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Abstract

E�cient planning plays a crucial role in
model-based reinforcement learning. Tradi-
tionally, the main planning operation is a
full backup based on the current estimates of
the successor states. Consequently, its com-
putation time is proportional to the num-
ber of successor states. In this paper, we
introduce a new planning backup that uses
only the current value of a single successor
state and has a computation time indepen-
dent of the number of successor states. This
new backup, which we call a small backup,
opens the door to a new class of model-based
reinforcement learning methods that exhibit
much finer control over their planning process
than traditional methods. We empirically
demonstrate that this increased flexibility al-
lows for more e�cient planning by showing
that an implementation of prioritized sweep-
ing based on small backups achieves a sub-
stantial performance improvement over clas-
sical implementations.

1. Introduction

In reinforcement learning (RL) (Kaelbling et al., 1996;
Sutton & Barto, 1998), an agent seeks an optimal con-
trol policy for a sequential decision problem in an ini-
tially unknown environment. This task is often for-
malized as a Markov Decision Process (MDP), where
the environment provides feedback on the agent’s be-
haviour in the form of a reward signal. The agent’s
goal is to maximize the expected return, which is the
discounted sum of rewards over future time steps. An
important performance measure in RL is the sample

e�ciency, which refers to the number of environment
interactions that is required to obtain a good policy.
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Many solution strategies improve the policy by itera-
tively improving a state-value or action-value function,
which provide estimates of the expected return under
a given policy for (environment) states or state-action
pairs, respectively. Di↵erent approaches for updating
these value functions exist. In terms of sample e�-
ciency, one of the most e↵ective approaches is to esti-
mate the environment model using observed samples
and to compute, at each time step, the (action-)value
function that is optimal with respect to the model es-
timate using planning techniques. A popular planning
technique used for this is value iteration (VI) (Bell-
man, 1957), which performs sweeps of backups through
the state or state-action space, until the (action-)value
function has converged.

A drawback of using VI is that it is computationally
expensive, making it impractical for domains that re-
quire a high action-selection frequency. Fortunately,
e�cient approximations can be obtained by limiting
the number of backups that is performed per time step.
A very e↵ective approximation strategy is prioritized

sweeping (Moore & Atkeson, 1993; Peng & Williams,
1993), which prioritizes backups that are expected to
cause large value changes. This paper introduces a
new backup that enables a dramatic improvement in
the e�ciency of prioritized sweeping.

The main idea behind this new backup is as follows.
Consider that we are interested in some estimate A

that is constructed from a sum of other estimates Xi.
The estimate A can be computed using a full backup:

A 
X

i

Xi .

If the estimates Xi are updated, A can be recomputed
by redoing the above backup. Alternatively, if we know
that only Xj received a significant value change, we
might want to update A for only Xj . Let us indicate
the old value of Xj , used to construct the current value
of A, as xj . A can then be updated by subtracting this
old value and adding the new value:

A A� xj +Xj .
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This kind of backup, which we call a small backup, is
computationally cheaper than the full backup. The
trade-o↵ is that, in general, more memory is required
for storing the estimates xi associated with A. In plan-
ning, where the X estimates correspond to state-value
estimates and A corresponds to a state or state-action
estimate, this is not a serious restriction, because a
full model is stored already. The additional memory
required has the same order of complexity as the mem-
ory required for storage of the model.

Small backups can be combined in di↵erent ways to
form composite backups. A composite backup con-
sisting of one small backup for each successor state
is equivalent (in e↵ect and computational complexity)
as a full backup. However, by combining them in a
di↵erent way, composite backups can be created with
unique properties.

In this paper, we introduce a composite backup that
performs one small backup for each predecessor of
a state. This backup, which we call a reversed full

backup, has the same computational complexity as a
full backup. However, it has the advantage that an ac-
curate estimate of the e↵ect of the backup can be de-
termined very e�ciently. This is a critical property for
prioritized sweeping. We demonstrate this empirically,
by showing that a prioritized sweeping implementation
based on reversed full backups yields a large perfor-
mance improvement over the classical implementation,
based on full backups (Moore & Atkeson, 1993).

