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Abstract

Preventing feature co-adaptation by encour-
aging independent contributions from differ-
ent features often improves classification and
regression performance. Dropout training
(Hinton et al., 2012) does this by randomly
dropping out (zeroing) hidden units and in-
put features during training of neural net-
works. However, repeatedly sampling a ran-
dom subset of input features makes training
much slower. Based on an examination of the
implied objective function of dropout train-
ing, we show how to do fast dropout training
by sampling from or integrating a Gaussian
approximation, instead of doing Monte Carlo
optimization of this objective. This approx-
imation, justified by the central limit theo-
rem and empirical evidence, gives an order of
magnitude speedup and more stability. We
show how to do fast dropout training for clas-
sification, regression, and multilayer neural
networks. Beyond dropout, our technique is
extended to integrate out other types of noise
and small image transformations.

1. Introduction

Recent work (Hinton et al., 2012) has shown that pre-
venting feature co-adaptation by dropout training is a
promising method for regularization. Applied to neu-
ral network training, the idea is to dropout (zero) ran-
domly sampled hidden units and input features dur-
ing each iteration of optimization. Dropout played
an important role in the systems that won recent
learning competitions such as ImageNet classification
(Krizhevsky et al., 2012) and the Merck molecular ac-
tivity challenge at www.kaggle.com, and improves per-
formance on various tasks. Dropout can be considered
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another approach to regularization in addition to the
widely used parameter shrinkage methods and model
averaging. This process lowers the trust in a feature
that is only helpful when other specific features are
present, since any particular feature may be dropped
out and cannot be depended on. Alternatively, the
procedure can be seen as averaging over many neural
networks with shared weights.

Other observations of harmful co-adaptation and ways
to address them exist in the literature. Naive Bayes,
by completely ignoring co-adaptation, performs better
than discriminative methods when there is little data
(Ng & Jordan, 2002), and continues to perform bet-
ter on certain relatively large datasets (Wang & Man-
ning, 2012). In (Sutton et al., 2006), it is observed
that training involves trade-offs among weights, where
the presence of highly indicative features can cause
other useful but weaker features to undertrain. They
propose feature bagging: training different models on
subsets of features that are later combined, an idea
further pursued under the name logarithmic opinion
pools by (Smith et al., 2005). Improved performance
on Named Entity Recognition and Part-of-Speech Tag-
ging was demonstrated.

While the effectiveness of these methods in preventing
feature co-adaptation has been demonstrated, actually
sampling, or training multiple models, make training
slower. Moreover, with a dropout rate of p, the pro-
portion of data still not seen after n passes is pn (e.g.,
5 passes of the data are required to see 95% of it at
p = 0.5). If the data is not highly redundant, and if
we make the relevant data only partially observable
at random, then the task becomes even harder, and
training efficiency may reduce further.

In this paper, we look at how to achieve the benefit of
dropout training without actually sampling, thereby
using all the data efficiently. The approach uses a
Gaussian approximation that is justified by the cen-
tral limit theorem and empirical evidence. We show
the validity of this approximation and how it can pro-
vide an order of magnitude speed-up at training time,
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while also giving more stability. Fast dropout fits into
the general framework of integrating out noise added
to the training data (Matsuoka, 1992; Bishop, 1995).
See (van der Maaten et al., 2013) for an alternative
approach to integrating out noise and a survey of re-
lated work from that angle. Their approach is exact
for loss functions decomposable by the moment gen-
erating function of the independent noise such as the
exponential loss and squared error loss. Our approach
does not require independence: it can integrate out
small transformations that an image classifier should
be invariant to. We begin with logistic regression for
simplicity, then extend the idea to other loss functions,
other noise, and neural networks. Code is provided at
the author’s website.

2. Fast approximations to dropout

2.1. The implied objective function

We illustrate the idea with logistic regression (LR)
given training vector x, and label y ∈ {0, 1}. To train
LR with dropout on data with dimension m, first sam-
ple zi ∼ Bernoulli(pi) for i = 1...m. Here pi is the
probability of not dropping out input xi. After sam-
pling z = {zi}i=1...m we can compute the stochastic
gradient descent (sgd) update as follows:

∆w = (y − σ(wTDzx))Dzx

where Dz = diag(z) ∈ Rm×m, and σ(x) = 1/(1 + e−x)
is the logistic function.

