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LIONS lab, École Polytechnique Fédérale de Lausanne, Switzerland

A. The proofs of technical statements

A.1. The proof of Theorem 3.2

Proof. Let xk ∈ dom(F ), we define

P gk := (∇2f(xk) + ∂g)−1,

Sk(z) := ∇2f(xk)z−∇f(z).

and

ek ≡ ek(x) := [∇2f(xk)−∇2f(x)]dk).

It follows from the optimality condition (7) in the main
text that

0 ∈ ∂g(xk+1) +∇f(xk) +∇2f(xk)(xk+1 − xk).

This condition can be written equivalently to

Sk(xk) + ek(xk) ∈ ∇2f(xk)xk+1 + ∂g(xk+1).

Therefore, the last relation leads to

xk+1 = P gk (Sk(xk) + ek). (1)

If we define dk := xk+1 − xk then

dk = P gk (Sk(xk) + ek)− xk.

Consequently, we also have

dk+1 = P gk (Sk(xk+1) + ek+1)− xk+1. (2)

We consider the norm λ1k :=
∥∥∥dk+1

∥∥∥
xk

. By using the

nonexpansive property of P gk , it follows from (1) and
(2) that

λ1k =
∥∥dk+1

∥∥
xk

=
∥∥P gk (Sk(xk+1) + ek+1

)
− P gk

(
Sk(xk) + ek

)∥∥
xk

(5)

≤
∥∥Sk(xk+1) + ek+1 − Sk(xk)− ek

∥∥∗
xk

≤
∥∥∇f(xk+1)−∇f(xk)−∇2f(xk)(xk+1 − xk)

∥∥∗
xk

+ ‖ek+1 − ek‖∗xk

=

[∥∥∥∥∫ 1

0

[∇2f(xkτ )−∇2f(xk)](xk+1 − xk)dτ

∥∥∥∥∗
xk

]
[1]

+
[
‖ek+1 − ek‖∗xk

]
[2]
, (3)

where xkτ := xk + τ(xk+1−xk). First, we estimate the
first term in the last line of (3) which we denote by
[·][1]. Now, we define

Mk :=

∫ 1

0

[∇2f(xk + τ(xk+1 − xk))−∇2f(xk)]dτ,

and

Nk := ∇2f(xk)−1/2Mk∇2f(xk)−1/2.

Similar to the proof of Theorem 4.1.14 in (Nes-
terov, 2004), we can show that ‖Nk‖ ≤ (1 −∥∥∥dk∥∥∥

xk
)−1

∥∥∥dk∥∥∥
xk

. Combining this inequality and (3)

we deduce

[·][1] =
∥∥Mkd

k
∥∥∗
xk≤‖Nk‖

∥∥∥dk∥∥∥
xk

= (1− λk)−1λ2k. (4)

Next, we estimate the second term of (3) which is de-
noted by [·][2]. We note that ek = ek(xk) = 0 and

ek+1 = ek+1(xk+1) = [∇2f(xk)−∇2f(xk+1)]dk+1.

Let

Pk := ∇2f(xk)−1/2[∇2f(xk+1)−∇2f(xk)]∇2f(xk)−1/2.

By applying Theorem 4.1.6 in (Nesterov, 2004), we can
estimate ‖Pk‖ as

‖Pk‖ ≤ max

1− (1−
∥∥∥dk∥∥∥

xk
)2,

1

(1−
∥∥∥dk∥∥∥

xk
)2
− 1


=

2λk − λ2k
(1− λk)2

. (5)

Therefore, from the definition of [·][2] we have

[·]2[2] = [‖ek+1 − ek‖∗xk ]2

= (ek+1 − ek)T∇2f(xk)−1(ek+1 − ek)

= (dk+1)T∇2f(xk)1/2P2
k∇2f(xk)1/2dk+1

≤ ‖Pk‖2
∥∥dk+1

∥∥2
xk . (6)
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By substituting (5) into (6) we obtain

[·][2] ≤
2λk − λ2k
(1− λk)2

λ1k. (7)

Substituting (4) and (7) into (3) we obtain

λ1k ≤
λ2k

1− λk
+

2λk − λ2k
(1− λk)2

λ1k.

By rearrange this inequality we obtain

λ1k ≤
[

1− λk
1− 4λk + 2λ2k

]
λ2k. (8)

On the other hand, by applying Theorem 4.1.6 in (Nes-
terov, 2004), we can easily show that

λk+1 =
∥∥∥dk+1

∥∥∥
xk+1

≤

∥∥∥dk+1
∥∥∥
xk

1−
∥∥∥dk∥∥∥

xk

=
λ1k

1− λk
. (9)

Combining (8) and (9) we obtain

λk+1 ≤
λ2k

1− 4λk + 2λ2k
,

which is (11) in the main text. Finally, we consider the
sequence

{
xk
}
k≥0 generated by (9) in the main text.

