Supplementary material

Quoc Tran Dinh
Anastasios Kyrillidis
Volkan Cevher

QUOC.TRANDINH@EPFL.CH
ANASTASIOS.KYRILLIDIS@EPFL.CH
VOLKAN.CEVHER@EPFL.CH

LIONS lab, École Polytechnique Fédérale de Lausanne, Switzerland

A. The proofs of technical statements

A.1. The proof of Theorem 3.2

Proof. Let $\mathrm{x}^{k} \in \operatorname{dom}(F)$, we define

$$
\begin{aligned}
& P_{k}^{g}:=\left(\nabla^{2} f\left(\mathbf{x}^{k}\right)+\partial g\right)^{-1} \\
& S_{k}(\mathbf{z}):=\nabla^{2} f\left(\mathbf{x}^{k}\right) \mathbf{z}-\nabla f(\mathbf{z})
\end{aligned}
$$

and

$$
\left.\mathbf{e}_{k} \equiv \mathbf{e}_{k}(\mathbf{x}):=\left[\nabla^{2} f\left(\mathbf{x}^{k}\right)-\nabla^{2} f(\mathbf{x})\right] \mathbf{d}^{k}\right)
$$

It follows from the optimality condition (7) in the main text that

$$
\mathbf{0} \in \partial g\left(\mathbf{x}^{k+1}\right)+\nabla f\left(\mathbf{x}^{k}\right)+\nabla^{2} f\left(\mathbf{x}^{k}\right)\left(\mathbf{x}^{k+1}-\mathbf{x}^{k}\right)
$$

This condition can be written equivalently to

$$
S_{k}\left(\mathbf{x}^{k}\right)+\mathbf{e}_{k}\left(\mathbf{x}^{k}\right) \in \nabla^{2} f\left(\mathbf{x}^{k}\right) \mathbf{x}^{k+1}+\partial g\left(\mathbf{x}^{k+1}\right)
$$

Therefore, the last relation leads to

$$
\begin{equation*}
\mathbf{x}^{k+1}=P_{k}^{g}\left(S_{k}\left(\mathbf{x}^{k}\right)+\mathbf{e}_{k}\right) \tag{1}
\end{equation*}
$$

If we define $\mathbf{d}^{k}:=\mathbf{x}^{k+1}-\mathbf{x}^{k}$ then

$$
\mathbf{d}^{k}=P_{k}^{g}\left(S_{k}\left(\mathbf{x}^{k}\right)+\mathbf{e}_{k}\right)-\mathbf{x}^{k}
$$

Consequently, we also have

$$
\begin{equation*}
\mathbf{d}_{k+1}=P_{k}^{g}\left(S_{k}\left(\mathbf{x}^{k+1}\right)+\mathbf{e}_{k+1}\right)-\mathbf{x}^{k+1} \tag{2}
\end{equation*}
$$

We consider the norm $\lambda_{k}^{1}:=\left\|\mathbf{d}^{k+1}\right\|_{\mathbf{x}^{\mathbf{k}}}$. By using the nonexpansive property of P_{k}^{g}, it follows from (1) and (2) that

$$
\begin{align*}
\lambda_{k}^{1} & =\left\|\mathbf{d}^{k+1}\right\|_{\mathbf{x}^{k}} \\
& =\left\|P_{k}^{g}\left(S_{k}\left(\mathbf{x}^{k+1}\right)+\mathbf{e}_{k+1}\right)-P_{k}^{g}\left(S_{k}\left(\mathbf{x}^{k}\right)+\mathbf{e}_{k}\right)\right\|_{\mathbf{x}^{k}} \\
& \stackrel{(5)}{\leq}\left\|S_{k}\left(\mathbf{x}^{k+1}\right)+\mathbf{e}_{k+1}-S_{k}\left(\mathbf{x}^{k}\right)-\mathbf{e}_{k}\right\|_{\mathbf{x}^{k}}^{*} \\
& \leq\left\|\nabla f\left(\mathbf{x}^{k+1}\right)-\nabla f\left(\mathbf{x}^{k}\right)-\nabla^{2} f\left(\mathbf{x}^{k}\right)\left(\mathbf{x}^{k+1}-\mathbf{x}^{k}\right)\right\|_{\mathbf{x}^{k}}^{*} \\
& +\left\|\mathbf{e}_{k+1}-\mathbf{e}_{k}\right\|_{\mathbf{x}^{k}}^{*} \\
& =\left[\left\|\int_{0}^{1}\left[\nabla^{2} f\left(\mathbf{x}_{\tau}^{k}\right)-\nabla^{2} f\left(\mathbf{x}^{k}\right)\right]\left(\mathbf{x}^{k+1}-\mathbf{x}^{k}\right) d \tau\right\|_{\mathbf{x}^{k}}^{*}\right]_{[1]} \\
& +\left[\left\|\mathbf{e}_{k+1}-\mathbf{e}_{k}\right\|_{\mathbf{x}^{k}}^{*}\right]_{[2]}, \tag{3}
\end{align*}
$$