This update rule, applied over the training data for
multiple passes, can be seen as a Monte Carlo approx-
imation to the following gradient:

∆w̄ = Ez;zi∼Bernoulli(pi)[(y − σ(wTDzx))Dzx] (1)

The objective function with the above gradient is the
expected conditional log-likelihood of the label given
the data with dropped out dimensions indicated by z,
for y ∼ Bernoulli(σ(wTDzx))). This is the implied
objective function for dropout training:

L(w) = Ez[log(p(y|Dzx;w)] (2)

= Ez[y log(σ(wTDzx)) + (1− y) log(1− σ(wTDzx))]

Since we are just taking an expectation, we still have
a convex optimization problem provided that the neg-
ative log-likelihood is convex.

Evaluating the expectation in (1) naively by summing
over all possible z has complexity O(2mm). Rather
than directly computing the expectation with respect
to z, we propose a variable transformation that allows

us to approximately compute the expectation with re-
spect to a simple random variable Y ∈ R, instead of
z ∈ {0, 1}m. In the next subsection, we describe an
efficient O(m) approximation that is accurate for ma-
chine learning applications where wixi usually come
from a unimodal or bounded distribution.

2.2. The Gaussian approximation
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Figure 1. Illustration of the fast dropout idea: The num-
bers at the bottom are the dropout indicator variables
z1...z5. As z is repeatedly sampled, the resulting inputs
to the top unit are close to being normally distributed.

We make the observation that evaluating the objective
function L(w) involves taking the expectation with re-
spect to the variable Y (z) = wTDzx =

∑m
i wixizi,

a weighted sum of Bernoulli random variables. For
most machine learning problems, {wi} typically forms
a unimodal distribution centered at 0, {xi} is either
unimodal or in a fixed interval. In this case, Y can be
well approximated by a normal distribution even for
relatively low dimensional data with m = 10. More
technically, the Lyapunov condition is generally sat-
isfied for a weighted sum of Bernoulli random vari-
ables of the form Y that are weighted by real data
(Lehmann, 1998). Then, Lyapunov’s central limit the-
orem states that Y (z) tends to a normal distribution
as m → ∞ (see figure 1). We empirically verify that
the approximation is good for typical datasets of mod-
erate dimensions, except when a couple of dimensions
dominate all others (see figure 3). Finally, let S be the

approximating Gaussian (Y
d→ S)

S = Ez[Y (z)] +
√

Var[Y (z)]ε = µS + σSε (3)

where ε ∼ N (0, 1), Ez[Y (z)] =
∑m
i=1 piwixi, and

Var [Y (z)] =
∑m
i=1 pi(1− pi)(wixi)2.

In the following subsections, based on the Gaussian as-
sumption above, we present several approximations at
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different tradeoff points between speed and accuracy.
In the end, we present experimental results showing
that there is little to no performance loss when using
the faster, less accurate approximations.

2.3. Gradient computation by sampling from
the Gaussian

Given good convergence, we note that drawing samples
of the approximating Gaussian S of Y (z), a constant
time operation, is much cheaper than drawing sam-
ples of Y (z) directly, which takes O(m). This effect
is very significant for high dimensional datasets. So
without doing much, we can already approximate the
objective function (2) m times faster by sampling from
S instead of Y (z). Empirically, this approximation is
within the variance of the direct MC approximation of
(2) by taking 200 samples of z.

Approximating the gradient introduces a complication
when using samples from the Gaussian. The gradient

(1) involves not only Y (z)
d−→ S, but also Dzx directly:

∇L(w) = Ez[(y − σ(Y (z)))Dzx] (4)

Let f(Y (z)) = y − σ(Y (z)) and let g(z) = Dzx.
Naively approximating Ez[f(Y (z))g(z)] by either
ES [f(S)]Ez[g(z)], or worse, by f(Es[S])Ez[g(z)] works
poorly in terms of both approximation error and final
performance. Note that g(z) is a linear function and
therefore Ez[g(z)] = g(Ez[z]) = diag(p)x. A good way
to approximate (4) is by analytically taking the ex-
pectation with respect to zi and then using a linear
approximation to the conditional expectation. More
precisely, consider dimension i of the gradient:

∂L(w)

∂wi
= Ez[f(Y (z))xizi]

=
∑

zi∈{0,1}

p(zi)zixiEz−i|zi [f(Y (z))]

= p(zi = 1)xiEz−i|zi=1[f(Y (z))] (5)

≈ pixi

(
ES∼N (µS ,σ2

S)[f(S)]

+ ∆µi
∂ES∼N (µ,σ2

S)[f(S)]

∂µ

∣∣∣∣
µ=µS

+ ∆σ2
i

∂ES∼N (µS ,σ2)[f(S)]

∂σ2

∣∣∣∣
σ2=σ2

S

)
= pixi(α(µS , σ

2
S) + ∆µiβ(µS , σ

2
S) + ∆σ2

i γ(µS , σ
2
S))

where z−i is the collection of all other zs except zi,
µS , σS is defined in (3), ∆µi = (1 − pi)xiwi, ∆σ2

i =
−pi(1−pi)x2

iw
2
i are the changes in µS , σ2

S due to con-
ditioning on zi. Note that the partial derivatives as

well as ES∼N (µS ,σ2
S)[f(S)] only need to be computed

once per training case, since they are independent of i.
α, β, γ can be computed by drawing K samples from
S, taking time O(K) (whereas K samples of Y (z) take
time O(mK)). Concretely,

α(µ, σ2) = y − ES∼N (0,1)

[
1

1 + e−µ−σSS

]
β(µ, σ2) = ∂α(µ,σ2)

∂µ , and γ(µ, σ2) = ∂α(µ,σ2)
∂σ2 can be

computed by differentiating inside the expectation.

One can combine (5) and what we do in (7) below to
obtain a more accurate yet relatively cheap approxi-
mation to the derivative. However, in practice, using
only β approximates the derivative to within the vari-
ance of successive MC computations of the objective
L (see figure 4). Empirically, this is 2–30 times faster
compared to MC dropout (see figure 5 and table 1).

At a slightly higher loss in accuracy, we can get rid
of z completely by re-parameterizing the problem in
µs and σs and taking derivatives with respect to them
instead of approximating the derivative directly. So
the objective function (2) becomes

L(w) ≈ ES∼N (µS ,σS)[y log(σ(S))+(1−y) log(1−σ(S))]
(6)

2.4. A closed-form approximation

In the binary classification case, we can avoid sam-
pling by tabulating α, β, γ, and their partial deriva-
tives (they are just functions of 2 arguments). Inter-
estingly, an accurate closed-from approximation is also
possible by using the Gaussian cumulative distribution
function Φ(x) = 1√

2π

∫ x
−∞ e−t

2/2dt to approximate the

logistic function. It can be shown by parameter differ-
entiation with respect to µ and then integrating with
respect to µ that∫ ∞

−∞
Φ(λx)N (x|µ, s)dx = Φ

(
µ√

λ−2 + s2

)
Substituting in σ(x) ≈ Φ(

√
π/8x), we get∫ ∞

−∞
σ(x)N (x|µ, s2)dx ≈ σ

(
µ√

1 + πs2/8

)
(7)

This is an approximation that is used for Bayesian pre-
diction when the posterior is approximated by a Gaus-
sian (MacKay, 1992). As we now have a closed-form
approximation of α, one can also obtain expressions
for β and γ by differentiating.

Furthermore, by substituting x = µ+st, differentiating
with respect to µ, and (7), we can even approximate
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the objective function (6) in a closed-form:

EX∼N (µ,s2)[log(σ(X))] =

∫ ∞
−∞

log(σ(x))N (x|µ, s2)dx

≈
√

1 + πs2/8 log σ
( µ√

1 + πs2/8

)
(8)

The actual objective as defined in (2) can be obtained
from the above by observing that 1 − σ(x) = σ(−x).
The gradient and Hessian with respect to w can be
found by analytically differentiating.