From (11) in the main text, we have

λ1 ≤ (1− 4λ0 + 2λ20)−1λ20

≤ (1− 4σ + 2σ2)−1σ2

≤ σ

provided that 0 < σ ≤ 5−
√
17

4 ≈ 0.219224. By induc-
tion, we can conclude that λk ≤ β for all k ≥ 0. It
follows from (11) in the main text that

λk+1 ≤≤ (1− 4σ + 2σ2)−1λ2k

for all k, which shows that
{∥∥xk − x∗

∥∥
xk

}
converges

to zero at a quadratic rate.

A.2. The proof of Theorem 3.5

Proof. First, we note that

xk+1 = xk + αkd
k = xk + (1 + λk)−1xk.

Hence, we can estimate dk+1 as

λk+1 =
∥∥∥dk+1

∥∥∥
xk+1

≤

∥∥∥dk+1
∥∥∥
xk

1− αkλk
= (1+λk)

∥∥∥dk+1
∥∥∥
xk
.

Combining this inequality and (8) we obtain (19) in
the main text.

In order to prove the quadratic convergence, we first
show that if λk ≤ σ then λk+1 ≤ σ for all k ≥ 0.
Indeed, we note that the function:

ϕ(t) := (1− t2)(1− 4t+ 2t2)

is increasing in [0, 1 − 1/
√

2]. Let λ0 ≤ σ. From (19)
we have:

λ1 ≤ (1− σ2)σ2(1− 4σ + 2σ2).

Therefore, if

(1− σ2)σ2(1− 4σ + 2σ2) ≤ σ,

then λ1 ≤ σ. The last requirement leads to 0 < σ ≤
σ̄ := 0.22187616. From this argument, we conclude
that if σ ∈ (0, σ̄] then if λ0 ≤ σ then λ1 ≤ σ. By
induction, we have λk ≤ σ for k ≥ 0. If we define

c := (1− σ2)(1− 4σ + 2σ2)

then c > 0 and (19) implies λk+1 ≤ cλ2 which shows
that the sequence {λk}k≥0 locally converges to 0 at a
quadratic rate.

A.3. The proof of Lemma 2.2.

Proof. From the self-concordance of f we have:

ω(‖y − x‖x) + f(x) +∇f(x)T (y − x) ≤ f(y).

On the other hand, since g is convex we have

g(y) ≥ g(x) + vT (y − x)

for any v ∈ ∂g(x). Hence,

F (y) ≥ F (x) + [∇f(x) + v]T (y − x) + ω(‖y − x‖x)

≥ F (x)− λ(x) ‖y − x‖x + ω(‖y − x‖x),

where λ(x) := ‖∇f(x) + v‖∗x. Let:

LF (F (x)) := {y ∈ Rn | F (y) ≤ F (x)}

be a sublevel set of F . For any y ∈ LF (F (x)) we have
F (y) ≤ F (x) which leads to:

λ(x) ‖y − x‖x ≥ ω(‖y − x‖x)

due to the previous inequality. Note that ω is a convex
and strictly increasing, the equation λ(x)t = ω(t) has
unique solution t̄ > 0 if λ(x) < 1. Therefore, for
any 0 ≤ t ≤ t̄ we have ‖y − x‖x ≤ t̄. This implies
that LF (F (x)) is bounded. Hence, x∗ exists. The
uniqueness of x∗ follows from the increase of ω.
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Algorithm 1 (Fast-projected-gradient algorithm)

Input: The current iteration Θi and a given tol-
erance εin > 0.
Output: An approximate solution Uk of (25) in
the main text.
Initialization: Compute a Lipschitz constant L
and find a starting point U0 � 0.
Set V0 := U0, t0 := 1.
for k = 0 to kmax do

1. Vk+1 :=clip1

(
Uk− 1

L

[
Θi(Uk+ 1

ρ Σ̂)Θi− 2
ρΘi

])
.

2. If ‖Vk+1 −Vk‖Fro ≤ εin max{1, ‖Vk‖Fro} then
terminate.
3. tk+1 := 0.5(1 +

√
1+4t2k) and βk := tk−1

tk+1
.

4. Uk+1 := Vk+1 + βk(Vk+1 −Vk).
end for

B. A fast projected gradient algorithm

For completeness, we provide here a variant of the
fast-projected gradient method for solving the dual
subproblem (25) in the main text. Let us recall that
clipr(X) := sign(X) min{|X|, r} (a point-wise opera-
tor). The algorithm is presented as follows.

The main operator in Algorithm 1 is ΘiUkΘi at Step
2, where Θi and Uk are symmetric and Θi may be
sparse. This operator requires twice matrix-matrix
multiplications. The worst-case complexity of Algo-

rithm 1 is typically O
(√

L
εin

)
which is sublinear. If

µ = λmin(Θi), the smallest eigenvalue of Θi, is avail-

able, we can set βk :=
√
L−√µ√
L+
√
µ

and we get a linear

convergence rate.


