
Thurstonian Boltzmann Machines: Learning from Multiple Inequalities

Supplementary Material

Truyen Tran, Dinh Phung and Svetha Venkatesh

For readability, let us first recall the definition of the joint distribution

P (x,h) =
1

Z
exp {−E(x,h)} (1)

E(x,h) =
∑
i

(
x2
i

2
− (αi +Wi•h)xi

)
− γ ′h (2)

where Z =
∑

h

´
exp {−E(x,h)} dx is the normalising constant and E(x,h) is the model energy,

and {αi}Ni=1 ,W = {wik},γ = {γk} are free parameters.

1 Inference

1.1 Estimating the Partition Function

For convenience, let us re-parameterise the distribution as follows

φi(xi) = exp

{
−x

2
i

2
+ αixi

}
(3)

ψik(xi, hk) = exp {Wikxihk}
φk(hk) = exp {γkhk}

The model potential is then the product of all local potentials

Ψ(x,h) =

[∏
i

φi(xi)

][∏
ik

ψik(xi, hk)

][∏
k

φk(hk)

]
(4)

The partition function can be rewritten as

Z =
∑
h

ˆ
x

Ψ(x,h)dx

=
∑
h

Ω(h)
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where Ω(h) =
´
x Ψ(x,h)dx. We now proceed to compute Ω(h):

Ω(h) =

[∏
k

φk(hk)

] ˆ
x

[∏
i

φi(xi)

][∏
ik

ψik(xi, hk)

]
dx

=

[∏
k

φk(hk)

]∏
i

ˆ
xi

exp

{
−x

2
i

2
+ (αi +

∑
k

Wikhk)xi

}
dxi

=

[∏
k

φk(hk)

]∏
i

Ci

ˆ
xi

exp

{
−(xi − µi(h))2

2

}
dxi

=

[∏
k

φk(hk)

]∏
i

Ci

√
2πσ2

i

where

µi(h) = αid +

K∑
k=1

Wikhk

Ci = exp

{
1

2

(
µi(h)

σi

)2
}

Now we can define the distribution over the hidden layer as follows

P (h) =
1

Z
Ω(h)

Now we apply the Annealed Importance Sampling (AIS) Neal [2001]. The idea is to introduces
the notion of inverse-temperature τ into the model, i.e., P (h|τ) ∝ Ω(h)τ .

Let {τs}Ss=0 be the (slowly) increasing sequence of temperature, where τ0 = 0 and τS = 1, that
is τ0 < τ1... < τS . At τ0 = 0, we have a uniform distribution, and at τS = 1, we obtain the desired
distribution. At each step s, we draw a sample hs from the distribution P (h|τs−1) (e.g. using some
Metropolis-Hastings procedure). Let P ∗(h|τ) be the unnormalised distribution of P (h|τ), that is
P (h|τ) = P ∗(h|τ)/Z(τ). The final weight after the annealing process is computed as

ω =
P ∗(h1|τ1)

P ∗(h1|τ0)

P ∗(h2|τ2)

P ∗(h2|τ1)
...

P ∗(hS |τS)

P ∗(hS |τS−1)

The above procedure is repeated T times. Finally, the normalisation constant at τ = 1 is computed
as Z(1) ≈ Z(0)

(∑T
t=1 ω

(t)/T
)

where Z(0) = 2K , which is the number of configurations of the
hidden variables h.
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1.2 Estimating Posteriors using Mean-field

Recall that for evidence e we want to estimate posteriors P (h | e) =
∑

x∈Ω(e) PΩ(e)(h,x | e).
Assume that the evidences can be expressed in term of boxed constraints, which lead to the following
factorisation

P (x | e,h) =
∏
i

P (xi | e,h)

This factorisation is critical because it ensures that there are no deterministic constraints among
{xi}ni=1, which are the conditions that variational methods such as mean-fields would work well.
This is because mean-field solution will generally not satisfy deterministic constraints, and thus may
assign non-zeros probability to improbably areas.