In addition, we demonstrate the relevance of small
backups in domains with severe constraints on com-
putation time, by showing that a method that per-
forms one small backup per time step has an equal
computation time complexity as TD(0), the classical
method that performs one sample backup per time
step. Since sample backups introduce sampling vari-
ance, they require a step-size parameter to be tuned
for optimal performance. Small backups, on the other
hand, do not introduce sampling variance, allowing
for a parameter-free implementation. We empirically
demonstrate that the performance of a method that
performs one small backup per time step is similar to
the optimal performance of TD(0), achieved by care-
fully tuning the step-size parameter.

2. Markov Decision Processes

Sequential decision problems are often formalized as
Markov decision processes (MDPs), which can be de-
scribed as tuples hS,A,P,R, �i consisting of S, the set
of all states; A, the set of all actions; Ps0

sa = Pr(s0|s, a),
the transition probability from state s 2 S to state s

0

when action a 2 A is taken; Rsa = E{r|s, a}, the
reward function giving the expected reward r when
action a is taken in state s; and �, the discount factor
controlling the weight of future rewards versus that of
the immediate reward.

Actions are taken at discrete time steps t = 0, 1, 2, ...
according to a policy ⇡ : S ⇥A! [0, 1], which defines
for each action the selection probability conditioned on
the state. The optimal policy ⇡

⇤ maximizes, for each
state, the expected return G, which is the discounted
cumulative reward:

Gt = rt+1 + � rt+2 + �

2
rt+3 + ... =

1X

k=1

�

k�1
rt+k ,

where rt+1 is the reward received after taking action
at in state st at time step t.

Value-function based methods find the optimal policy
⇡

⇤ by searching for the optimal state-value function

V

⇤(s) and/or optimal action-value function Q

⇤(s, a),
which give the expected return when following the op-
timal policy, conditioned on a state or state-action
pair, respectively.

In planning, where the model is given, the optimal
value functions can be determined by iteratively im-
proving estimates V of V ⇤ and Q of Q⇤ by performing
full backups. A full backup for state s is defined as:

for all a:

Q(s, a) Rsa + �

X

s0

Ps0

saV (s0) (1)

V (s) max
a

Q(s, a) (2)

Any ordering of full backups is guaranteed to make V

converge to V

⇤ and Q to Q

⇤, as long as each state is
visited infinitely often.

In reinforcement learning (RL), the model is unknown.
Model-based RL methods use samples to update esti-
mates of the transition probabilities, P̂s0

sa, and reward
function, R̂sa. They typically improve the policy by
performing planning backups, such as full backups,
using the model estimate as substitute for the true
model.

3. Small Backups

This section applies the small backup principle,
explained in the introduction, to the action-value
backup. We start with the planning case, where the
full model is given. Section 3.2 discusses the reinforce-
ment learning case, where the model is initially un-
known and has to be learned through interaction with
the environment.
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3.1. Known Model

To apply the small backup principle to the backup
of an action-value (Equation 1), the value estimates
of the successor states used to construct the current
action-value need to be stored. Let Usa(s0) be the
value of successor state s

0 stored by state-action pair
(s, a). 1 A small backup for state-action pair (s, a)
should not just update the action-value of (s, a); it
should also update Usa, in order to ensure that it
represents the successor values used to construct the
current action-value of (s, a). More specifically, the
following relation between Q(s, a) and Usa should be
maintained:

Q(s, a) = Rsa + �

X

s0

Ps0

sa Usa(s
0) . (3)

Note that for each state-action pair the value Usa(s0)
can be di↵erent, since backups occur at di↵erent times,
and hence successor values can be di↵erent. At most,
storage of U can require O(S2A) memory , the same
amount as required for storing the transition probabil-
ities.2

Definition A small backup for state-action pair (s, a)
based on successor state s

00 consists of the following
backups, performed sequentially:

�U  V (s00)� Usa(s
00) (4)

Usa(s
00)  V (s00) (5)

Q(s, a)  Q(s, a) + � Ps00

sa�U (6)

Note that the computational cost of a small backup
is O(1). The e↵ect of the backup is equivalent to up-
dating the function Usa with the current value of s00,
and then recomputing the action-value of (s, a) using
Equation (3), as the following lemma demonstrates.

