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Appendix A: MCMC Inference Steps

This section describes the two-step inference in Figure
3, under the linear effects model.

Bayesian regression step:

In order to sample σ2 more efficiently, away from zero,
a weakly informative Normal-Inverse-gamma conju-
gate prior is used. This may introduce a slight bias
but we will show experimentally that the estimates are
reasonable. A large variance on the Normal is used to
approximate a flat prior:

P0(β, σ2) = N(β;µ0 = 0,V0 = 100I)

× Inv-Gamma(σ2; a0 = 2, b0 = 2) (1)

The resulting posterior can be sampled by first draw-
ing σ2 then β

σ2|S, z, y ∼ Inv-Gamma(a∗, b∗) (2)

β|σ2,S, z, y ∼ N(µ∗, V ∗) (3)

whereX(N×3) =
[
z S 1

]
, V ∗ = (V −1

0 +XTX)−1,

µ∗ = (V −1
0 + XTX)−1(V −1

0 µ0 + XTy), a∗ =

a0+n/2, b∗ = b0+ 1
2 (µTV −1

0 µ0+y
Ty−µ∗TV ∗−1µ∗)

Metropolis-Hastings step:

Conditioning on everything else, a random scan is per-
formed through each Si by drawing from the following
unnormalized closed-form posterior:

P (Si|z, y, β, σ2, κi) ∝ P (yi|Si, z, β, σ
2)× P0(Si|κi)

= N(yi;Xi.β, σ
2)× Pois(Si;κi) (4)

A random walk proposal is used with a boundary at
0 (since the amount of peer influence effects is non-
negative). The acceptance probability is the following
(note the Hastings correction is only effective at the
boundary):

Pacc = min

(
1,
P (St+1

i |·)
P (St

i |·)
P (St+1

i → St
i )

P (St
i → St+1

i )

)
(5)

1. Appendix B: Proof of Theorem 1

This section presents the proof for Theorem 1 in
section 3.1.

Proof.
Define as Wi the membership of i in A of INR,
i.e. Wi = 1 iff i ∈ A. For convenience denote,
S0 =

∑
i Yi(0) and Nc = N − Nt. It holds

that: E[δ̂INR] = E[
∑

i∈A( 1
Nt
Yi(zi) − 1

Nc
Yi(0))] =

1
Nt
· E[
∑

iWi · Yi(zi)]− 1
Nc
· E[
∑

i(1−Wi) · Yi(0)]

By unconfoundedness Wi⊥Yi, and also E[Wi] = Nt/N
and E[1−Wi] = Nc/N so we have:

E[
∑
i

Wi · Yi(zi)] =
∑
i

E[Wi] · E[Yi(0, zi)]

=
Nt

N

∑
i

ρi
∑

z∈Z0(Ni;k)

Yi(0, z) = Nt(δ0 + S0/N)

Furthermore,

1

Nc
· E[
∑
i

(1−Wi)Yi(0)] =
1

Nc
· E[1−Wi] ·

∑
i

Yi(0) = S0/N

Substituting back into the original equation:

E[δ̂INR] = δ0 + S0/N − S0/N = δ0

By definition we have that,

δ =
1

N

(∑
i

ρi ·
∑

z∈Z(Ni;k)

Yi(0, z))− 1

N
S0

Define for convenience δ0,i = ρ0,i ·
(
∑

z∈Z0(Ni;k)
Yi(0, z)) − Yi(0) and δ1,i =

ρ1,i · (
∑

z∈Z1(Ni;k)
Yi(0, z))− Yi(0)
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Notice that, δ0 = 1
N

∑
i δ0,i and δ1 = 1

N

∑
i δ1,i. It is

straightforward then to see that,

δ =
1

N

∑
i

(
ρi
ρ0,i

δ0,i +
ρi
ρ1,i

δ1,i) (6)

Notice that, by our assumptions, ρi/ρ0,i = α and
ρi/ρ1,i = 1− α, thus we simplify as

δ = αδ0 + (1− α)δ1 = δ0 − (1− α)(δ0 − δ1) (7)

Using the fact we proved earlier that E[δ̂INR] = δ0,
we finally get:

E[δ̂INR] = δ + (1− α) · (δ0 − δ1)

This completes the proof. �


