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Appendices

A. Proof of Theorem 1

Our main deterministic result Theorem 1 is proved by
duality. We first establish a set of conditions on the op-
timal dual variable of D0 corresponding to all primal
solutions satisfying self-expression property. Then we
construct such a dual variable ν, hence certify that the
optimal solution of P0 satisfies the LASSO Subspace
Detection Property.

A.1. Optimality Condition

Define general convex optimization:

min
c,e
‖c‖1 +

λ

2
‖e‖2 s.t. x = Ac+ e. (A.1)

We may state an extension of the Lemma 7.1 in
Soltanolkotabi & Candes’s SSC Proof.

Lemma A.1. Consider a vector y ∈ Rd and a matrix
A ∈ Rd×N . If there exists triplet (c, e, ν) obeying y =
Ac+ e and c has support S ⊆ T , furthermore the dual
certificate vector ν satisfies

ATs ν = sgn(cS), ν = λe,
‖ATT∩Scν‖∞ ≤ 1, ‖ATT cν‖∞ < 1,

then all optimal solution (c∗, e∗) to (A.1) obey c∗T c = 0.

Proof. For optimal solution (c∗, e∗), we have:

‖c∗‖1 +
λ

2
‖e∗‖2

=‖c∗S‖1 + ‖c∗T∩Sc‖1 + ‖c∗T c‖1 +
λ

2
‖e∗‖2

≥‖cS‖1 + 〈sgn(cS), c∗S − cS〉+ ‖c∗T∩Sc‖1 + ‖c∗T c‖1

+
λ

2
‖e‖2 + 〈λe, e∗ − e〉

=‖cS‖1 + 〈ν,AS(c∗S − cS)〉+ ‖c∗T∩Sc‖1 + ‖c∗T c‖1

+
λ

2
‖e‖2 + 〈ν, e∗ − e〉

=‖cS‖1 +
λ

2
‖e‖2 + ‖c∗T∩Sc‖1 − 〈ν,AT∩Sc(c∗T∩Sc)〉

+ ‖c∗T c‖1 − 〈ν,AT c(c∗T c)〉 (A.2)

To see λ
2 ‖e
∗‖2 ≥ λ

2 ‖e‖
2 + 〈λe, e∗ − e〉, note that right

hand side equals to λ
(
− 1

2e
T e+ (e∗)T e

)
, which takes

a maximal value of λ
2 ‖e
∗‖2 when e = e∗. The last

equation holds because both (c, e) and (c∗, e∗) are
feasible solution, such that 〈ν,A(c∗ − c)〉 + 〈ν, e∗ −
e〉 = 〈ν,Ac∗ + e∗ − (Ac + e)〉 = 0. Also, note that
‖cS‖1 + λ

2 ‖e‖
2 = ‖c‖1 + λ

2 ‖e‖
2.

With the inequality constraints of ν given in the Lem-
ma statement, we know

〈ν,AT∩Sc(c∗T∩Sc)〉 =〈ATT∩Scν, (c∗T∩Sc)〉
≤‖ATT∩Scν‖∞‖c∗T∩Sc‖1 ≤ ‖c∗T∩Sc‖1.

Substitute into (A.2), we get:

‖c∗‖1+
λ

2
‖e∗‖2 ≥ ‖c‖1+

λ

2
‖e‖2+(1−‖ATT cν‖∞)‖c∗T c‖1,

where (1− ‖ATT cν‖∞) is strictly greater than 0.

Using the fact that (c∗, e∗) is an optimal solution,
‖c∗‖1 + λ

2 ‖e
∗‖2 ≤ ‖c‖1 + λ

2 ‖e‖
2. Therefore, ‖c∗T c‖1 = 0

and (c, e) is also an optimal solution. This concludes
the proof.
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Apply Lemma A.1 with x = x
(`)
i and A = X−i, we

know that if we can construct a dual certificate ν
such that all conditions are satisfied with respect to
a feasible solution (c, e) and c satisfy SEP, then the all
optimal solution of (4.1) satisfies SEP, in other word

ci =
[
0, ..., 0, (c

(`)
i )T , 0, ..., 0

]T
.

By definition of LASSO detection property, we must

further ensure ‖c(`)i ‖1 6= 0 to avoid the trivial solution

that x
(`)
i = e∗. This is a non-convex constraint and

hard to impose. To this matter, we note that given

sufficiently large λ, ‖c(`)i ‖1 6= 0 never occurs.

Our strategy of avoiding this trivial solution is hence
showing the existence of a λ such that the dual optimal
value is smaller than the trivial optimal value, namely:

OptV al(D0) = 〈xi, ν〉 −
1

2λ
‖ν‖2 < λ

2
‖x(`)i ‖

2. (A.3)

A.2. Constructing candidate dual vector ν

A natural candidate of the dual solution ν is the du-
al point corresponding to the optimal solution of the
following fictitious optimization program.

P1 : min
c
(`)
i ,ei

‖c(`)i ‖1 +
λ

2
‖ei‖2

s.t. y
(`)
i + zi = (Y

(`)
−i + Z

(`)
−i )c

(`)
i + ei

(A.4)

D1 : max
ν
〈x(`)i , ν〉 − 1

2λ
νT ν

s.t. ‖(X(`)
−i )

T ν‖∞ ≤ 1.

(A.5)

This optimization is feasible because y
(`)
i ∈

span(Y
(`)
−i ) = S` so any c

(`)
i obeying y

(`)
i = Y

(`)
−i c

(`)
i

and corresponding ei = zi − Z(`)
−i c

(`)
i is a pair of feasi-

ble solution. Then by strong duality, the dual program
is also feasible, which implies that for every optimal so-
lution (c, e) of (A.4) with c supported on S, there exist
ν satisfying:{

‖((Y (`)
−i )TSc + (Z

(`)
−i )

T
Sc)ν‖∞ ≤ 1, ν = λe,

((Y
(`)
−i )TS + (Z

(`)
−i )

T
S )ν = sgn(cS).

}
This construction of ν satisfies all conditions in Lem-
ma A.1 with respect to{

ci = [0, ..., 0, c
(`)
i , 0, ..., 0] with c

(`)
i = c,

ei = e,
(A.6)

except ∥∥[X1, ..., X`−1, X`+1, ..., XL]T ν
∥∥
∞ < 1,

i.e., we must check for all data point x ∈ X \ X `,

|〈x, ν〉| < 1. (A.7)

Showing the solution of (A.5) ν also satisfies (A.7)
gives precisely a dual certificate as required in Lem-
ma A.1, hence implies that the candidate solution
(A.6) associated with optimal (c, e) of (A.4) is indeed
the optimal solution of (4.1).

A.3. Dual separation condition

In this section, we establish the conditions required for
(A.7) to hold. The idea is to provide an upper bound
of |〈x, ν〉| then make it smaller than 1.

First, we find it appropriate to project ν to the sub-
space S` and its complement subspace then analyze
separately. For convenience, denote ν1 := PS`(ν),
ν2 := PSc` (ν). Then

|〈x, ν〉| =|〈y + z, ν〉| ≤ |〈y, ν1〉|+ |〈y, ν2〉|+ |〈z, ν〉|
≤µ(X`)‖ν1‖+ ‖y‖‖ν2‖| cos(∠(y, ν2))|

+ ‖z‖‖ν‖| cos(∠(z, ν))|.
(A.8)

To see the last inequality, check that by Definition 3,
|〈y, ν1

‖ν1‖ 〉| ≤ µ(X`).

Since we are considering general (possibly adversarial)
noise, we will use the relaxation | cos(θ)| ≤ 1 for all
cosine terms (a better bound under random noise will
be given later). Now all we have to do is to bound ‖ν1‖
and ‖ν2‖ (note ‖ν‖ =

√
‖ν1‖2 + ‖ν2‖2 ≤ ‖ν1‖+‖ν2‖).

A.3.1. Bounding ‖ν1‖

We first bound ‖ν1‖ by exploiting the feasible region
of ν1 in (A.5).

‖(X(`)
−i )

T ν‖∞ ≤ 1

is equivalent to
xTi ν ≤ 1

for every xi that is the column of X
(`)
−i . Decompose

the condition into

yTi ν1 + (PS`zi)T ν1 + zTi ν2 ≤ 1.

Now we relax each of the term into

yTi ν1 + (PS`zi)T ν1 ≤ 1− zTi ν2 ≤ 1 + δ‖ν2‖. (A.9)

The relaxed condition contains the feasible region of
ν1 in (A.5).

It turns out that the geometric interpretation of the
relaxed constraints gives a upper bound of ‖ν1‖.
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Definition A.1 (polar set). The polar set Ko of set
K ∈ Rd is defined as

Ko =
{
y ∈ Rd : 〈x, y〉 ≤ 1 for all x ∈ K

}
By the polytope geometry, we have

‖(Y (`)
−i + PS`(Z

(`)
−i ))

T ν1‖∞ ≤ 1 + δ‖ν2‖

⇔ ν1 ∈

[
P

(
Y

(`)
−i + PS`(Z

(`)
−i )

1 + δ‖ν2‖

)]o
:= T o.

(A.10)

Now we introduce the concept of circumradius.

Definition A.2 (circumradius). The circumradius of
a convex body P, denoted by R(P), is defined as the
radius of the smallest Euclidean ball containing P.

The magnitude ‖ν1‖ is bounded by R(T o). Moreover,
by the the following lemma we may find the circum-
radius by analyzing the polar set of T o instead. By
the property of polar operator, polar of a polar set
gives the tightest convex envelope of original set, i.e.,

(Ko)o = conv(K). Since T = conv

(
±Y

(`)
−i +PS` (Z

(`)
−i )

1+δ‖ν2‖

)
is convex in the first place, the polar set of T o is es-
sentially T .

Lemma A.2. For a symmetric convex body P, i.e.
P = −P, inradius of P and circumradius of polar set
of P satisfy:

r(P)R(Po) = 1.

Lemma A.3. Given X = Y + Z, denote ρ :=
maxi ‖PSzi‖, furthermore Y ∈ S where S is a linear
subspace, then we have:

r(ProjS(P(X))) ≥ r(P(Y ))− ρ

Proof. First note that projection to subspace is a lin-
ear operator, hence ProjS(P(X)) = P(PSX). Then
by definition, the boundary set of P(PSX) is B :=
{y | y = PSXc; ‖c‖1 = 1}. Inradius by definition is
the largest ball containing in the convex body, hence
r(P(PSX)) = miny∈B ‖y‖. Now we provide a lower
bound of it:

‖y‖ ≥‖Y c‖ − ‖PSZc‖ ≥ r(P(Y ))−
∑

j
‖PSzj‖|cj |

≥r(P(Y ))− ρ‖c‖1.

This concludes the proof.

A bound of ‖ν1‖ follows directly from Lemma A.2 and

Lemma A.3:

‖ν1‖ ≤(1 + δ‖ν2‖)R(P(Y
(`)
−i + PS`(Z

(`)
−i )))

=
1 + δ‖ν2‖

r(P(Y
(`)
−i + PS`(Z

(`)
−i ))

=
1 + δ‖ν2‖

r(ProjS`(P(X
(`)
−i )))

≤ 1 + δ‖ν2‖
r
(
Q`−i

)
− δ1

. (A.11)

This bound unfortunately depends ‖ν2‖. This can be
extremely loose as in general, ν2 is not well-constrained
(see the illustration in Figure C.2 and C.3). That is
why we need to further exploit the fact ν is the optimal
solution of (A.5), which provides a reasonable bound
of ‖ν2‖.

A.3.2. Bounding ‖ν2‖

By optimality condition:

ν = λei = λ(xi −X−ic)

and

ν2 = λPS⊥` (xi −X−ic) = λPS⊥` (zi − Z−ic)

so

‖ν2‖ ≤ λ
(
‖PS⊥` zi‖+ ‖PS⊥` Z−ic‖

)
≤ λ(‖PS⊥` zi‖+

∑
j∈S
|cj |‖PS⊥` zj‖)

≤ λ(‖c‖1 + 1)δ2 ≤ λ(‖c‖1 + 1)δ (A.12)

Now we will bound ‖c‖1. As c is the optimal solution,
‖c‖1 ≤ ‖c‖1 + λ

2 ‖e‖
2 ≤ ‖c̃‖1 + λ

2 ‖ẽ‖
2 for any feasible

solution (c̃, ẽ). Let c̃ be the solution of

min
c
‖c‖1

s.t. y
(`)
i = Y

(`)
−i c,

(A.13)

then by strong duality,

‖c̃‖1 = max
ν

{
〈ν, y(`)i 〉 | ‖[Y

(`)
−i ]T ν‖∞ ≤ 1

}
.