Lemma 3.1 If Equation (3) holds, a small backup for

state-action pair (s, a) based on successor state s

00
has

the same e↵ect as the following backups:

Usa(s
00)  V (s00) (7)

Q(s, a)  Rsa + �

X

s0

Ps0

sa Usa(s
0) . (8)

Proof First, note that Usa receive exactly the same
backup, so its value after the backups is the same. Sec-
ond, by substituting the result of backup (7), backup

1
We use the notation Usa(s

0
) rather than U(s, a, s0) to

emphasize the fact the U is an estimate of the value of s0.
2
We assume tabular representations throughout this ar-

ticle.

(8) can be written as:

Q(s, a) Rsa + �

X

s0 6=s00

Ps0

sa Usa(s
0) + �Ps00

sa V (s00) .

Substituting Equation (3) and the result of backup (4)
in backup (6) results in the same backup.

Note that Lemma 3.1 implies that once Equation (3)
holds, it remains true under small backups. Hence, in
the planning case, an initialization of Q and U that
satisfies Equation (3) is su�cient for successful appli-
cation of small backups. An example of such an ini-
tialization is Q(s, a) = Rsa for all s, a and Usa(s0) = 0
for all s, a, s0.

The following theorem formalizes the notion that a
small backup is a more incremental version of a backup
based on all successor states.

Theorem 3.1 If Equation (3) holds, sequentially per-

forming small backups of (s, a) for each of its successor

states is equivalent to the backup:

Q(s, a) Rsa + �

X

s0

Ps0

sa V (s0) .

The proof of this theorem follows straightforwardly
from Lemma 3.1.

Note that small backups only back up action-values,
based on state-values. To get convergence, the state-
values also need to be updated, using backup (2).

3.2. Model Learning

In the planning case, an initialization of Q and U that
satisfies Equation (3) is su�cient for successful appli-
cation of small backups. In model-based RL, Ps0

sa and
Rsa in Equation (3) are replaced by the model esti-
mates P̂s0

sa and R̂sa. These model estimates are up-
dated each time a sample is observed, breaking Equa-
tion (3) for the state-action pair corresponding with
the sample. Therefore, in the RL case, additional
backups have to be performed to restore the equation.
If sample (s, a, r, s0) is observed, Equation (3) can be
restored, after the model update, by performing the
backup:

Q(s, a) R̂sa + �

X

s0

P̂s0

sa Usa(s
0) . (9)

Typically, the model estimate is defined as:

P̂s0

sa  N

s0

sa/Nsa

R̂sa  R

sum
sa /Nsa ,
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where Nsa counts the number of times state-action
pair (s, a) is visited, Ns0

sa counts the number of times s0

is observed as successor state of (s, a), and R

sum
sa is the

sum of observed rewards for (s, a). For this model es-
timate, the e↵ect of the following backup is equivalent
to that of backup (9), if the model has just been up-
dated with sample (s, a, r, s0), while its computational
cost is only O(1):3

Q(s, a) 
h
Q(s, a)(Nsa�1)+ r+� Usa(s

0)
i
/Nsa .

Algorithm 1 shows pseudo-code for a simple RL
method that performs one small backup after each ob-
served sample. Note that R̂sa is never explicitly com-
puted, saving time and memory. This algorithm is,
to our knowledge, the first model-based RL method
whose computation time per observation is indepen-
dent of the number of successor states.

Algorithm 1 Model Learning with Small Backups

1: initialize Q(s, a) arbitrarily for all s, a
2: initialize V (s) arbitrarily for all s
3: initialize Usa(s0) = V (s0) for all s, a, s0

4: initialize Nsa, N
s0
sa to 0 for all s, a, s0

5: loop {over episodes}
6: initialize s

7: repeat {for each step in the episode}
8: select action a, based on Q(s, ·)
9: take action a, observe r and s

0

10: Nsa  Nsa + 1; N

s0
sa  N

s0
sa + 1

11: Q(s, a) 
h
Q(s, a)(Nsa�1)+r+�Usa(s0)

i
/Nsa

12: �U  V (s0)� Usa(s0)
13: Usa(s0) V (s0)
14: Q(s, a) Q(s, a) + �N

s0
sa/Nsa ·�U

15: V (s) maxb Q(s, b)
16: s s

0

17: until s is terminal
18: end loop

Algorithm 1 can be easily transformed in an algorithm
for policy evaluation, in which the goal is to determine
the state-value function V

⇡ for some fixed policy ⇡.
This can be achieved by always selecting actions ac-
cording to ⇡ (on line 8) and ignoring the action com-
ponent in the variables. That is, Nsa, N

s0
sa and Usa

are replaced by Ns, N
s0
s and Us. Ignoring the action

component of Q(s, a) reduces it to Q(s) = V (s), so
Q(s, a) is replaced by V (s) (making line 15 obsolete).
In Section 7.1, we compare this policy evaluation vari-
ant with TD(0), the classical model-free method for
policy evaluation.