To be more concrete, the mean-field approximation would be Q(h,x) ≈ P (h,x | e)

Q(h,x) =
∏
k

Qk(hk)
∏
i

Qi(xi)

s.t. x ∈ Ω(e)

The best mean-field approximation will be the minimiser of the Kullback-Leibler divergence

D (Q||P ) =
∑
h

∑
x∈Ω(e)

Q(h,x) log
Q(h,x)

P (h,x | e)

= −H [Q(h,x)]−
∑
h

∑
x∈Ω(e)

Q(h,x) logP (h,x | e) (5)

where H [Q(h,x)] is the entropy function. Now first, exploit the fact that Q is factorisable, and thus
its entropy is decomposable, i.e.,

H [Q(h,x)] =
∑
k

H [Qk(hk)] +
∑
i

H [Qi(xi)] (6)

Second recall from Eq. (11) that

P (h,x | e) =
1

Z(e)
exp {−E(x,h)}

and thus ∑
h

∑
x∈Ω(e)

Q(h,x) logP (h,x | e) = −
∑
h

∑
x∈Ω(e)

Q(h,x)E(x,h)− logZ(e)

Since logZ(e) is a constraint w.r.t. Q(h,x), we can safely ignore it here.
Now since E(x,h) is decomposable (see Eq. (2)), we have

∑
h

∑
x∈Ω(e)

Q(h,x)E(x,h) =

∑
i

∑
xi∈Ω(ei)

Qi(xi)Ei(xi)

+

∑
k

∑
hk

Qk(hk)Ek(hk)

+

+

∑
i

∑
k

∑
xi∈Ω(ei)

∑
hk

Qi(xi)Qk(hk)Eik(xi, hk)


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where

Ei(xi) =
x2
i

2
− αixi

Ek(hk) = −γkhk
Eik(xi, hk) = −Wikxihk

Combining this decomposition and Eq. (6), we have completely decomposed the Kullback-Leibler
divergence in Eq. (5) into local terms:

D (Q||P ) =
∑
i

∑
xi∈Ω(ei)

Qi(xi)Ei(xi) +
∑
k

∑
hk

Qk(hk)Ek(hk) +

+

∑
i

∑
k

∑
xi∈Ω(ei)

∑
hk

Qi(xi)Qk(hk)Eik(xi, hk)

−∑
i

H [Qi(xi)]−
∑
k

H [Qk(hk)]

Now we wish to minimise the divergence with respect to the local distributions {Qi(xi), Qk(hk)}
for i = 1, 2, ..., N andk = 1, 2, ...,K knowing the proper distribution constraintsˆ

xi∈Ω(ei)
Qi(xi) = 1∑

hk

Qk(hk) = 1

By the method of Lagrangian multiplier, we have

L(λ) = D (Q||P ) +
∑
i

λi

(ˆ
xi∈Ω(ei)

Qi(xi)− 1

)
+
∑
k

κk

∑
hk

Qk(hk)− 1


• Let us compute the partial derivative w.r.t. Qi(xi):

∂Qi(xi)L(λ) = logQi(xi) + 1 + Ei(xi) +
∑
k

Qk(h
1
k)Eik(xi, h

1
k) + λi

where h1
k is a short hand for hk = 1 and we have made use of the fact that Eik(xi, hk = 0) = 0.

Setting this gradient to zero yields

Qi(xi) = exp

{
−

(
Ei(xi) +

∑
k

Qk(h
1
k)Eik(xi, h

1
k)

)
− 1− λi

}

= exp

−1

2

(
xi −

(
αi +

∑
k

Qk(h
1
k)Wik

))2

− 1− λi

 (7)

for xi ∈ Ω(ei). Normalising this distribution would lead to the truncated form of the normal
distribution those the mean is

µi = αi +
∑
k

Qk(h
1
k)Wikhk (8)
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• In a similar way, the partial derivative w.r.t. Qk(hk) would be

∂Qk(hk)L(λ) = logQk(hk)− hk

γk +
∑
i

Wik

∑
xi∈Ω(ei)

Qi(xi)xi

+ 1 + κk

Equating the gradient to zero, we have

Qk(hk) ∝ exp

{
hk

(
γk +

∑
i

Wikµ̂i

)}

where µ̂i is the mean of the truncated normal distribution

µ̂i =
∑

xi∈Ω(ei)

Qi(xi)xi

Normalising Qk(hk) would lead to

Qk(h
1
k) =

[
1 + exp

{
−γk −

∑
i

Wikµ̂i

}]−1

(9)

• Finally, combining these findings in Eqs. (7,8,9), and letting Ω(ei) = [bi, ci] be the boxed
constraint, and using the fact that the mean of the truncated distribution is

µ̂i = µi +
φ(bi − µi)− φ(ci − µi)
Φ(ci − µi)− Φ(bi − µi)

we would arrive at the three recursive equations

qk ← 1

1 + exp {−γk −
∑

iWikµ̂i}

µi ← αi +
∑
k

Wikqk

µ̂i ← µi +
φ(bi − µi)− φ(ci − µi)
Φ(ci − µi)− Φ(bi − µi)

where qk is a short hand for Qk(h1
k) andφ(z) is the normal probability density function, and

Φ(z) is the cumulative distribution function ♣

1.3 Seeking Modes and Generating Representative Samples

Once the model has been learned, samples can be generated straightforwardly by first sampling the
underlying Gaussian RBM and then collect the true samples that satisfy the inequalities of interest.
For example, for binary samples, if the generated Gaussian value for a visible unit is larger than the
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threshold, then we have an active sample. Likewise, rank samples, we only need to rank the sampled
Gaussian values.

However, this may suffer from the poor mixing if we use standard Gibbs sampling, that is the
Markov chain may get stuck in some energy traps. To jump out of the trap we propose to periodically
raise the temperature to a certain level (e.g., 10) and then slowly cool down to the original temperature
(which is 1). In our experiment, the cooling is scheduled as follows

T ← ηT

where η ∈ (0, 1) is estimated so that for n steps, the temperature will drop from Tmax to Tmin. That
is, Tmin = ηnTmax, leading to η = (Tmin/Tmax)1/n.

To locate a basis of attraction, we can lower the temperature further (e.g., to 0.1) to trap the
particles there. Then we collect k successive samples and take the average to be the representative
sample. In our experiments, k = 50.

2 Learning

2.1 Gradient of the Likelihood

The log-likelihood of an evidence is

L = logP (e) = log
∑
h

ˆ
Ω(e)

P (h,x)dx

= log
∑
h

ˆ
Ω(e)

exp {−E(x,h)} dx− logZ

= logZ(e)− logZ

where Z(e) =
∑

h

´
Ω(e) exp {−E(x,h)} dx. The gradient of logZ(e) w.r.t. the mapping parameter

Wik reads

∂Wik
logZ(e) =

−1

Z(e)

∑
h

ˆ
Ω(e)

exp {−E(x,h)} ∂Wik
E(x,h)dx

= −
∑
h

ˆ
Ω(e)

P (x,h | e)∂Wik
E(x,h)dx (10)

where we have moved the constant Z−1(e) into the sum and integration and make use of the fact that

P (x,h | e) =
P (x,h)

P (e)
=

1

Z(e)
exp {−E(x,h)} (11)

where the domain of the Gaussian is constrained to x ∈ Ω(e).
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From the definition of the energy function in Eq. (2), we know that the energy is decomposable,
and thus the gradient w.r.t. Wik only involves the pair (xi, hk). In particular

∂Wik
E(x,h) = −xihk

This simplifies Eq. (10)

∂Wik
logZ(e) = −

∑
hi

ˆ
Ω(ei)

P (xi, hk | e)∂Wik
E(x,h)dxi

= EP (x,h|e) [xihk]

A similar process would lead to

∂Wik
logZ = EP (xi,hk) [xihk]

and finally:

∂Wik
L = EP (xi,hk|e) [xihk]− EP (xi,hk) [xihk]♣

2.2 Regularising the Markov Chains

One undesirable feature of the MCMC chains used in learning we have experiences so far is the ten-
dency for the binary hidden states to get stuck, i.e., after some point they do not flip their assignments
as learning progresses. We conjecture that this phenomenon may be due to the saturation effect inher-
ent in the factor posterior:

P (hk = 1 | x) =
1

1 + exp (−γk −
∑

iWikxi)

i.e., once the collected value to a node (γk +
∑

iWikxi) is too high or too low, it is very hard to over
turn.