By Lemma A.2, optimal dual solution ν̃ satisfies ‖ν̃‖ ≤
1

r(Q`−i)
. It follows that

‖c̃‖1 = 〈ν̃, y(`)i 〉 = ‖ν̃‖‖y(`)i ‖ ≤
1

r(Q`−i)
.

On the other hand, ẽ = zi − Z(`)
−i c̃, so ‖ẽ‖2 ≤ (‖zi‖ +∑

j ‖zj‖|c̃j |)2 ≤ (δ + ‖c̃‖1δ)2, thus:

‖c‖1 ≤ ‖c̃‖1 +
λ

2
‖ẽ‖2 ≤ 1

r(Q`−i)
+
λ

2
δ2

[
1 +

1

r(Q`−i)

]2
.
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This gives the bound we desired:

‖ν2‖ ≤ λ

 1

r(Q`−i)
+
λ

2
δ2

[
1 +

1

r(Q`−i)

]2
+ 1

 δ

= λδ

(
1

r(Q`−i)
+ 1

)
+
δ

2

{
λδ

(
1

r(Q`−i)
+ 1

)}2

.

By choosing λ satisfying

λδ2 ≤ 2

1 + 1/r(Q`−i)
, (A.14)

the bound can be simplified to:

‖ν2‖ ≤ 2λδ

(
1

r(Q`−i)
+ 1

)
(A.15)

A.3.3. Conditions for |〈x, ν〉| < 1

Putting together (A.8), (A.11) and (A.15), we have
the upper bound of |〈x, ν〉|:

|〈x, ν〉| ≤ (µ(X`) + ‖PS`z‖)‖ν1‖+ (‖y‖+ ‖PS⊥` z‖)‖ν2‖

≤ µ(X`) + δ1

r
(
Q`−i

)
− δ1

+

(
(µ(X`) + δ1)δ

r
(
Q`−i

)
− δ1

+ 1 + δ

)
‖ν2‖

≤ µ(X`) + δ1

r
(
Q`−i

)
− δ1

+ 2λδ(1 + δ)

(
1

r(Q`−i)
+ 1

)

+
2λδ2(µ(X`) + δ1)

r
(
Q`−i

)
− δ1

(
1

r(Q`−i)
+ 1

)

For convenience, we further relax the second r(Q`−i)
into r(Q`−i) − δ1. The dual separation condition is
thus guaranteed with

µ(X`) + δ1 + 2λδ(1 + δ) + 2λδ2(µ(X`) + δ1)

r
(
Q`−i

)
− δ1

+2λδ(1 + δ) +
2λδ2(µ(X`) + δ1)

r
(
Q`−i

)
(r
(
Q`−i

)
− δ1)

< 1.

Denote ρ := λδ(1 + δ), assume δ < r
(
Q`−i

)
, (µ(X`) +

δ1) < 1 and simplify the form with

2λδ2(µ(X`) + δ1)

r
(
Q`−i

)
− δ1

+
2λδ2(µ(X`) + δ1)

r
(
Q`−i

)
(r
(
Q`−i

)
− δ1)

<
2ρ

r
(
Q`−i

)
− δ1

,

we get a sufficient condition

µ(X`) + 3ρ+ δ1 < (1− 2ρ) (r(Q`−i)− δ1). (A.16)

To generalize (A.16) to all data of all subspaces, the
following must hold for each ` = 1, ..., k:

µ(X`) + 3ρ+ δ1 < (1− 2ρ)

(
min

{i:xi∈X(`)}
r(Q(`)

−i)− δ1
)
.

(A.17)
This gives a first condition on δ and λ, which we call
it “dual separation condition” under noise. Note
that this reduces to exactly the geometric condition in
Soltanolkotabi & Candes’s Theorem 2.5 when δ = 0.

A.4. Avoid trivial solution

In this section we provide sufficient conditions on λ

such that trivial solution c = 0, e = x
(`)
i is not the

optimal solution. For any optimal triplet (c, e, ν) we

have ν = λe, a condition: ‖ν‖ < λ‖x(`)i ‖ implies that

optimal ‖e‖ < ‖x(`)i ‖, so e 6= x
(`)
i . By the equality

constraint, X
(`)
−i c = x

(`)
i − e 6= 0, therefore ‖c‖1 6= 0.

Now we will establish the condition on λ such that:

‖ν‖ < λ‖x(`)i ‖.

An upper bound of ‖ν‖ and a lower bound of λ‖x(`)i ‖
are readily available:

‖ν‖ ≤‖ν1‖+ ‖ν2‖ ≤
1

r
(
Q`−i

)
− δ1

+ 2λδ

(
1

r(Q`−i)
+ 1

)(
1 +

δ

r
(
Q`−i

)
− δ1

)

≤1 + 3λδ + 2λδ2

r
(
Q`−i

)
− δ1

+ 2λδ,

λ‖x(`)i ‖ ≥ λ(‖y(`)i ‖ − ‖z
(`)
i ‖) ≥ λ(1− δ).

So the sufficient condition on λ such that solution is
non-trivial is

1 + 3λδ + 2λδ2

r
(
Q`−i

)
− δ1

+ 2λδ < λ(1− δ).