3
Note that this backup is simply a weighted average

between the current action-value and r + � Usa(s
0
).

3.3. Small Backups versus Sample Backups

In model-free learning, samples are used to directly
back up the value functions. Hence, no model is re-
quired. These backups, called sample backups, have
in common with small backups that they are based on
only a single successor value. Consequently, their com-
putational complexity is independent on the number
of successor states as well.

A disadvantage of sample backups, with respect to
small backups, is that they introduce sampling vari-
ance, caused by a stochastic environment. This re-
quires the use of a step-size parameter to enable av-
eraging over successor states (and rewards). A small
backup does not introduce sampling variance, since it
is implicitly based on an expectation over successor
states. Hence, methods based on small backups do
not require tuning of a step-size parameter for opti-
mal performance. In Section 7.1 we perform an em-
pirical comparison between TD(0), which performs one
sample backup per time step, and the policy evalua-
tion variant of Algorithm 1, which performs one small
backup per time step.

4. Reversed Full Backup

Small backups can be combined in di↵erent ways to
produce larger, composite backups. In this section,
we combine multiple small backups into a composite
backup by performing, for each predecessor of a state,
one small (action-value) backup, as well as one state-
value backup. We call this composite backup a re-

versed full backup. Whereas the full backup backs up
a single state-value using all its successor state-values,
the reversed full backup backs up all predecessor state-
values using one state-value.

Definition A reversed full backup for state s is de-
fined as:

�U  V (s)� U(s)

U(s) V (s)

for all (s̄, ā) 2 pred(s):

Q(s̄, ā) Q(s̄, ā) + � Ps
s̄ā�U

V (s̄) max
b

Q(s̄, b)

where pred(s) = {(s̄, ā) | Ps
s̄ā > 0}.

Note that the U function does not contain the sub-
script sa. Because a reversed full backup backs up
all predecessor state-action pairs using the same state
value, the U function does not have to be stored for
each state-action pair individually. Instead, a single
global U can be used, saving memory.
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Next, we demonstrate that the average computational
complexity of a reversed full backup is equal to that of
a full backup. The computational complexity of a full
backup (Equations 1 and 2) is O(B|A|), where B is
the number of successor states of an action. Let D be
the number of predecessor state-action pairs of a state.
Because a state-value backup occurs after every action-
value backup, the max-operator can be implemented
e�ciently by keeping track of the greedy action:4 for a
non-greedy action a, V (s̄) is set equal to Q(s̄, a) if and
only if Q(s̄, a) > V (s̄). Hence, the max-operator can
be implemented at O(1) complexity for non-greedy ac-
tions. On the other hand, if the action is greedy, all
values need to be compared, resulting in O(|A|) com-
plexity. On average, for D predecessor state-action
pairs, D/|A| pairs contain a greedy action. There-
fore, the average computational cost of a reversed full
backup is O(D · 1)+O(|A| ·D/|A|) = O(D). Interest-
ingly, for any MDP, D is on average equal to B|A|, the
number of actions multiplied by the number of succes-
sors per action, because every action successor corre-
sponds with exactly one state predecessor. Hence, on
average the computational complexity of a reversed
full backup is equal to that of a full backup.

In the next section, we demonstrate the advantage of
reversed full backups over full backups by combining
them with prioritized sweeping.

5. Prioritized Sweeping with Reversed

Full Backups

Prioritized sweeping (PS) makes the planning step of
model-based RL more e�cient by using a heuristic (a
‘priority’) for selecting backups that favours backups
that are expected to cause a large value change. A pri-
ority queue is maintained that determines which val-
ues are next in line for receiving backups. PS methods
perform backups in what we call update cycles. By ad-
justing the number of update cycles that is performed
per observation, the computation time per observation
can be controlled. The classical PS implementation of
Moore and Atkeson performs one full backup per up-
date cycle. In this section, we introduce a new PS
method that performs one reversed full backup per
time step.