where $\mathbf{x}_{\tau}^{k}:=\mathbf{x}^{k}+\tau\left(\mathbf{x}^{k+1}-\mathbf{x}^{k}\right)$. First, we estimate the first term in the last line of (3) which we denote by $[\cdot]_{[1]}$. Now, we define

$$
\mathbf{M}_{k}:=\int_{0}^{1}\left[\nabla^{2} f\left(\mathbf{x}^{k}+\tau\left(\mathbf{x}^{k+1}-\mathbf{x}^{k}\right)\right)-\nabla^{2} f\left(\mathbf{x}^{k}\right)\right] d \tau
$$

and

$$
\mathbf{N}_{k}:=\nabla^{2} f\left(\mathbf{x}^{k}\right)^{-1 / 2} \mathbf{M}_{k} \nabla^{2} f\left(\mathbf{x}^{k}\right)^{-1 / 2}
$$

Similar to the proof of Theorem 4.1.14 in (Nesterov, 2004), we can show that $\left\|\mathbf{N}_{k}\right\| \leq(1-$ $\left.\left\|\mathbf{d}^{k}\right\|_{\mathbf{x}^{k}}\right)^{-1}\left\|\mathbf{d}^{k}\right\|_{\mathbf{x}^{k}}$. Combining this inequality and (3)
we deduce

$$
\begin{align*}
{[\cdot]_{[1]} } & =\left\|\mathbf{M}_{k} \mathbf{d}^{k}\right\|_{\mathbf{x}^{k}}^{*} \leq\left\|\mathbf{N}_{k}\right\|\left\|\mathbf{d}^{k}\right\|_{\mathbf{x}^{\mathbf{k}}} \\
& =\left(1-\lambda_{k}\right)^{-1} \lambda_{k}^{2} \tag{4}
\end{align*}
$$

Next, we estimate the second term of (3) which is denoted by $[\cdot]_{[2]}$. We note that $\mathbf{e}_{k}=\mathbf{e}_{k}\left(\mathbf{x}^{k}\right)=0$ and

$$
\mathbf{e}_{k+1}=\mathbf{e}_{k+1}\left(\mathbf{x}^{k+1}\right)=\left[\nabla^{2} f\left(\mathbf{x}^{k}\right)-\nabla^{2} f\left(\mathbf{x}^{k+1}\right)\right] \mathbf{d}^{k+1}
$$

Let
$\mathbf{P}_{k}:=\nabla^{2} f\left(\mathbf{x}^{k}\right)^{-1 / 2}\left[\nabla^{2} f\left(\mathbf{x}^{k+1}\right)-\nabla^{2} f\left(\mathbf{x}^{k}\right)\right] \nabla^{2} f\left(\mathbf{x}^{k}\right)^{-1 / 2}$.
By applying Theorem 4.1.6 in (Nesterov, 2004), we can estimate $\left\|\mathbf{P}_{k}\right\|$ as

$$
\begin{align*}
\left\|\mathbf{P}_{k}\right\| & \leq \max \left\{1-\left(1-\left\|\mathbf{d}^{k}\right\|_{\mathbf{x}^{k}}\right)^{2}, \frac{1}{\left(1-\left\|\mathbf{d}^{k}\right\|_{\mathbf{x}^{k}}\right)^{2}}-1\right\} \\
& =\frac{2 \lambda_{k}-\lambda_{k}^{2}}{\left(1-\lambda_{k}\right)^{2}} \tag{5}
\end{align*}
$$

Therefore, from the definition of $[\cdot]_{[2]}$ we have

$$
\begin{align*}
{[\cdot]_{[2]}^{2} } & =\left[\left\|\mathbf{e}_{k+1}-\mathbf{e}_{k}\right\|_{\mathbf{x}^{k}}^{*}\right]^{2} \\
& =\left(\mathbf{e}_{k+1}-\mathbf{e}_{k}\right)^{T} \nabla^{2} f\left(\mathbf{x}^{k}\right)^{-1}\left(\mathbf{e}_{k+1}-\mathbf{e}_{k}\right) \\
& =\left(\mathbf{d}^{k+1}\right)^{T} \nabla^{2} f\left(\mathbf{x}^{k}\right)^{1 / 2} \mathbf{P}_{k}^{2} \nabla^{2} f\left(\mathbf{x}^{k}\right)^{1 / 2} \mathbf{d}^{k+1} \\
& \leq\left\|\mathbf{P}_{k}\right\|^{2}\left\|\mathbf{d}^{k+1}\right\|_{\mathbf{x}^{k}}^{2} \tag{6}
\end{align*}
$$

By substituting (5) into (6) we obtain

$$
\begin{equation*}
[\cdot]_{[2]} \leq \frac{2 \lambda_{k}-\lambda_{k}^{2}}{\left(1-\lambda_{k}\right)^{2}} \lambda_{k}^{1} . \tag{7}
\end{equation*}
$$

Substituting (4) and (7) into (3) we obtain

$$
\lambda_{k}^{1} \leq \frac{\lambda_{k}^{2}}{1-\lambda_{k}}+\frac{2 \lambda_{k}-\lambda_{k}^{2}}{\left(1-\lambda_{k}\right)^{2}} \lambda_{k}^{1}
$$

By rearrange this inequality we obtain

$$
\begin{equation*}
\lambda_{k}^{1} \leq\left[\frac{1-\lambda_{k}}{1-4 \lambda_{k}+2 \lambda_{k}^{2}}\right] \lambda_{k}^{2} \tag{8}
\end{equation*}
$$

On the other hand, by applying Theorem 4.1.6 in (Nesterov, 2004), we can easily show that

$$
\begin{equation*}
\lambda_{k+1}=\left\|\mathbf{d}^{k+1}\right\|_{\mathbf{x}^{k+1}} \leq \frac{\left\|\mathbf{d}^{k+1}\right\|_{\mathbf{x}^{k}}}{1-\left\|\mathbf{d}^{k}\right\|_{\mathbf{x}^{k}}}=\frac{\lambda_{k}^{1}}{1-\lambda_{k}} \tag{9}
\end{equation*}
$$

Combining (8) and (9) we obtain

$$
\lambda_{k+1} \leq \frac{\lambda_{k}^{2}}{1-4 \lambda_{k}+2 \lambda_{k}^{2}}
$$

which is (11) in the main text. Finally, we consider the sequence $\left\{\mathbf{x}^{k}\right\}_{k \geq 0}$ generated by (9) in the main text. From (11) in the main text, we have

$$
\begin{aligned}
\lambda_{1} & \leq\left(1-4 \lambda_{0}+2 \lambda_{0}^{2}\right)^{-1} \lambda_{0}^{2} \\
& \leq\left(1-4 \sigma+2 \sigma^{2}\right)^{-1} \sigma^{2} \\
& \leq \sigma
\end{aligned}
$$

provided that $0<\sigma \leq \frac{5-\sqrt{17}}{4} \approx 0.219224$. By induction, we can conclude that $\lambda_{k} \leq \beta$ for all $k \geq 0$. It follows from (11) in the main text that

$$
\lambda_{k+1} \leq \leq\left(1-4 \sigma+2 \sigma^{2}\right)^{-1} \lambda_{k}^{2}
$$

for all k, which shows that $\left\{\left\|\mathbf{x}^{k}-\mathbf{x}^{*}\right\|_{\mathbf{x}^{k}}\right\}$ converges to zero at a quadratic rate.