3. Generalizations

3.1. Least squares regression

In contrast to all the approximations so far, dropout
training of regression with squared error loss can be
computed exactly. Let y be the true label and Ŷ =∑
i wixizi be the predicted label with µ = EŶ =

p
∑m
i=1 wixi and s2 = Var Ŷ = p(1− p)

∑m
i=1 w

2
i x

2
i

By the bias-variance decomposition, the expected
squared error loss is

EŶ∼N (µ,s2)[(Ŷ − y)2] =

∫ ∞
−∞

(ŷ − y)2N (ŷ|µ, s2)dŷ

= (µ− y)2 + s2 (9)

Since (9) is completely determined by the mean and
variance of Ŷ , it does not matter which distribution
Ŷ comes from as long as µ and s2 are matched. As a
result, (9) is also the exact loss function of the original
dropout objective if we summed over zi instead. So
over the whole dataset of size n, dropout regression
has the following equivalent objective:

L(w) =
1

n

n∑
j=0

(ŷ(w, x(j))− y)2 + λ

m∑
i=1

ciw
2
i

This is a form of L2 regularization depending on ci =

1/n
∑n
j=1 x

(j)2
i so that weights of larger features are

regularized more strongly.

Alternatively, let X ∈ Rn×m be the design matrix,
then the normal equations for dropout training and
ridge regression are, respectively,

w = (XTX + λ diag(XTX))−1XT y

w = (XTX + λI)−1XT y (10)

where diag(A) represents the diagonal matrix with the
same diagonal as A. The diagonal of XTX is stronger
by a multiplicative factor 1 + λ for dropout instead
of the additive λI for L2. The equivalent value for λ
determined by dropout is (1− p)/p.

3.2. Hinge loss and the Maxout unit

Our apporach can be applied to the classical hinge loss
and the recently proposed maxout network (Goodfel-
low et al., 2013). The structured SVM loss is

L(w) = max
ŷ∈Y
{`(y, ŷ) + (wTŷ x)− (wTy x)}.

where Y is the set of possible predictions and `(y, y′)
is the loss incurred by predicting ŷ when the true label
is y. The maxout unit computes

h(x) = max
j
wTj x

Under the fast dropout approach, both of these reduce
to the problem of computing the maximum of Gaus-
sians maxiXi for Xi ∼ N (µ(x,wi), σ

2(x,wi)) not nec-
essarily indepedent. Several approaches to this prob-
lem is presented in (Ross, 2010).

3.3. Softmax and general loss

Unfortunately, the best way to compute the cross-
entropy loss for softmax seems to be sampling from
the input Gaussian directly with S ∈ R|Y| where Y is
the set of possible predictions.

L = ES∼N (µ,Σ)[

|Y|∑
i=1

ti log(softmax(S)i)]

= ES′∼N (0,I)[

|Y|∑
i=1

ti log(softmax(µ+ US′)i)]

where softmax(s)i = esi/
∑|Y|
j=1 e

sj and Σ = UUT .
The required partial derivatives can again be com-
puted by differentiating inside the expectation. This
is also the general way to do fast dropout training on
output units that may be vector-valued functions of
vectors.

3.4. Transformation invariance as noise

More image data can be generated by applying trans-
formations like small translations, rotations, shearing
etc. to the original training data. A transformation
of magnitude ε can be approximated locally by its Lie
derivative as Tα(x) = x+ εLT,x (Simard et al., 1996).
For translation, rotation, shearing, we can generate
more data by randomly sampling εi ∼ N (0, σ2

i ) and
computing X = x+

∑
i εiLi. Notice that wTX is again

normally distributed and the techniques presented in
this paper can be used to integrate out these transfor-
mations without actually generating the transformed
data. Here we do not need the central limit theorem
and the noise is not independent.
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3.5. Other noise

Like the exact approach in (van der Maaten et al.,
2013), the Gaussian approximation can be applied to
other noise models (Poisson, Gaussian, etc). We just
need to characterize the noise in terms of its mean and
variance and rely on the central limit theorem.

4. Fast dropout for neural networks

Dropout training, as originally proposed, was intended
for neural networks where hidden units are dropped
out, instead of the data. Fast dropout is directly ap-
plicable to dropping out the final hidden layer of neu-
ral networks. In this section, we approximately extend
our technique to deep neural networks and show how
they apply to several popular types of hidden units.
For the last layer of a neural network, any output unit
outlined in section 3 can be used.

4.1. The hidden layers

Under dropout training, each hidden unit takes a ran-
dom variable as input, and produces a random vari-
able as output. When the number of hidden units is
more than 10 or so, we may again approximate their
inputs as Gaussians and characterize their outputs by
the output means and variances. A complication is
that the inputs to hidden units have a covariance as
shown in figure 2.