An update cycle in the implementation of Moore and
Atkeson consists of the following steps. First, the top
state is removed from the queue, and receives a full
backup. Let s be the top state and �Vs the value
change caused by the backup. Then, for all predecessor

4
If a state has multiple greedy actions, one of them is

chosen as the ‘o�cial’ greedy action.

state-action pairs (s̄, ā) a priority p is computed, using:

p P̂s
s̄ā · |�Vs| . (10)

For each predecessor state-action pair, the correspond-
ing state is added to the queue, if it is not yet on the
queue. If it is already on the queue, but with a priority
smaller than p, the priority is upgraded to p.

A weakness of the approach above is that the priority
of a state is determined using the value change of only
a single successor state, while the full backup is based
on the values of all successor states. When the number
of successor states is large, this can result in ine↵ective
priorities. In contrast, when reversed full backups are
used, all predecessors are backed up using the same
state value. Therefore, a priority that is equal to the
value change of this state is a very accurate indicator
of the e↵ect of a reversed full backup.

Algorithm 2 shows the pseudo-code for PS with re-
versed full backups. In Section 7.2, we empirically
demonstrate that using reversed full backups instead
of full backups leads to a dramatic improvement in
performance.

6. Related Work

Peng & Williams (1993) developed a version of pri-
oritized sweeping called Queue-Dyna. The variant
of Queue-Dyna for stochastic environments is signif-
icantly di↵erent than Moore and Atkeson’s method.
Specifically, it does not use full backups, but back-
ups based on a single successor, like the backups used
by our method. However, in contrast to our method,
their single-successor backup has a cost of O(B) in-
stead of O(1), and they perform only one such backup
per update cycle, instead of one for each predecessor.
Consequently, the e↵ect of an update cycle of Queue-
Dyna on the value functions is a lot smaller than for
our method, while the computational cost is similar.
We demonstrate this empirically in the Section 7.2.

Andre et al. (1998) developed a PS version for more
general models than tabular models, such as DBN
models. Applying their method to a tabular model,
results in a method similar to the one of Moore and
Atkeson.

Wiering & Schmidhuber (1998) developed a PS ver-
sion that performs a full backup for each predecessor
state per update cycle. Consequently, the computa-
tional complexity of an update cycle is significantly
larger: O(B2|A|2) instead of O(B|A|). Besides that,
their method empties the priory queue before each new
observation.

McMahan & Gordon (2005) made a version of PS de-
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Algorithm 2 Prioritized Sweeping with reversed full
backups

1: initialize V (s) arbitrarily for all s
2: initialize U(s) = V (s) for all s
3: initialize Q(s, a) = V (s) for all s, a
4: initialize Nsa, N

s0
sa to 0 for all s, a, s0

5: loop {over episodes}
6: initialize s

7: repeat {for each step in the episode}
8: select action a, based on Q(s, ·)
9: take action a, observe r and s

0

10: Nsa  Nsa + 1; N

s0
sa  N

s0
sa + 1

11: Q(s, a) ⇥
Q(s, a)(Nsa�1)+r+�U(s0)

⇤
/Nsa

12: V (s) maxb Q(s, b)
13: p |U(s)� V (s)|
14: if s is on queue, set its priority to p;

otherwise, add it with priority p

15: for a number of update cycles do
16: remove top state s̄

0 from queue
17: �U  V (s̄0)� U(s̄0)
18: U(s̄0) V (s̄0)
19: for all (s̄, ā) pairs with N

s̄0
s̄ā > 0 do

20: Q(s̄, ā) Q(s̄, ā) + �N

s̄0
s̄ā/Ns̄ā ·�U

21: V (s̄) maxb Q(s̄, b)
22: p |U(s̄)� V (s̄)|
23: if s is on queue, set its priority to p;

otherwise, add it with priority p

24: end for
25: end for
26: s s

0

27: until s is terminal
28: end loop

signed specifically for planning in stochastic shortest
path problems (MDPs with only negative rewards and
absorbing goal states). Their method performs multi-
ple iterations of backups, starting from the goal state
and working its way backwards. It has the property
that it reduces to Dijkstra’s algorithm when the envi-
ronment is deterministic. Their method is not suitable
for reinforcement learning, since it assumes the goal
state is known.