A.2. The proof of Theorem 3.5

Proof. First, we note that

$$
\mathbf{x}^{k+1}=\mathbf{x}^{k}+\alpha_{k} \mathbf{d}^{k}=\mathbf{x}^{k}+\left(1+\lambda_{k}\right)^{-1} \mathbf{x}^{k}
$$

Hence, we can estimate \mathbf{d}^{k+1} as
$\lambda_{k+1}=\left\|\mathbf{d}^{k+1}\right\|_{\mathbf{x}^{k+1}} \leq \frac{\left\|\mathbf{d}^{k+1}\right\|_{\mathbf{x}^{k}}}{1-\alpha_{k} \lambda_{k}}=\left(1+\lambda_{k}\right)\left\|\mathbf{d}^{k+1}\right\|_{\mathbf{x}^{k}}$.
Combining this inequality and (8) we obtain (19) in the main text.

In order to prove the quadratic convergence, we first show that if $\lambda_{k} \leq \sigma$ then $\lambda_{k+1} \leq \sigma$ for all $k \geq 0$. Indeed, we note that the function:

$$
\varphi(t):=\left(1-t^{2}\right)\left(1-4 t+2 t^{2}\right)
$$

is increasing in $[0,1-1 / \sqrt{2}]$. Let $\lambda_{0} \leq \sigma$. From (19) we have:

$$
\lambda_{1} \leq\left(1-\sigma^{2}\right) \sigma^{2}\left(1-4 \sigma+2 \sigma^{2}\right)
$$

Therefore, if

$$
\left(1-\sigma^{2}\right) \sigma^{2}\left(1-4 \sigma+2 \sigma^{2}\right) \leq \sigma
$$

then $\lambda_{1} \leq \sigma$. The last requirement leads to $0<\sigma \leq$ $\bar{\sigma}:=0.22187616$. From this argument, we conclude that if $\sigma \in(0, \bar{\sigma}]$ then if $\lambda_{0} \leq \sigma$ then $\lambda_{1} \leq \sigma$. By induction, we have $\lambda_{k} \leq \sigma$ for $k \geq 0$. If we define

$$
c:=\left(1-\sigma^{2}\right)\left(1-4 \sigma+2 \sigma^{2}\right)
$$

then $c>0$ and (19) implies $\lambda_{k+1} \leq c \lambda^{2}$ which shows that the sequence $\left\{\lambda_{k}\right\}_{k \geq 0}$ locally converges to 0 at a quadratic rate.

A.3. The proof of Lemma 2.2.

Proof. From the self-concordance of f we have:

$$
\omega\left(\|\mathbf{y}-\mathbf{x}\|_{\mathbf{x}}\right)+f(\mathbf{x})+\nabla f(\mathbf{x})^{T}(\mathbf{y}-\mathbf{x}) \leq f(\mathbf{y})
$$

On the other hand, since g is convex we have

$$
g(\mathbf{y}) \geq g(\mathbf{x})+\mathbf{v}^{T}(\mathbf{y}-\mathbf{x})
$$

for any $\mathbf{v} \in \partial g(\mathbf{x})$. Hence,

$$
\begin{aligned}
F(\mathbf{y}) & \geq F(\mathbf{x})+[\nabla f(\mathbf{x})+\mathbf{v}]^{T}(\mathbf{y}-\mathbf{x})+\omega\left(\|\mathbf{y}-\mathbf{x}\|_{\mathbf{x}}\right) \\
& \geq F(\mathbf{x})-\lambda(\mathbf{x})\|\mathbf{y}-\mathbf{x}\|_{\mathbf{x}}+\omega\left(\|\mathbf{y}-\mathbf{x}\|_{\mathbf{x}}\right)
\end{aligned}
$$

where $\lambda(\mathbf{x}):=\|\nabla f(\mathbf{x})+\mathbf{v}\|_{\mathbf{x}}^{*}$. Let:

$$
\mathcal{L}_{F}(F(\mathbf{x})):=\left\{\mathbf{y} \in \mathbb{R}^{n} \mid F(\mathbf{y}) \leq F(\mathbf{x})\right\}
$$