Consider any hidden unit in dropout training. We
may approximate its input as a Gaussian variable X ∼
N (x|µ, s2), and let its output mean and variance be ν
and τ2. E.g., for the commonly used sigmoid unit

ν =

∫ ∞
−∞

σ(x)N (x|µ, s2)dx ≈ σ

(
µ√

1 + πs2/8

)
This integral can be evaluated exactly for the rectified
linear unit f(x) = max(0, x). Let r = µ/s, then

ν =

∫ ∞
−∞

f(x)N (x|µ, s2)dx = Φ(r)µ+ sN (r|0, 1)

The rectified linear unit is a special case of the maxout
unit, for which techniques in (Ross, 2010) can be used
to compute its mean and variance.

With dropout training, each hidden unit also has an
output variance. Sigmoid squared can be approxi-
mated by a translatedscaled version of the sigmoid:

τ2 = Var
X∼N (µ,s2)

[σ(X)] = E[σ(X)2]− E[σ(X)]2

≈ E[σ(a(X − b))]− E[σ(X)]2

Figure 2. MC dropout covariance matrices of the inputs
of 50 random hidden units: left: at random initialization;
right: trained to convergence. The covariance is not com-
pletely diagonal once trained to convergence.

−20 −15 −10 −5−0.1 0 0.1 0.2

Figure 3. Empirical input distribution of the input of a
hidden unit : left: random initialization; right: trained to
convergence. We lose almost nothing here.

a,b can be found by matching the values and deriva-
tives (a = 4− 2

√
2 and b = − log(

√
2− 1)).

4.2. Training with backpropagation

The resulting neural network can be trained by back-
propagation with two sets of partial derivatives. In
normal backpropagation, one only needs to keep ∂L

∂µi

for each hidden unit i with input µi. For fast dropout
training, we need ∂L

∂s2i
as well for input variance s2

i .

Where µi = p
∑
j wijν

′
j and s2

i =
∑
j p(1− p)ν′2j w2

ij +

pτ ′2j w
2
ij and ν′j and τ ′j are the output mean and vari-

ance of the previous layer. In practice, the method
still works well if we ignore the output variance τ , so
the input variance to the next layer is generated by
dropout alone.

5. Relation to Bayesian model selection

Once we make the Gaussian approximation, there is an
alternative interpretation of where the variance comes
from. In the dropout framework, the variance comes
from the dropout variable z. Under the alternative
interpretation where w is a random variable, we can
view dropout training as maximizing a lower bound
on the Bayesian marginal likelihood among a class of
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models Mµ indexed by µ ∈ Rm. Concretely, let µi =
pwi, then the dropout objective

L(w) = Ez;zi∼Bernoulli(pi)[log p(y|wTDzx)]

≈ EY∼N (E[wTDzx],Var[wTDzx])[log p(y|Y )]

= Ev:vi∼N (µi,αµ2
i )[log p(y|vTx)]

≤ logEv:vi∼N (µi,αµ2
i )[p(y|vTx)]

= log(Mµ)

where Mµ =
∫
p(D|v)p(v|µ)dv is the Bayesian ev-

idence. p(vi|µi) = N (vi|µi, αµ2
i ) and p(y|vTx) =

σ(vTx)y(1 − σ(vTx))1−y is the logistic model. For
dropout training, µ = w/p and α = (1− p)/p.

Here the variance of v is tied to its magnitude, so a
larger weight is only beneficial when it is robust to
noise. While α can be determined by the dropout pro-
cess, we are also free to choose α and we find empir-
ically that using a slightly larger α than that deter-
mined by dropout often performs slightly better.

6. Experiments

6.1. Evaluating the assumptions and speed

For logistic regression (LR), figure 4 shows that the
quality of the gradient approximation using Gaussian
samples is comparable to the difference between dif-
ferent MC dropout runs with 200 samples. Figure 5
shows that, under identical settings, the Gaussian ap-
proximation is much faster than MC dropout, and has
a very similar validation error profile. Both Gaussian
dropout training and real dropout training reduce val-
idation error rate by about 30% over plain LR when
trained to convergence, without ever overfitting.