More recently, Grzes & Hoey (2011) made a PS ver-
sion for the planning step of R-max (Brafman & Ten-
nenholtz, 2002). Their version improves upon Moore
and Atkeson’s method in this setting, by exploiting the
fact that under R-max values only decrease. While R-
max has PAC guarantees, in practise its on-line per-
formance is often poor, because it puts too much em-
phasis on exploration (Rao & Whiteson, 2012).

PS is one of the main techniques to obtain a good
ordering of backups, but it’s not the only one. No-

table other methods that aim to obtain a good or-
dering are RTDP (Barto et al., 1995) and LRTDP
(Bonet & Ge↵ner, 2003). Both are planning methods
for stochastic shortest path problems. They generate
simulated episodes based on the model, and backup
the states from those episodes using full backups. A
strength of these methods is that they can find opti-
mal policies without searching the full state space, by
using the initialization of the value functions as heuris-
tic. These methods are not suitable for reinforcement
learning, since the simulated episodes require that the
goal states are known.

7. Experimental Results

In this section, we evaluate the performance of the
policy evaluation variant of Algorithm 1, as well as
the performance of Algorithm 2.

7.1. Small backup versus Sample backup

We compare the performance of TD(0), which per-
forms one sample backup per time step, with the pol-
icy evaluation variant of Algorithm 1, which performs
one small backup per time step.

Their performance is compared on two evaluation
tasks, both consisting of 10 states laid out in a cir-
cle. State transitions only occur between neighbours.
The transition probabilities are generated by a random
process. The reward for counter-clockwise transitions
is always +1. The reward for clockwise transitions is
di↵erent for the two tasks. In the first task, a clock-
wise transition results in a reward of -1; in the second
task, it results in a reward of +1. The discount factor
� is 0.95 and the initial state values are 0.

For TD(0), we performed experiments with a constant
step-size for values between 0 and 1 with steps of 0.02.
In addition, we performed experiments with a decay-
ing, state-dependent step-size, according to

↵(s) =
1

d · (Ns � 1) + 1
, (11)

where Ns is the number of times state s has been vis-
ited, and d specifies the decay rate. We used values of
d between 0 and 1 with steps of 0.02. Note that for
d = 0, ↵(s) = 1, and for d = 1, ↵(s) = 1/Ns.

Each time a transition is observed and the corre-
sponding backup is performed, the root-mean squared
(RMS) error over all states is determined. The average
RMS error over the first 10.000 transitions, normal-
ized with the initial error, determines the performance.
Figure 1 shows this performance, averaged over 100
runs. The standard error is negligible (it is in the or-
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der of the line thickness in the graphs). Note that the
performance for d = 0 is equal to the performance for
↵ = 1, as it should, by definition. The normalized
performance for ↵ = 0 is 1, since no learning occurs
in this case. For the second task, the optimal step-
size is 1, because while the transitions are stochastic,
the observed rewards are always the same, hence no
averaging is required.

These experiments demonstrate three things. First,
the optimal step-size can vary a lot between di↵er-
ent tasks. Second, selecting a sub-optimal step-size
can cause large performance drops. Third, a small
backup, which is parameter-free, has a performance
similar to the performance of TD(0) with optimized
step-size. Since the computational complexity is the
same, the small backup is a better choice than the
sample backup. Whether this is true for all (tabular)
domains or just for some, is something that needs to
be explored further. Keep in mind that a small backup
does require a model estimate, so if there are tight con-
straints on the memory, a sample backup might still
be the only option.
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Figure 1. Average RMS error over the first 10.000 obser-

vations, normalized by the initial error, for di↵erent values

of the step-size parameter ↵, in case of constant step-size,

or di↵erent values of the decay parameter d, in case of de-

caying step-size. The top graph corresponds with the first

evaluation task; the bottom graph with the second.

7.2. Prioritized Sweeping

We compare the performance of prioritized sweeping
with reversed full backups (Algorithm 2) with the PS
implementation of Moore & Atkeson, as well as the
implementations of Peng & Williams and Wiering &
Schmidhuber. As reference, we also show the perfor-
mance of R-max and the performance obtained by do-
ing value iteration until convergence after each obser-
vation. We indicate this last method by ‘PS,1 update
cycles’, since all PS methods converge to this method
when their number of update cycles goes to infinity.
Both these methods required a lot more computation
per time step than the PS methods (up to 400 times
as much compared to a single update cycle).

