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A. The proofs of technical statements
A.1. The proof of Theorem 3.2
Proof. Let x* € dom(F'), we define
P = (V2 f(x") +ag)~",
Sk(z) == V2 f(x")z - V().
and
[V2f(x*) = V2 f(x)]d").

It follows from the optimality condition (7) in the main
text that

0 € Ag(xF ™) + VF(x*) + V2f(x")(x"! — x*).
This condition can be written equivalently to
Si(x") + en(x") € V2 f(x)x" T+ g (x ).
Therefore, the last relation leads to
= P{(Sk(x") + ex). (1)
If we define d* := x**1 — x* then

df = Pg(Sk(Xk) + ek) —x".

e, = er(x) :=

Consequently, we also have
= IS o) XL (2)
a2

X
nonexpansive property of PY, it follows from (1) and
(2) that

M= a1
— 1P (S6H) + era)

d+1

We consider the norm A} := _- By using the

= P (Sk(<") + ex) ||

(5) *
< Sk + eppr — Sk(x*) — ek |
<[ VrEHY) = V(xR = VP F) (- x|

xk
+ llex+1 — exllex
1 *
M/WV@D—Wﬂﬁmﬁ“—ﬁmT]
0 xk
(1

+ “|ek+1 - ek”;k][g] y (3)

*

where x¥ := x¥ 4+ 7(x**1 — x*). First, we estimate the

first term in the last line of (3) which we denote by
[l1- Now, we define

M, = /0 [V2f(x" 4 7(M = ")) = V2 f(x)]dr,

and

)_1/2Mkv2f(xk)_l/2-

Ny == V2 f(x
Similar to the proof of Theorem 4.1.14 in (Nes-

terov, 2004), we can show that ||[Ng|| < (1 —
Hdk )~ Hdk .- Combining this inequality and (3)
we deduce
o = [Mrd® [ <INl | @]
= (1= )" "A% (4)

Next, we estimate the second term of (3) which is de-
noted by [-]j. We note that e, = e,(x*) =0 and

(Xk-i-l) — [v2f<xk) _ VQf(Xk+1)]dk+l.

€rtr1 = €kl
Let

Py i= V2 () VR f () - )V

VAPV (xF
By applying Theorem 4.1.6 in (Nesterov, 2004), we can

estimate ||Pg]|| as

Pl < max 1—(1—Hdk 2 ! 1
(- a2
- M (5)
(1—Xg)?
Therefore, from the definition of [-];z; we have
(7 = len+1 — exllx]?

= (ery1 —ep) VA (x") " (ert1 — ex)
( k‘-‘,—l)TvQ ( )1/2Piv2f(xk)l/2dk+1
<P (|42 (6)
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By substituting (5) into (6) we obtain

2 — A2,

[z < m% (7)

Substituting (4) and (7) into (3) we obtain

A2 20, — A2
A< 2k %
S AR B

By rearrange this inequality we obtain

11—\
1 < k 2
Ak < L — A\ +2)\ﬁ} Ak ()

On the other hand, by applying Theorem 4.1.6 in (Nes-
terov, 2004), we can easily show that

Hdk+1

Xk+1 B Hdk

Ak
S
=1 O

xk

k41
Akt1 = Hd

Combining (8) and (9) we obtain

Ak
LS g + 202

which is (11) in the main text. Finally, we consider the

sequence {x*} Lo generated by (9) in the main text.

From (11) in the main text, we have

< (1—4X+203)71A2
(1— 40 +20%) " to?
g

<
<

provided that 0 < o < 3=Y1T ~ (0.219224. By induc-
tion, we can conclude that A\, < g for all k > 0. It
follows from (11) in the main text that

M1 << (1 — 4o +202%)71N2

* xk'} converges

to zero at a quadratic rate.

A.2. The proof of Theorem 3.5

Proof. First, we note that
xFH = xP 4 apd® = xF 4+ (14 Ap) 1%

. k+1
Hence, we can estimate d**! as

Hdk+1

xk+1 T 1 — Oék/\k

o .

)\k+1 — Hdk+1

1+A Hdk-i-l

Combining this inequality and (8) we obtain (19) in
the main text.

In order to prove the quadratic convergence, we first
show that if A\ < o then A\py; < o for all & > 0.
Indeed, we note that the function:

o(t) = (1—2)(1

is increasing in [0,1 — 1/v/2]. Let Ao < 0. From (19)
we have:

— 4t + 2t7)

A < (1—0%0%(1 — 4o + 202).

Therefore, if

(1—0?)o?

then A\; < o. The last requirement leads to 0 < o <
o := 0.22187616. From this argument, we conclude
that if o € (0,5] then if A\g < o then Ay < o. By

induction, we have A\ < o for k > 0. If we define

(1—40 +20°) <o,

c:=(1—0*(1— 40+ 20%)

then ¢ > 0 and (19) implies A\r41 < ¢A? which shows
that the sequence {Ax}r>0 locally converges to 0 at a
quadratic rate. O

A.3. The proof of Lemma 2.2.

Proof. From the self-concordance of f we have:

w(lly =%l + f(x) + V()" (y = x) < f(y)-

On the other hand, since g is convex we have

9(y) = 9(x) + v’ (y - x)
for any v € dg(x). Hence,

(%) + [VF(x) + V] (y = %) +w(lly —x[.)
= AX) ly =%l +wllly = xll,),

where A(x) := ||V f(x) 4 v||,. Let:

Lr(F(x)):={y eR" | F(y) < F(x)}
be a sublevel set of F. For any y € Lr(F(x)) we have
F(y) < F(x) which leads to:

A) [y = x|l = w(lly = xll)

due to the previous inequality. Note that w is a convex
and strictly increasing, the equation A(x)t = w(t) has
unique solution ¢ > 0 if A(x) < 1. Therefore, for
any 0 < t < ¢ we have |y — x|, < ¢ This implies
that Lr(F(x)) is bounded. Hence, x* exists. The
uniqueness of x* follows from the increase of w. O
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Algorithm 1 (Fast-projected-gradient algorithm,)

Input: The current iteration ®; and a given tol-
erance €;; > 0.
Output: An approximate solution Uy of (25) in
the main text.
Initialization: Compute a Lipschitz constant L
and find a starting point Uy > 0.
Set Vo = Uo, to =1.
for k =0 to kpax do
1. Vyu :=clip; (Uk—% [@i(UH%i)c—)i—%c—)iD
2. M |[Vigr = Villpo < €inmax{L, [[ V||, } then
terminate.
3. tgy1 = 0.5(1 + \/14+4¢2) and By := ’;ij.
4. Upyq := Vi1 + Be(Vig1 — Vi)
end for

B. A fast projected gradient algorithm

For completeness, we provide here a variant of the
fast-projected gradient method for solving the dual
subproblem (25) in the main text. Let us recall that
clip,.(X) := sign(X) min{| X[, 7} (a point-wise opera-
tor). The algorithm is presented as follows.

The main operator in Algorithm 1 is ®;U;®; at Step
2, where ®; and Uy are symmetric and &; may be
sparse. This operator requires twice matrix-matrix
multiplications. The worst-case complexity of Algo-

rithm 1 is typically O (,/ i) which is sublinear. If
1= Amin(©;), the smallest eigenvalue of ©,, is avail-

VI-Jx

N and we get a linear

able, we can set (B :=
convergence rate.