6.2. Experiments on document classification

We show the performance of fast dropout LR on sev-
eral sentiment and topic document classification tasks,
both accuracy and time taken, in the top half of table
1. Sampling from the Gaussian is generally around 10
times faster than MC dropout and performs compara-
bly to NBSVM in (Wang & Manning, 2012), which is
a method specifically engineered for document classi-
fication. Further speedup is achieved by directly opti-
mizing the objective in (8) and that is only 30% slower
than plain logistic regression. While each iteration of
fast dropout is still slower than LR, fast dropout some-
times reaches a better validation performance in less
time as seen in figure 5. Note that for the MPQA
dataset where the average number of non-zero dimen-
sions is m ≈ 4, the Gaussian assumption is unjustifi-
able, but the derived method works empirically any-
ways. We compare to other papers in the bottom half
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Figure 4. Scatterplot of various approximations (y-axis) vs.
direct MC dropout for LR: Each point is a random dimen-
sion of the gradient, with its x-value computed from MC
dropout with 200 samples of z, and its y-value computed
by the method in the legend. MC dropout and Gaussian
approximation used 200 samples. Naive is the approxima-
tion defined after (4), by assuming that f(z) and g(z) are
independent. The green line is the reference y = x.

of the table 1, using either a test/train split or N -
fold cross validation, depending on what is the most
standard for the dataset. With the right regularization
parameters and bigram features, our plain LR baseline
is itself quite strong relative to previous work.

6.3. Experiments on MNIST

Experimental results on MNIST using 2-hidden-layer
neural networks are shown in table 2 and the valida-
tion error curves with a slight smaller net are shown
in figure 6. Here is a case where the data is fairly re-
dundant so that dropping out input features does not
make the problem much harder and MC dropout on
minibatches converges fairly quickly. We replicate the
original experiment using the exact settings described
in (Hinton et al., 2012) with a 20% dropout of the
inputs, an exponentially decaying learning rate, a mo-
mentum schedule, and minibatch stochastic gradient
descent. Under the learning schedule in the original
experiment, no improvement resulted from doing fast
dropout in the minibatch setting. In fact, each mini-
batch of fast dropout takes 1.5 times as much time as
real dropout with 1 sample. However, the fast dropout
objective is suitable for standard optimization technol-
ogy, and we were able to train faster using L-BFGS
where it converged in less than 100 epochs as opposed
to over 500 epochs (see figure 6). 160 errors is the
previous best result without pre-training or weight-
sharing or enhancement of the training data.
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Figure 5. Validation errors vs. time spent in training (left), and number of iterations (right): trained using batch gradient
descent on the 20-newsgroup subtask alt.atheism vs. religion.misc. 100 samples are used for both MC and Gaussian
dropout. For MC dropout, zi is sampled only for non-zero xi.

Methods\ Datasets MR-2k IMDB RTs Subj AthR CR MPQA Average
Real (MC) dropout 89.8 91.2 79.2 93.3 86.7 82.0 86.0 86.88
training time 6400 6800 2300 2000 130 580 420 2700
Gaussian dropout 89.7 91.2 79.0 93.4 87.4 82.1 86.1 86.99
training time 240 1070 360 320 6 90 180 320
Fast (closed-form) dropout 89.5 91.1 79.1 93.6 86.5 81.9 86.3 86.87
training time 120 420 130 130 3 28 35 120
plain LR 88.2 89.5 77.2 91.3 83.6 80.4 84.6 84.97
training time 140 310 81 68 3 17 22 92

Previous results
TreeCRF(Nakagawa et al., 2010) - - 77.3 - - 81.4 86.1 -
Vect. Sent.(Maas et al., 2011) 88.9 88.9 - 88.1 - - - -
RNN(Socher et al., 2011) - - 77.7 - - - 86.4 -
NBSVM(Wang & Manning, 2012) 89.4 91.2 79.4 93.2 87.9 81.8 86.3 87.03
|{i : xi > 0}| 788 232 22 25 346 21 4

Table 1. Results on document classification: 100 samples are used for both MC dropout and the Gaussian dropout. The
last row shows the average number of non-sparse dimensions in the dataset. See Wang & Manning (2012) for more details
on the datasets and experimental procedures.