Fortunately, there is a known technique to regularise the chain: we enforce that at a time, there
should be only a fraction ρ of nodes which are active, where ρ ∈ (0, 1). One way is to maximise the
following objective function

L2 = L+ λ

ˆ ∑
k

∑
hk

ρ(hk) logP (hk | x)

P (x | e)dx

where λ > 0 is the weighting factor, ρ(hk) = ρ if hk = 1 and ρ(hk) = 1− ρ otherwise.
The gradient with respect to gk = (γk +

∑
iWikxi) is then
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∂gkL2 = ∂gkL+ λ

ˆ ∂gk∑
hk

ρ(hk) logP (hk | x)

P (x|e)dx

= ∂gkL+ λ

ˆ [
ρ− P (h1

k | x)
]
P (x|e)dx

≈ ∂gkL+
1

S
λ
∑
s

[
ρ− P (h1

k | x(s))
]

where S is the number of samples and P (h1
k | x) is a shorthand for P (hk = 1 | x). Using the chain

rule, we have:

∂γkL2 ≈ ∂γkL+
1

S
λ
∑
s

[
ρ− P (h1

k | x(s))
]

∂Wik
L2 ≈ ∂wikdL+

1

S
λ
∑
s

xi

[
ρ− P (h1

k | x(s))
]

2.3 Online Estimation of Posteriors

For tasks such as data completion (e.g., collaborative filtering) we need the posteriors P (h | e) for
the prediction phase. One way is to run the Markov chain or doing mean-field from scratch. Here
we suggest a simple way to obtain an approximation directly from the training phase without any
further cost. The idea is to update the estimated posterior ĥ at each learning step t in an exponential
smoothing fashion:

ĥ
(t) ← ηĥ

(t−1)
+ (1− η)ĥ

(t)

for some smoothing factor η ∈ (0, 1) and initial ĥ
(0)

, where h̄(t)
k = P (h1

k | x(t), e) and x(t) is the
sampled Gaussian at time t.

As learning progresses, early samples, which are from incorrect models, will be exponentially
weighted down. Typically we choose η close to 1, e.g., η = 0.9.

2.4 Monitoring the Learning Progress

It is often of practical importance to track the learning progress, either by the reconstruction errors or
by the data likelihood. The data likelihood can be estimated as

P (e) ≈ 1

S

S∑
s=1

ˆ
Ω(e)

P (x | h(s))dx

where h(s) are those samples collected as learning progressed in the data-independent phase, and the
integration can be carried out using the technique described in the main text.
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3 Extreme Value Distributions

Extreme value distributions are a class of distributions of extremal measurements Gumbel [1958].
Here we are concerned about the popular Gumbel’s distribution.

3.1 Gumbel Distribution for Categorical Choices

Let us start from the Gumbel density function

P (x) =
1

σ
exp

{
−
(
x− µ
σ

+ e−
x−µ
σ

)}
where µ is the mode (location) and σ is the scale parameter.

Using Laplace’s approximation (e.g., via Taylor’s expansion of
(
x−µ
σ + e−

x−µ
σ

)
using the second-

order polynomial around µ), we have

P (x) ∝ 1

eσ
exp

{
−(x− µ)2

2σ2

}
Renormalising this distribution, e.g., by replacing e ≈ 2.7183 by

√
2π ≈ 2.5066 we obtain the

standard Gaussian distribution. Thus, we can use the Gumbel as an approximation to the Gaussian
distribution.

Now we turn to the categorical model using Gumbel variables. We maintain one variable per
category, which plays the role of the utility for the category. Assume that all utilities share the same
scale parameter σ. The existing literature McFadden [1973] asserts that the probability of choosing
the m-th category is

P (e = cm) =
eµm/σ∑
l e
µl/σ

where µl is the location of the l-th utility.
When we choose a the m-th category we must ensure that xm > maxl 6=m xl.
Let yl = exp

(
−xl−µl

σ

)
or equivalently xl = µl − σ log yl. Thus xl < xm means µl − σ log yl <

µm − σ log ym, or yl > ym exp
(µl−µm

σ

)
.