Reorganize the condition, we reach

λ >
1

(r
(
Q`−i

)
− δ1)(1− 3δ)− 3δ − 2δ2

. (A.18)

For the inequality operations above to be valid, we
need: {

r
(
Q`−i

)
− δ1 > 0

(r
(
Q`−i

)
− δ1)(1− 3δ)− 3δ − 2δ2 > 0

Relax δ1 to δ and solve the system of inequalities, we
get:

δ <
3r + 4−

√
9r2 + 20r + 16

2
=

2r

3r + 4 +
√

9r2 + 20r + 16
.
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Use
√

9r2 + 20r + 16 ≤ 3r + 4 and impose the con-

straint for all x
(`)
i , we choose to impose a stronger

condition for every ` = 1, ..., L:

δ <
mini r

(
Q`−i

)
3 mini r

(
Q`−i

)
+ 4

. (A.19)

A.5. Existence of a proper λ

Basically, (A.17), (A.18) and (A.14) must be satis-
fied simultaneously for all ` = 1, ..., L. Essential-
ly (A.18) gives condition of λ from below, the oth-
er two each gives a condition from above. Denote

r` := min{i:xi∈X(`)} r(Q
(`)
−i), µ` := µ(X`), the condi-

tion on λ is:{
λ > max`

1
(r`−δ1)(1−3δ)−3δ−2δ2

λ < min`

(
r`−µ`−2δ1

δ(1+δ)(3+2r`−2δ1) ∨
2r`

δ2(r`+1)

)
Note that on the left

max
`

{
1

(r` − δ1)(1− 3δ)− 3δ − 2δ2

}
=

1

(max` r` − δ1)(1− 3δ)− 3δ − 2δ2
.

On the right

min
`

{
2r`

δ2(r` + 1)

}
=

2 min` r`
δ2(min` r` + 1)

.

Denote r = min` r`, it suffices to guarantee for each `:{
λ > 1

(r−δ1)(1−3δ)−3δ−2δ2

λ < r`−µ`−2δ1
δ(1+δ)(3+2r`−2δ1) ∨

2r
δ2(r+1)

(A.20)

To understand this, when δ and µ is small then any
λ values satisfying Θ(r) < λ < Θ(r/δ) will satisfy
separation condition. We will now derive the condition
on δ such that (A.20) is not an empty set.

A.6. Lower bound of break-down point

(A.19) gives one requirement on δ and the range of
(A.20) being non-empty gives another. Combining
these two leads to lower bound of the breakdown point.
In other word, the algorithm will be robust to arbi-
trary corruptions with magnitude less than this point
for some λ.

Again, we relax δ1 to δ in (A.20) to get:{
1

(r−δ)(1−3δ)−3δ−2δ2 <
r`−µ`−2δ

δ(1+δ)(3+2r`−2δ)
1

(r−δ)(1−3δ)−3δ−2δ2 <
2r

δ2(r+1) .

The first inequality in standard form is:

Aδ3 +Bδ2 + Cδ +D < 0

with 
A = 0

B = −(6r − r` + 7− µ`)
C = 3r`r + 6r` + 2r − 3µ`r + 3− 4µ`

D = −r(r` − µ`)

This is an extremely complicated 3rd order polyno-
mial. We will try to simplify it imposing a stronger
condition. First extract and regroup µ` in first three
terms, we get (δ2−4δ−3rδ)µ` which is negative, so we
drop it. Second we express the remaining expression
using:

f(r, δ)δ < r(r − µ),

where

f(r, δ) = −(6r − r` + 7)δ + 3r`r + 6r` + 2r + 2.

Note that since δ < 1, we can write

f(r, δ) ≤ f(r, 0) = 3r`r+ 6r` + 2r+ 2 ≤ 3r2` + 8r` + 2.

Thus, a stronger condition on δ is established:

δ <
r(r` − µ`)

3r2` + 8r` + 2
(A.21)

The second inequality in standard form is:

(1− r)δ2 + (6r2 + 8r)δ − 2r2 < 0

By definition r < 1, we solve the inequality and get:{
δ > −3r2−4r−r

√
9r2+22r+18

1−r
δ < −3r2−4r+r

√
9r2+22r+18

1−r

The lower constraint is always satisfied. Rationalized
the expression of the upper constraint, 1− r gets can-
celled out:

δ <
2r2

3r2 + 4r + r
√

9r2 + 22r + 18
.

It turns out that (A.19) is sufficient for the in-
equality to hold. This is by

√
9r2 + 22r + 18 <√

9r2 + 24r + 16 = 3r + 4. Combine with (A.21) we
reach the overall condition:

δ <

{
r(r` − µ`)

3r2` + 8r` + 2

}
∨ r

3r + 4
=

r(r` − µ`)
3r2` + 8r` + 2

.

(A.22)
The first expression is always smaller because:

r

3r + 4
≥ rr`

3rr` + 4r`
≥ rr`

3rr` + 4r` + 3r` + 2

≥ r(r` − µ`)
3r2` + 8r` + 2

.

Verify that when (A.22) is true for all `, there exists
a single λ for solution of (2.2) to satisfy subspace de-
tection property for all xi. The proof of Theorem 1 is
now complete.
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B. Proof of Randomized Results

In this section, we provide proof to the Theorems
about the three randomized models:

• Determinitic data+random noise

• Semi-random data+random noise

• Fully random

To do this, we need to bound δ1, cos(∠(z, ν)) and
cos(∠(y, ν2)) when the Z follows Random Noise Mod-
el, such that a better dual separation condition can
be obtained. Moreover, for Semi-random and Ran-

dom data model, we need to bound r(Q(`)
−i) when data

samples from each subspace are drawn uniformly and
bound µ(X`) when subspaces are randomly generated.

These requires the following Lemmas.

Lemma B.1 (Upper bound on the area of spherical
cap). Let a ∈ Rn be a random vector sampled from a
unit sphere and z is a fixed vector. Then we have:

Pr
(
|aT z| > ε‖z‖

)
≤ 2e

−nε2
2

This Lemma is extracted from an equation in page 29
of Soltanolkotabi & Candes (2012), which is in turn
adapted from the upper bound on the area of spher-
ical cap in Ball (1997). By definition of Random
Noise Model, zi has spherical symmetric, which im-
plies that the direction of zi distributes uniformly on
an n-sphere. Hence Lemma B.1 applies whenever an
inner product involves z.

As an example, , we write the following lemma

Lemma B.2 (Properties of Gaussian noise). For
Gaussian random matrix Z ∈ Rn×N , if each entry
Zi,j ∼ N(0, σ√

n
), then each column zi satisfies:

1. Pr(‖zi‖2 > (1 + t)σ2) ≤ en2 (log(t+1)−t)

2. Pr(|〈zi, z〉| > ε‖zi‖‖z‖) ≤ 2e
−nε2

2

where z is any fixed vector(or random generated but
independent to zi).