We compare the methods on two variations of the maze
task depicted in the left of Figure 2. In both tasks, the
agent can choose between four actions, corresponding
to the four compass directions. In the first task, the
agent moves with 80% probability to the neighbouring
square corresponding to the compass direction, and
with 20% probability it moves at random to one of
its four neighbouring squares. In the second task, the
number of successor states is larger. The right of Fig-
ure 2 shows the relative action outcomes of a ‘north’
action for the second task. In free space, an action
can result in 15 possible successor states, each with
equal probability. When the agent is close to a wall,
this number decreases. For both tasks, the reward re-
ceived at each time step is -1 and the discount factor
is 0.99.

As exploration strategy, the agent select with 5% prob-
ability a random action, instead of the greedy one. On
top of that, we use the ‘optimism in the face of uncer-
tainty’ principle, as also used by Moore & Atkeson.
This means that as long as a state-action pair has not
been visited for at least M times, its value is defined
as some optimistic value (0 in our case), instead of the
value based on the model estimate. We optimized M

using the value iteration method, resulting in M = 6
for the first task, and M = 4 for the second task.
These values are used for all PS methods. We opti-
mized the parameters of R-max separately.

We performed experiments for 1, 3, 5 and 10 update
cycles per time step (except for the method of Wiering
& Schmidhuber, for which we skipped the experiment
with 10 update cycles). Figure 3 shows the average re-
turn over the first 200 episodes for the di↵erent meth-
ods. The results are averaged over 100 runs. The
maximum standard deviation is 0.1 for all methods,
except for the method of Peng & Williams, which had
a maximum standard deviation of 1.0.
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PS with reversed full backups substantially outper-
forms the other methods on both tasks. In the second
task, a single reversed full backup per update cycle is
already enough to match the performance in the limit
(‘PS, 1 update cycles’). In contrast, its closest com-
petitor, ‘PS Moore&Atkeson’, has with 10 times as
much computation (5 · 10�6 versus 0.5 · 10�6) still not
matched this performance.
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Figure 2. Left, the maze task, in which the agent must

travel from S to G. Right, transition probabilities (· 1
15 )

of a ‘north’ action in the second task for di↵erent positions

of the agent (indicated by the circle) with respect to the

walls (black squares).

8. Discussion

The results of Figure 3 clearly demonstrate the ad-
vantage of reversed full backups over full backups in
the context of prioritized sweeping: a certain level of
performance can be obtained with much less compu-
tation. This is relevant in for example real-time sys-
tems, where a high action-selection frequency is often
critical, placing bounds on the amount of computation
that can be done in between actions. Another relevant
application domain is the domain where RL is used
in combination with a simulation model, i.e., a model
that generates samples. Since the action-selection fre-
quency in this domain is fully determined by the com-
putation time per simulation step, improvements in
this computation time directly translate in improve-
ments of the total runtime of an experiment.

So far, we assumed that the size of the problem was
small enough for the full model to be stored. If the full
model cannot be stored in memory, a partial model
might be used, that only stores the transition prob-
abilities for a subset of the successor states. Such
models require memory anywhere between O(|S||A|)
and O(|S|2|A|)), depending on how large the subset is.
Van Seijen et al. (2011) showed that full convergence
to the optimal values can be obtained for such mod-
els when they are combined with a separate model-
free value-function. Of course, for really large domains
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Figure 3. Performance of di↵erent PS methods on the first

maze task (top), which has 4 successor states per action,

and the second maze task (bottom), which has up to 15

successor states per action.

(or continuos-state domains) a memory complexity of
O(|S||A|) can already be prohibitive. Moreover, for
data e�ciency reasons, some form of data generaliza-
tion might be required. This can be achieved with tab-
ular methods by using state aggregation, where mul-
tiple states (or an area in case of continuous-state do-
mains) are combined into a single abstract state.

9. Conclusion

We demonstrated in this paper that the planning step
in model-based reinforcement learning methods can
be done substantially more e�cient by making use of
small backups. These backups are finer-grained ver-
sion of a full backup, which allow for more control over
how the available computation time is spend. This
makes new, more e�cient, update strategies possible.
In addition, small backups can be useful in domains
with very tight time constraints, o↵ering a parameter-
free alternative to sample backups, which were up to
now the only feasible option for such domains.
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