The CDF of the l-th Gumbel distribution is

Fl(xm) = exp
(
−e−

xm−µl
σ

)
= exp

(
−e−

xm−µm
σ e

µl−µm
σ

)
= exp

(
−yme

µl−µm
σ

)
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Thus choosing category cm would mean

P (e = cm) =

ˆ
P (xm)

∏
l 6=m

ˆ xm

P (xl)dxl

 dxm

=

ˆ
P (xm)

∏
l 6=m

Fl(xm)dxm

We rewrite the Gumbel density function by changing variable from xm to ym:

P (ym) =
1

σ
ym exp {−ym}

for ym ≥ 0. Thus

P (xm)
∏
l 6=m

Fl(xm) =
1

σ
ym exp

−ym
1 +

∑
l 6=m

e
µl−µm

σ




Now, by changing variable under the integration from xm to ym, we have

P (e = cm) = σ

ˆ ∞
0

P (ym)
∏
l 6=m

Fl(ym)
1

yl
dym

=

ˆ ∞
0

exp

−ym
1 +

∑
l 6=m

e
µl−µm

σ


 dym

=
1

1 +
∑

l 6=m e
µl−µm

σ

=
eµm/σ∑
l e
µl/σ

3.2 Gumbel Distribution for Rank

We now extend the case of categorical evidences rank evidences. Again we maintain one Gaussian
variable per category. Without loss of generality, for a particular rank π we assume that we must
ensure that x1 > x2 > ... > xD. This is equivalent to[

x1 > max
l>1

xl

]
∩
[
x2 > max

l>2
xl

]
∩ ... ∩ [xD−1 > xD]

The probability of this is essentially

P
(
{em = m}Dm=1

)
= P (e1 = 1)

∏
m>2

P
(
el = m | {ed = l}m−1

l=1

)
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In words, this offers a stagewise process to rank categories: first we pick the best category, the
pick the second best from the remaining categories and so on (see also Fligner and Verducci [1988]).

The probability of picking the best category out of a subset is already given in Appendix 3.1:

P (e1 = 1) =
eµ1/σ∑
l≥1 e

µl/σ

P
(
el = m | {ed = l}m−1

l=1

)
=

eµm/σ∑
l≥m e

µl/σ

This gives us the Plackett-Luce model Luce [1959], Plackett [1975] as mentioned in Stern [1990].

4 Global Attitude: Sample Questions

• Q4 (Ordinal): [...] how would you describe the current economic situation in (survey country)
– {very good, somewhat good, somewhat bad, or very bad}?

• Q11a (Binary): How do you think people in other countries of the world feel about China? –
{like, disliked}?

• Q35,35a (Category-ranking): Which one of the following, if any, is hurting the world’s envi-
ronment the most/second-most {India, Germany, China, Brazil, Japan, United States, Russia,
Other}?

• Q76 (Continuous): How old were you at your last birthday?

• Q85 (Categorical): What is your current employment situation {A list of employment cate-
gories}?

5 Other Supporting Materials

5.1 Laplace Approximation

Laplace approximation is the technique using a Gaussian distribution to approximate another distribu-
tion. For the univariate case, assume that the original density distribution has the form

P (x) ∝ exp {−f(x)}

First we find the mode µ of P (x) or equivalently the minimiser of f(x) given it exists. Then we apply
Taylor’s expansion

f(x) ≈ f(µ) + f ′′(µ)
(x− µ)2

2
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The Gaussian approximation has the form

P ∗(x) ∝ exp

{
−f ′′(µ)

(x− µ)2

2

}

where 1/f ′′(µ) is the new variance.

5.2 Some Properties of the Truncated Normal Distribution

For a normal distribution P (x|µ, σ) of mean µ and standard deviation σ truncated from both sides,
i.e., α < x < β, the new density reads

P̄[α,β](x |, µ, σ) =
Q(x∗)

σ [Φ(β∗)− Φ(α∗)]

where

x∗ =
x− µ
σ

; α∗ =
α− µ
σ

; β∗ =
β − µ
σ

and Q(·) and Φ(·) are the probability density function and the cumulative distribution of the standard
normal distribution, respectively. In particular, we are interested in the mean of the distribution P̄[α,β]:

µ̄ = µi + σ
Q(α∗)−Q(β∗)

Φ(β∗)− Φ(α∗)

Some special cases:

• When α = β, this distribution reduces to the Dirac’s delta.

• When α = −∞, we have a one-sided truncation from above since Φ(α∗) = 0.

• When β = +∞, we obtain a one-sided truncation form below since Φ(β∗) = 0.
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