Proof. The second property follows directly from Lem-
ma B.1 as Gaussian vector has uniformly random di-
rection.

To show the first property, we observe that the sum
of n independent square Gaussian random variables
follows χ2 distribution with d.o.f n, in other word, we
have

‖zi‖2 = |Z1i|2 + ...+ |Zni|2 ∼
σ2

n
χ2(n).

By Hoeffding’s inequality, we have an approximation
of its CDF (Dasgupta & Gupta, 2002), which gives us

Pr(‖zi‖2 > ασ2) = 1− CDFχ2
n
(α) ≤ (αe1−α)

n
2 .

Substitute α = 1 + t, we get exactly the concentration
statement.

By Lemma B.2, δ = maxi ‖zi‖ is bounded with high
probability. δ1 has an even tighter bound because each
S` is low-rank. Likewise, cos(∠(z, ν)) is bounded to
a small value with high probability. Moreover, since
ν = λe = λ(xi − X−ic), ν2 = λPS⊥` (zi − Z−ic), thus

ν2 is merely a weighted sum of random noise in a (n−
d`)-dimensional subspace. Consider y a fixed vector,
cos(∠(y, ν2)) is also bounded with high probability.

Replace these observations into (A.7) and the corre-
sponding bound of ‖ν1‖ and ‖ν2‖. We obtained the d-
ual separation condition for under Random noise mod-
el.

Lemma B.3 (Dual separation condition under ran-
dom noise). Let ρ := λδ(1 + δ) and

ε :=

√
6 logN + 2 log max` d`

n−max` d`
≤ C log(N)√

n

for some constant C. Under random noise model, if
for each ` = 1, ..., L

µ(X`) + 3ρε+ δε ≤ (1− 2ρε)(max
i
r(Q(`)

−i)− δε),

then dual separation condition (A.7) holds for all data
points with probability at least 1− 7/N .

Proof. Recall that we want to find an upper bound of
|〈x, ν〉|.

|〈x, ν〉| ≤µ‖ν1‖+ ‖y‖‖ν2‖| cos(∠(y, ν2))|
+ ‖z‖‖ν‖| cos(∠(z, ν))|

(B.1)

Here we will bound the two cosine terms and δ1 under
random noise model.

As discussed above, directions of z and ν2 are inde-
pendently and uniformly distributed on the n-sphere.
Then by Lemma B.1,

Pr

(
cos(∠(z, ν)) >

√
6 logN
n

)
≤ 2

N3

Pr
(

cos(∠(y, ν2)) >
√

6 logN
n−d`

)
≤ 2

N3

Pr

(
cos(∠(z, ν2)) >

√
6 logN
n

)
≤ 2

N3

Using the same technique, we provide a bound for δ1.
Given orthonormal basis U of S`, PS`z = UUT z, then

‖UUT z‖ = ‖UT z‖ ≤
∑

i=1,...,d`

|UT:,iz|.
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Apply Lemma B.1 for each i , then apply union bound,
we get:

Pr

(
‖PS`z‖ >

√
2 log d` + 6 logN

n
δ

)
≤ 2

N3

Since δ1 is the worse case bound for all L subspace and
all N noise vector, then a union bound gives:

Pr

(
δ1 >

√
2 log d` + 6 logN

n
δ

)
≤ 2L

N2

Moreover, we can find a probabilistic bound for ‖ν1‖
too by a random variation of (A.9) which is now

yTi ν1+(PS`zi)T ν1 ≤ 1−zTi ν2 ≤ 1+δ2‖ν2‖| cos∠(zi, ν2)|.
(B.2)

Substituting the upper bound of the cosines, we get:

|〈x, ν〉| ≤ µ‖ν1‖+‖y‖‖ν2‖
√

6 logN

n− d`
+‖z‖‖ν‖

√
6 logN

n

‖ν1‖ ≤
1 + δ‖ν2‖

√
6 logN
n

r(Q`−i)− δ1
, ‖ν2‖ ≤ 2λδ

(
1

r(Q`−i)
+ 1

)

Denote r := r(Q`−i), ε :=
√

6 logN+2 logmax` d`
n−max` d`

and

µ := µ(X`) we can further relax the bound into

|〈x, ν〉| ≤µ+ δε

r − εδ
+

(µ+ δε)2δ2ε

r − εδ

(
1

r
+ 1

)
+ 2λδε

(
1

r
+ 1

)
+ 2λδ2ε

(
1

r
+ 1

)
≤µ+ δε+ 3λδ(1 + δ)ε

r − εδ
+ 2λδ(1 + δ)ε.

Note that here in order to get rid of the higher order
term 1

r(r−εδ) , we used δ < r and µ + δε < 1 to con-

struct (µ+δε)δ2ε
r(r−δε) < δε

r−δε as in the proof of Theorem 1.

Now impose the dual detection constraint on the upper
bound, we get:

2λδ(1 + δ)ε+
µ+ δε+ 3λδ(1 + δ)ε

r − δε
< 1.

Replace ρ := λδ(1 + δ) and reorganize the inequality,
we reach the desired condition:

µ+ 3ρε+ δε ≤ (1− 2ρε)(r − δε).

There are N2 instances for each of the three events
related to the consine value, apply union bound we get
the failure probability 6

N + 2L
N2 ≤ 7

N . This concludes
the proof.

B.1. Proof of Theorem 2

Lemma B.3 has already provided the separation con-
dition. The things left are to find the range of λ and
update the condition of δ.

The range of λ: Follow the same arguments in Sec-
tion A.4 and Section A.5, re-derive the upper bound
from the relationship in Lemma B.3 and substitute
the tighter bound of δ1 where applicable. Again let
r` = mini r(Q

`
−i), µ` = µ(X`) and r = min` r`. We get

the range of λ under random noise model:
λ >

1

(r − δε)(1− 3δ)− 3δ − 2δ2

λ < min
`=1,...,L

{
r` − µ` − 2δε

εδ(1 + δ)(3 + 2r` − 2δε)

}
∨ 2r

δ2(r + 1)
(B.3)

Remark B.1. A critical difference from the deter-
ministic noise model is that now under the paradigm
of small µ and δ, if δ > ε, the second term in the upper
bound is actually tight. Then the valid range of λ is
expanded an order to Θ(1/r) ≤ λ < Θ(r/δ2).