be a sublevel set of F. For any $y \in \mathcal{L}_{F}(F(\mathbf{x}))$ we have $F(\mathbf{y}) \leq F(\mathbf{x})$ which leads to:

$$
\lambda(\mathbf{x})\|\mathbf{y}-\mathbf{x}\|_{\mathbf{x}} \geq \omega\left(\|\mathbf{y}-\mathbf{x}\|_{\mathbf{x}}\right)
$$

due to the previous inequality. Note that ω is a convex and strictly increasing, the equation $\lambda(\mathbf{x}) t=\omega(t)$ has unique solution $\bar{t}>0$ if $\lambda(\mathbf{x})<1$. Therefore, for any $0 \leq t \leq \bar{t}$ we have $\|\mathbf{y}-\mathbf{x}\|_{\mathbf{x}} \leq \bar{t}$. This implies that $\mathcal{L}_{F}(F(\mathbf{x}))$ is bounded. Hence, \mathbf{x}^{*} exists. The uniqueness of \mathbf{x}^{*} follows from the increase of ω.

```
Algorithm 1 (Fast-projected-gradient algorithm)
    Input: The current iteration \(\boldsymbol{\Theta}_{i}\) and a given tol-
    erance \(\varepsilon_{\text {in }}>0\).
    Output: An approximate solution \(\mathbf{U}_{k}\) of (25) in
    the main text.
    Initialization: Compute a Lipschitz constant \(L\)
    and find a starting point \(\mathbf{U}_{0} \succ 0\).
    Set \(\mathbf{V}_{0}:=\mathbf{U}_{0}, t_{0}:=1\).
    for \(k=0\) to \(k_{\text {max }}\) do
        1. \(\mathbf{V}_{k+1}:=\operatorname{clip}_{1}\left(\mathbf{U}_{k}-\frac{1}{L}\left[\boldsymbol{\Theta}_{i}\left(\mathbf{U}_{k}+\frac{1}{\rho} \hat{\Sigma}\right) \boldsymbol{\Theta}_{i}-\frac{2}{\rho} \boldsymbol{\Theta}_{i}\right]\right)\).
        2. If \(\left\|\mathbf{V}_{k+1}-\mathbf{V}_{k}\right\|_{\text {Fro }} \leq \varepsilon_{\text {in }} \max \left\{1,\left\|\mathbf{V}_{k}\right\|_{\text {Fro }}\right\}\) then
        terminate.
        3. \(t_{k+1}:=0.5\left(1+\sqrt{1+4 t_{k}^{2}}\right)\) and \(\beta_{k}:=\frac{t_{k}-1}{t_{k+1}}\).
        4. \(\mathbf{U}_{k+1}:=\mathbf{V}_{k+1}+\beta_{k}\left(\mathbf{V}_{k+1}-\mathbf{V}_{k}\right)\).
    end for
```


B. A fast projected gradient algorithm

For completeness, we provide here a variant of the fast-projected gradient method for solving the dual subproblem (25) in the main text. Let us recall that $\operatorname{clip}_{r}(X):=\operatorname{sign}(X) \min \{|X|, r\}$ (a point-wise operator). The algorithm is presented as follows.
The main operator in Algorithm 1 is $\boldsymbol{\Theta}_{i} \mathbf{U}_{k} \boldsymbol{\Theta}_{i}$ at Step 2 , where $\boldsymbol{\Theta}_{i}$ and \mathbf{U}_{k} are symmetric and $\boldsymbol{\Theta}_{i}$ may be sparse. This operator requires twice matrix-matrix multiplications. The worst-case complexity of Algorithm 1 is typically $O\left(\sqrt{\frac{L}{\varepsilon_{\text {in }}}}\right)$ which is sublinear. If $\mu=\lambda_{\min }\left(\boldsymbol{\Theta}_{i}\right)$, the smallest eigenvalue of $\boldsymbol{\Theta}_{i}$, is available, we can set $\beta_{k}:=\frac{\sqrt{L}-\sqrt{\mu}}{\sqrt{L}+\sqrt{\mu}}$ and we get a linear convergence rate.