Method 2NN FD +Var +Tr Real
Errors 170 124 110 85 105-120

Table 2. Test errors of neural networks on MNIST: 2NN:
2-hidden-layer neural net with 784-1200-1200-10. FD: fast
dropout. +Var: more artificial variance by increasing α in
FD. +Tr: integrating out translation, rotation and scaling
described in 3.4. MC: real dropout.

6.4. The test time utility of fast dropout

For the case of real dropout, at test time, Hinton
et al. (2012) propose using all features, with weights
scaled by p. This weight scaling heuristic does not

exactly match the training objective being optimized,
but greatly speeds run time performance. If we are not
concerned about run time, we can still apply dropout
at test time.

In contrast, the test time procedure for fast dropout is
exactly the same as the training time procedure. One
shortcoming of fast dropout is that the implementation
of training does become more complicated, mainly in
the backpropagation stage, while the forward compu-
tation of the network function is still straightforward.

One compromise here is to use fast dropout at test
time, even if we want to train with real dropout for
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Figure 6. Validation errors vs. epochs: we used the exact
SGD training schedule described in (Hinton et al., 2012)
and a 784-800-800-10 2-hiden-layer neural network. This
training schedule is presumably tuned for real dropout.
fast dropout performs similarly to real dropout but with
less variance. fast dropout batch: use batch L-BFGS
and fast dropout, with validation error evaluated every 10
epochs.

simplicity. Table 3 compares several test time meth-
ods on neural networks trained for MNIST and CIFAR
using real dropout. Multiple real dropout samples and
fast dropout provide a small but noticeable improve-
ment over weight scaling.

6.5. Other experiments

The normal equations (10) show the contrast be-
tween additive and multiplicative L2 regularization.
For linear regression, L2 regularization outperformed
dropout on 10 datasets from UCI that we tried.1 Re-
sults on 5 of them are shown in table 4.

Classification results using neural networks on small
UCI datasets are shown in table 5 where fast dropout
does better than plain neural networks in most cases.

7. Conclusions

We presented a way of getting the benefits of dropout
training without actually sampling, thereby speeding
up the process by an order of magnitude. For high
dimensional datasets (over a few hundred), each it-
eration of fast dropout is less than 2 times slower
than normal training. We provided a deterministic
and easy-to-compute objective function approximately
equivalent to that of real dropout training. One can
optimize this objective using standard optimization

1 http://archive.ics.uci.edu/ml/

Full Scale D1 D10 D100 FD
MNIST number of errors

Test 129 108 199 118 105 103
Train 4 1 36 1 1 1
Time(s) 10 10 13 110 1.1K 16

CIFAR-10 percent error
Test 53 47 51 45 43 44
Train 42 35 42 33 32 33
Time(s) 17 23 25 230 2.2K 29

Table 3. Different test time methods on networks trained
with real dropout: A 784-800-800-10 neural network is
trained with real dropout on MNIST (3072-1000-1000-10
for CIFAR-10) and tested using: Full: use all weights with-
out scaling; Scale: w ← pw; D(n): take n real dropout
samples; FD: fast dropout.

Dataset L2 train L2 test FDtrain FDtest

Autos 0.25 0.51 0.41 0.57
Cardio 109.24 117.87 140.93 188.91
House 23.57 21.02 65.44 56.26
Liver 9.01 9.94 9.69 9.88
Webgrph 0.17 0.20 0.19 0.21

Table 4. Linear regression using eq. (10). Dropout per-
forms worse than L2 regularization (recall that fast dropout
is exact). While a digit is still easily recognizable when half
of its dimensions are dropped out, dropout noise is exces-
sive for the low dimensional regressors.

Classification accuracy
Dataset L2 train L2 test FDtrain FDtest

SmallM 100 87 99 90
USPS 100 95 98 96
Isolet 100 91 95 93
Hepatitis 100 94 99 95
Soybean 100 91 94 89

Table 5. Classification results on various datasets: we used
a M-200-100-K neural network, and cross validated the pa-
rameters.

methods, whereas standard methods are of limited use
in real dropout because we only have a noisy measure-
ment of the gradient. Furthermore, since fast dropout
is not losing any information in individual training
cases from sampling, it is capable of doing more work
in each iteration, often reaching the same validation set
performance in a shorter time and in less iterations.
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