The condition of δ: Re-derive (A.19) using δ1 ≤ εδ,
we get:

δ <
r

3r + 3 + ε
(B.4)

Likewise, we re-derive (A.21) from the new range of λ
in (B.3). The first inequality in standard form is,

Aδ3 +Bδ2 + Cδ +D < 0

with
A = 6ε2 − 6ε,

B = −(3ε+ 4ε2 + εr` − 2r` + 6εr + 2µ` − 3µ`ε),

C = 3r`r + 3r` + 3εr` + 3ε+ 2εr − 3µ`r − 3µ` − εµ`,
D = −r(r` − µ`),

apply the same trick of removing the negative µ term
and define

f(r, δ) :=Aδ2 +Bδ + C

such that the 3rd-order polynomial inequality becomes
f(r, δ)δ < r(r` − µ`).Rearrange the expressions and
drop negative terms, we get

f(r, δ) < Bδ + C

=−
[
3ε+ 4ε2 + 2ε(r` − µ`) + 6εr

]
δ + 2(r` − µ`)δ

+ [3(r` − µ`)r + 3(r` − µ`) + 3ε(r` − µ`) + 2εr + 3ε]

+ (r` − µ`)εδ + 2µ`εδ − µ`ε
<3(r` − µ`)r + 5(r` − µ`) + 4ε(r` − µ`) + 2εr + 3ε.
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Therefore, a sufficient condition of δ is

δ <
r(r` − µ`)

3(r` − µ`)r + 5(r` − µ`) + 4ε(r` − µ`) + 2εr + 3ε
.

(B.5)

When r > r` − µ`, we have (r` − µ`)/r < 1. Then

(B.5)⇐ δ <
r` − µ`

3(r` − µ`) + 5 + ε(4 + 2 + 3/r)

⇐ δ <
r` − µ`

3r + 5 + ε(6 + 3/r)
.

When r < r` − µ`, we have r/(r` − µ`) < 1. Since
r < r`,

(B.5)⇐ δ <
r

3r + 5 + ε(4 + 2 + 3/(r` − µ`))

⇐ δ <
r

3r + 5 + ε(6 + 3/r)

Combining the two cases, we have:

δ <
min{r, r` − µ`}

3r + 5 + ε(6 + 3/r)
(B.6)

For the second inequality, the quadratic polynomial is
now

(1 + 5r − 6rε)δ2 + (6r2 + 2εr + 6r)δ − 2r2 < 0.

Check that 1 + 5r − 6rε > 0. We solve the quadratic
inequality and get a slightly stronger condition than
(B.4), which is

δ <
r

3r + 4 + ε
. (B.7)

Note that (B.6) ⇒ (B.7), so (B.6) alone is sufficient.
In fact, when ε(6r + 3)/r < 1 or equivalently r >
3ε/(1 − 6ε), which are almost always true, a neater
expression is:

δ <
min{r, r` − µ`}

3r + 6
.

Finally, as the condition needs to be satisfied for all `,
the output of the min function at the smallest bound
is always r`−µ`. This observation allows us to replace
min{r, r`−µ`} with simple (r`−µ`), which concludes
the proof for Theorem 2.

B.2. Proof of Theorem 3

To prove Theorem 3, we only need to bound inradii r
and incoherence parameter µ under the new assump-
tions, then plug into Theorem 2.

Lemma B.4 (Inradius bound of random samples). In
random sampling setting, when each subspace is sam-
pled N` = κ`d` data points randomly, we have:

Pr

c(κ`)
√
β log (κ`)

d`
≤ r(Q(`)

−i) for all pairs (`, i)


≥ 1−

L∑
`=1

N`e
−dβ`N

1−β
`

This is extracted from Section-7.2.1 of Soltanolkotabi
& Candes (2012). κ` = (N` − 1)/d` is the relative
number of iid samples. c(κ) is some positive value for
all κ > 1 and for a numerical value κ0, if κ > κ0, we
can take c(κ) = 1√

8
. Take β = 0.5, we get the required

bound of r in Theorem 3.

Lemma B.5 (Incoherence bound). In deterministic
subspaces/random sampling setting, the subspace in-
coherence is bounded from above:

Pr
{
µ(X`) ≤ t (log[(N`1 + 1)N`2 ] + logL)

aff(S`1 , S`2)√
d`1
√
d`2

for all pairs(`1, `2) with `1 6= `2

}
≥ 1− 1

L2

∑
`1 6=`2

1

(N`1 + 1)N`2
e−

t
4

B.2.1. Proof of Lemma B.5

The proof is an extension of the same proof in
Soltanolkotabi & Candes (2012). First we will show

that when noise z
(`)
i is spherical symmetric, and clean

data points y
(`)
i has iid uniform random direction, pro-

jected dual directions v
(`)
i also follows uniform random

distribution.

Now we will prove the claim. First by definition,

v
(`)
i = v(x

(`)
i , X

(`)
−i ,S`, λ) =

PS`ν
‖PS`ν‖

=
ν1
‖ν1‖

.

ν is the unique optimal solution of D1 (A.5). Fix λ,
D1 depends on two inputs, so we denote ν(x,X) and
consider ν a function. Moreover, ν1 = PSν and ν2 =
PS⊥ν. Let U ∈ n× d be a set of orthonormal basis of
d-dimensional subspace S and a rotation matrix R ∈
Rd×d. Then rotation matrix within subspace is hence
URUT .

x1 :=PSx = y + z1 ∼ URUT y + URUT z1

x2 :=PS⊥x = z2

As y is distributed uniformly on unit sphere of S, and
z is spherical symmetric noise(hence z1 and z2 are also
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spherical symmetric in subspace), for any fixed ‖x1‖,
the distribution is uniform on the sphere. It suffices to
show the uniform distribution of ν1 with fixed ‖x1‖.

