UCBC algorithm. As ex-
pected, the knowledge of the underlying function grew
slowly but steadily as random sampling characterized
the entire function. The focus of EIπ on areas of the
function with the highest expectation for improvement
led to a more efficient strategy which still chose to ex-
plore, but focused experimental evaluations on more
promising areas of the search space. Notably, EIπ
matched or outperformed tuned versions of all other
algorithms tested, without requiring a tuning parame-
ter.

The UCBC algorithm worked well for simple cases
(test function 1 had a significant region with high prob-
ability of success) but faltered as the functions became
more difficult to optimize. One challenge with this al-
gorithm is that there is no shared knowledge between
nearby intervals – if a function is continuous, the per-
formance at interval k is likely to be similar to that of
k− 1 for a large enough number of intervals. Another
challenge is the dependence on a tuning parameter for
the number of intervals. It is likely that different val-
ues for this parameter would significantly affect the re-
sults; we chose the parameter recommended by (Auer
et al., 2007) (n = 2), but also varied this parameter
(to n = 10) and obtained comparable performance on
test functions 1 and 3 and slight improvements on test
function 2. This reinforces the authors’ observations
that bandit algorithm parameters which produce the
best theoretical bounds do not always translate to ef-
ficient algorithm performance.

Another challenge is that UCBC is not defined for
higher dimensions; the natural extension would be to
use a grid of area elements instead of a set of in-
tervals, but the choice of n for each dimension isn’t
clear; for this reason we limit the results herein to
one-dimensional test functions.

We also note that EIπ outperforms the näıve use of
Bayesian optimization techniques on the latent GP f̂ ,
as shown in Fig. 3. This is largely true because the
interpretation of variances on the latent function when
used in the classification framework are unintuitive –
the variance f̂σ is not based solely on the sampled
points as in the regression case; instead larger values
of f̂µ tend to have larger variances due to the nonlinear
mapping into the space of probabilities π̂.

This problem is especially apparent in test function 3,
where the local maxima are given in fairly wide area
likely to be sampled during the initial space-filling de-
sign, whereas the global maximum is narrower; be-
cause the variance of the latent function continues to
be high at high values of the mean, and drop off very
slowly, both EIf and UCBf tend to focus remaining
evaluations in this localized area.

Because EIπ instead uses the posterior in the under-
lying success probability space, the variance decreases
near the local maxima as expected, and the algorithm
explores other areas of X with potential for improve-
ment.

Finally, standard EI fit directly to the binary data per-
forms remarkably well, although is slower to converge
than EIπ. However, this method required additional
careful model selection; we shown the best results af-
ter carefully fitting a noise term in the diagonal of the
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Figure 2. After each sample, each algorithm was queried as to its recommendation for a point x that would have a
maximum expectation of success π(x); these results show the underlying probability value of that point averaged over
100 runs of each algorithm. Here we compare the stochastic binary expected improvement (EIπ) to the continuous-armed
bandit algorithm UCBC suggested in (Auer et al., 2007) as well as uniform random selection. The cause of the unusual
drop in performance of UCBC with more samples has not been determined.
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Figure 3. As in Fig. 2, the average expected probability of success for each algorithm’s recommendation at each step is
shown above. These results, averaged over 100 runs of each algorithm, compare the proposed EIπ algorithm with use of
expected improvement and upper confidence bounds on the latent function obtained while fitting a GP to binary data,
and EI on a GP fit directly to the 0/1 data with a tuned noise parameter.

covariance; poor selection or omittance of this term
resulted in performance far below any baseline shown.

8. Physical Robot Experiments

The goal of this work was to find task parameters that
have a high expected success probability and to do
so with a small number of experiments that give only
binary (success/failure) feedback. The task that mo-
tivated this goal was improving the locomotion of a
snake robot (Wright et al., 2012) so that it could reli-
ably overcome obstacles encountered in the field, such
as the dimensional lumber in these experiments.

Inspired by the approach taken in (Tesch et al., 2012),
a master-slave system was set up to record an expert’s
input to move the robot over an obstacle. Using a
sparse function approximation of the expert’s input,
we created a 7 parameter model that was able to over-

come obstacles of various sizes, albeit unreliably – the
same parameters would sometimes result in success
and sometimes failure. We found that parameters of
this model were difficult to optimize by hand to pro-
duce reliable results.

Using the EIπ metric in the Bayesian optimization
framework described above, 2 and 3 dimensional sub-
spaces of the model were searched to identify regions of
the parameter space that resulted in a robust motion
over the obstacle that was used to record the original
unreliable motion. In each of these cases, running 40
experiments at 20 points4 resulted in the recommen-
dation of a parameter setting which produced robust,
successful motions; the resulting motion is shown in
Fig. 4.

4The model and test setup resulted in two experiments
per selected parameter
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Figure 4. After completion of the optimization, the pre-
dicted best parameters result in a robust motion which
successfully moves the snake robot over the obstacle.

After completing the first 2D optimization, it was
noted that after the optimization found a successful
solution it would not sample other areas of the space.
This is because as π̂µ approaches 1, the maximum pos-
sible improvement approaches 0, as does EIπ; this dis-
courages selection of points that are not near the cur-
rent maximum. While this technically meets the ob-
jective of finding a robust solution, there is utility in
the use of the remaining experiments to find other ro-
bust solutions in the parameter space. To accomplish
this goal, we modified the selection metric to not select
any point which had a high confidence in its estimate
of the true probability. To measure this confidence in
being within ε of the mean at a point x, we can take
the integral

C(x) =

∫ min(π̄+ε,1)

max(π̄−ε,0)

pxπ(ȳ)dȳ. (13)

We reran the optimization over the same 2D param-
eter space, not considering points where, for ε = .1,
C(x) >= 90%. As seen in Fig. 5, this generated a
more diverse solution set which provided a more rich
set of motions for the robot.

9. Conclusion and Future work

In this paper, we have defined the stochastic binary
optimization problem for expensive functions, and pre-
sented a novel use of GPC to frame this problem as
Bayesian optimization. We also presented a new opti-
mization algorithm that computes expected improve-
ment in the stochastic binary case, outperforming sev-
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(b) Experiment selection us-
ing EIπ and ignoring areas of
high certainty

Figure 5. Selected points and predicted success probability
for optimization of robot motion over an obstacle using
the EIπ experiment selection metric. The 20 parameters
chosen for the 2D optimization are shown as an “O” if
they resulted in a success, and an “X” if they resulted in a
failure. In (a), the optimization only using the EIπ metric
results in pure exploitation after confidently finding a good
solution. In (b), avoiding selection of points with a high
confidence generates more robust solutions.

eral baseline metrics as well as a leading continuous-
armed bandit algorithm. Finally, we used our algo-
rithm to learn a robust motion for moving a snake
robot over an obstacle.

The problem we define is not limited to the demon-
strated snake robot application, but applies to many
expensive problems with parameterized policies and
stochastic success/failure feedback. This includes vari-
ations of applications where continuous-armed bandits
are currently used, such as auction mechanisms and
oblivious routing (see references in (Kleinberg, 2004)),
which could contain an offline training phase penaliz-
ing simple rather than continuous regret.

One promising topic that builds upon the current
work is the application of these methods to trans-
fer/multiple task learning. For the robot application,
this could include using knowledge from optimization
for a single obstacle to improve the learning rate for
other similar obstacles, such as different heights and
widths of the beam demonstrated here. A final future
goal is the derivation of theoretic convergence guaran-
tees for the binary stochastic expected improvement
metric.
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