Since inner product 〈x, ν〉 = 〈x1, ν1〉+ 〈x2, ν2〉, we ar-
gue that if ν is optimal solution of

max
ν
〈x, ν〉 − 1

2λ
νT ν, subject to: ‖XT ν‖∞ ≤ 1,

then the optimal solution of R-transformed optimiza-
tion

max
ν
〈URUTx1 + x2, ν〉 −

1

2λ
νT ν,

subject to: ‖(URUTX1 +X2)T ν‖∞ ≤ 1,

is merely the transformed ν under the same R:

ν(R) = ν(URUTx1 + x2, URU
TX1 +X2)

= URUT ν1(x,X) + ν2(x,X) = URUT ν1 + ν2.
(B.8)

To verify the argument, check that νT ν = ν(R)T ν(R)
and

〈URUTx1 + x2, ν(R)〉 = 〈URUTx1, URUT ν1〉+ 〈x1, ν2〉
= 〈x, ν〉

for all inner products in both objective function and
constraints, preserving the optimality.

By projecting (B.8) to subspace, we show that oper-
ator v(x,X, S) is linear vis a vis subspace rotation
URUT , i.e.,

v(R) =
PS`ν(R)

‖PS`ν(R)‖
=

URUT ν1
‖URUT ν1‖

= URUT v. (B.9)

On the other hand, we know that

v(R) = v(URUTx1+x2, URU
TX1+X2,S) ∼ v(x,X,S),

(B.10)
where A ∼ B means that the random variables A
and B follows the same distribution. When ‖x1‖ is
fixed and each columns in X1 has fixed magnitudes,
URUTx1 ∼ x1 and URUTX1 ∼ X1. Since (x1, X1)
and (x2, X2) are independent, we can also marginalize
out the distribution of x2 and X2 by considering fixed
(x2, X2). Combining (B.9) and (B.10), we conclude
that for any rotation R,

v
(`)
i (R) ∼ URUT v(`)i .

Now integrate the marginal probability of v
(`)
i over

‖x`i1‖, every column’s magnitude of X`
−i1 and al-

l (x2, X2), we showed that the overall distribution of

v
(`)
i is indeed uniformly distributed in the unit sphere

of S.

After this key step, the rest is identical to Lemma 7.5
of Soltanolkotabi & Candes (2012). The idea is to use
Lemma B.1(upper bound of area of spherical caps) to
bound pairwise inner product and Borell’s inequality
to bound the deviation from expected consine canoni-

cal angles, namely, ‖U (k)TU (`)‖F /
√
d`.

B.3. Proof of Theorem 4

The proof of this theorem is also an invocation of The-
orem 2 with specific inradii bound and incoherence
bound. The bound of inradii is exactly Lemma B.4
with β = 0.5, κ` = κ, d` = d. The bound of incoher-
ence is given by the following Lemma that is extracted
from Step 2 of Section 7.3 in Soltanolkotabi & Candes
(2012).

Lemma B.6 (Incoherence bound of random sub-
spaces). In random subspaces setting, the projected
subspace incoherence is bounded from above:

Pr

{
µ(X`) ≤

√
6 logN

n
for all `

}
≥ 1− 2

N
.

Now that we have shown that projected dual directions
are randomly distributed in their respective subspace,
as the subspaces themselves are randomly generated,
all clean data points y and projected dual direction
v from different subspaces can be considered iid gen-
erated from the ambient space. The proof of Lem-
ma B.6 follows by simply applying Lemma B.1 and
union bound across all N2 events.

By plug in these expressions into Theorem 2, we
showed that it holds with high probability as long as
the conditions in Theorem 4 is true.

C. Geometric interpretations

In this section, we attempt to give some geometric
interpretation of the problem so that the results stat-
ed in this paper can be better understood and at the
same time, reveal the novelties of our analysis over
Soltanolkotabi & Candes (2012). All figures in this
section are drawn with “geom3d” (Legland, 2009) and
“GBT7.3” (Veres, 2006) in Matlab.

We start with an illustration of the projected du-
al direction in contrast to the original dual direc-
tion(Soltanolkotabi & Candes, 2012).

Dual direction v.s. Projected dual direction:

An illustration of original dual direction is given in
Figure C.1 for data point y.
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Figure C.1. The illustration of dual direction in
Soltanolkotabi & Candes (2012).

The projected dual direction can be easier understood
algebraically. By definition, it is the projected opti-
mal solution of (A.5) to the true subspace. To see it
more clearly, we plot the feasible region of ν in Fig-
ure C.2 (b), and the projection of the feasible region in
Figure C.3. As (A.5) is not an LP (it has a quadratic
term in the objective function), projected dual direc-
tion cannot be easily determined geometrically as in
Figure C.1. Nevertheless, it turns out to be sufficient
to know the feasible region and the optimality of the
solution.

Figure C.2. Illustration of (a) the convex hull of noisy data
points, (b) its polar set and (c) the intersection of polar
set and ‖ν2‖ bound. The polar set (b) defines the feasible
region of (A.5). It is clear that ν2 can take very large
value in (b) if we only consider feasibility. By considering
optimality, we know the optimal ν must be inside the region
in (c).

Figure C.3. The projection of the polar set (the green area)
in comparison to the projection of the polar set with ‖ν2‖
bound (the blue polygon). It is clear that the latter is much
smaller.

Magnitude of dual variable ν:

A critical step of our proof is to bound the magnitude
of ‖ν1‖ and ‖ν2‖. This is a simple task in the noiseless
case as Soltanolkotabi and Candes merely take the cir-
cumradius of the full feasible region as a bound. This is
sufficient because the feasible region is a cylinder per-
pendicular to the subspace and there is no harm choos-
ing only solutions within the intersection of the cylin-
der and the subspace. Indeed, in noiseless case, we can
choose arbitrary ν2 because Y T (ν1 + ν2) = Y T ν1.

In the noisy case however, the problem becomes a bit
involved. Instead of a cylinder, the feasible region is
now a spindle shaped polytope (see Figure C.2(b)) and
the choice of ν2 has an impact on the objective value.
That is why we need to consider the optimality condi-
tion and give ‖ν2‖ a bound.

In fact, noise may tilt the direction of the feasible re-
gion (especially when the noise is adversarial). As ‖ν2‖
grows, ‖ν1‖ can potentially get large too. Our bound
of ‖ν1‖ reflects precisely the case as it is linearly de-
pendent on ‖ν2‖ (see (A.11)). We remark that in the
case of random noise, the dependency on ‖ν2‖ becomes
much weaker (see the proof of Lemma B.3).

Geometrically, the bound of ν2 can be considered a
cylinder1 (`2 constrained in the S⊥ and unbounded in
S subspace) that intersect the spindle shaped feasible
region, so that we know the optimal ν may never be

1In the simple illustration, the cylinder is in fact just
the sandwich region |z| ≤ some bound.
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Figure C.4. Noiseless SSC: Theorem 2.5 of Soltanolkotabi
& Candes (2012) suggests that the projection of external
data points must fall inside the solid blue polygon, which
is the intersection of halfspaces defined by dual directions
(blue dots) that are tangent planes of the red inscribing
sphere.

at the tips of the spindle (see Figure C.2 and C.3).
Algebraically, we can consider this as an effect of the
quadratic penalty term of ν in the (A.5).

The guarantee in Theorem 1:

The geometric interpretation and comparison of the
noiseless guarantee and our noisy guarantee are given
in Figure C.4 and C.5. Geometrically, noise reduces
the successful region (the solid blue polygon) in two
ways. One is subtractive, in a sense that the inradius
is smaller (see the bound of ‖ν1‖); the other is multi-
plicative, as the entire successful region shrinks with a
factor related to noise level (something like 1− f(δ)).
Readers may refer to (A.16) for an algebraic point of
view.

The subtractive effect can also be interpreted in the
robust optimization point of view, where the projec-
tion of every points inside the uncertainty set (the red
balls in Figure C.5) must fall into the successful region
(the dashed red polygon).

Either way, it is clear that the error Lasso-SSC can
provably tolerate is proportional to the geometric gap
r − µ given in the noiseless case.

Figure C.5. Noisy Lasso-SSC: The guarantee of Theorem 1
means that the whole red sphere of each external data
points must fall inside the dashed red polygon, which is
smaller than the blue polygon by a factor related to the
noise level.

D. Numerical algorithm to solve
Matrix-Lasso-SSC

In this section we outline the steps of solving the ma-
trix version of Lasso-SSC below ((3.1) in the paper)

min
C
‖C‖1 +

λ

2
‖X −XC‖2F

s.t. diag(C) = 0,
(D.1)

While this convex optimization can be solved by some
off-the-shelf general purpose solver such as CVX, such
approach is usually slow and non-scalable. An ADMM
(Boyd et al., 2011) version of the problem is described
here for fast computation. It solves an equivalent op-
timization program

min
C
‖C‖1 +

λ

2
‖X −XJ‖2F

s.t. J = C − diag(C).
(D.2)

We add to the Lagrangian with an additional quadrat-
ic penalty term for the equality constraint and get the
augmented Lagrangian

L =‖C‖1 +
λ

2
‖X −XJ‖2F +

µ

2
‖J − C + diag(C)‖2F

+ tr(ΛT (J − C + diag(C))),

where Λ is the dual variable and µ is a parameter. Op-
timization is done by alternatingly optimizing over J ,
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Algorithm 1 Matrix-Lasso-SSC

Input: Data points as columns in X ∈ Rn×N ,
tradeoff parameter λ, numerical parameters µ0 and
ρ.
Initialize C = 0, J = 0, Λ = 0, k = 0.
while not converged do

1. Update J by

J = (λXTX + µkI)−1(λXTX + µkC − Λ).

2. Update C by

C
′

= SoftThresh 1
µk

(J + Λ/µk) ,

C = C
′
− diag(C

′
).

3. Update Λ by

Λ = Λ + µk(J − C)

4. Update parameter µk+1 = ρµk.
5. Iterate k = k + 1;

end while
Output: Affinity matrix W = |C|+ |C|T

C and Λ until convergence. The update steps are de-
rived by solving ∂L/∂J = 0 and ∂L/∂C = 0, it’s non-
differentiable for C at origin so we use the now stan-
dard soft-thresholding operator(Donoho, 1995). For
both variables, the solution is in closed-form. For the
update of Λ, it is simply gradient descent. For details
of the ADMM algorithm and its guarantee, please refer
to Boyd et al. (2011). To accelerate the convergence,
it is possible to introduce a parameter ρ and increase
µ by µ = ρµ at every iteration. The full algorithm is
summarized in Algorithm 1.

Note that for the special case when ρ = 1, the inverse
of (λY TY + µI) can be pre-computed, such that the
iteration is linear time. Empirically, we found it good
to set µ = λ and it takes roughly 50-100 iterations
to converge to a sufficiently good points. We remark
that the matrix version of the algorithm is much faster
than column-by-column ADMM-Lasso especially for
the cases when N > n. See the experiments.

We would like to point out that Elhamifar & Vidal
(2012) had formulated a more general version of SSC
to account for not only noisy but also sparse corrup-
tions in the Appendix of their arxiv paper while we
were preparing for submission. The ADMM algorithm
for Matrix-Lasso-SSC described here can be considered
as a special case of the Algorithm 2 in their paper.

Figure D.1. Run time comparison with increasing number
of data. Simulated with n = 100, d = 4, L = 3, σ = 0.2, κ
increases from 2 to 40 such that the number of data goes
from 24- 480. It appears that the matrix version scales
better with increasing number of data compared to colum-
nwise LASSO.

Figure D.2. Objective value comparison with increasing
number of data. Simulated with n = 100, d = 4, L = 3, σ =
0.2, κ increases from 2 to 40 such that the number of data
goes from 24- 480. The objective value obtained at stop
points of two algorithms are nearly the same.

.
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Figure D.3. Run time comparison with increasing number
of data. Simulated with κ = 5, d = 4, L = 3, σ = 0.2,
ambient dimension n increases from 50 to 1000. Note that
the dependence on dimension is weak at the scale due to
the fast vectorized computation. Nevertheless, it is clear
that the matrix version of SSC runs faster.

Figure D.4. Objective value comparison with increasing
number of data. Simulated with κ = 5, d = 4, L = 3, σ =
0.2, ambient dimension n increases from 50 to 1000. The
objective value obtained at stop points of two algorithms
are nearly the same.
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