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Abstract

Max-product (max-sum) message passing
algorithms are widely used for MAP inference
in MRFs. It has many variants sharing
a common flavor of passing “messages”
over some graph-object. Recent advances
revealed that its convergent versions (such
as MPLP, MSD, TRW-S) can be viewed as
performing block coordinate descent (BCD)
in a dual objective. That is, each BCD step
achieves dual-optimal w.r.t. a block of dual
variables (messages), thereby decreases the
dual objective monotonically. However, most
existing algorithms are limited to updating
blocks selected in rather restricted ways. In
this paper, we show a “unified” message
passing algorithm that: (a) subsumes MPLP,
MSD, and TRW-S as special cases when
applied to their respective choices of dual
objective and blocks, and (b) is able to
perform BCD under much more flexible
choices of blocks (including very large blocks)
as well as the dual objective itself (that arise
from an arbitrary dual decomposition).

1. Introduction

MAP-MRF (finding the most probable assignments
for MRFs) is one of the most important components
in learning and applying structured probabilistic
models. In general this problem is NP-hard (Shimony,
1994). Many different methods have been proposed to
approximate or solve it under specific circumstances.
A large family of these methods is based on solving
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a dual problem of an LP relaxation. Different duals
of different LP relaxations (with different tightness)
have been used. These methods are usually formulated
as max-product (max-sum) message passing over the
MRF or its cluster (region) graph.

Recent advances revealed that convergent versions of
these algorithms can often be interpreted as block
coordinate descent (BCD) in the dual (Meltzer et al.,
2009; Sontag et al., 2011). However, most of them
operate on local (small) blocks, such as MPLP
(Globerson & Jaakkola, 2007) and its generalizations
(Sontag et al., 2008), max-sum diffusion (MSD)
(Werner, 2007), and TRW-S (Kolmogorov, 2006).
Given a block of dual variables (messages), these
algorithms work by enforcing some consistency con-
straint over the block, thereby achieve dual-optimal
w.r.t. these dual variables. Meltzer et al. (2009)
noted that it was difficult to generalize them to
larger blocks while enforcing the same consistency
constraints. Sontag et al. (2009) proposed a method
(tree-BCD) that updates much larger blocks for a
specific choice of dual. But it was not clear how to
apply it to duals of tighter LP relaxations (e.g., a dual
decomposition with cycle subproblems).

We observe that the difficulties in generalizing these
methods arise from the fact that they all impose too
strong consistency constraints, which are sufficient but
not necessary for the dual objective to be optimal
on the blocks being updated. By loosing these
constraints, we are able to perform BCD on much
larger blocks.

Indeed, we show that dual-optimality on blocks (of
messages) can be established on a much broader
basis—with quite general choices of the dual objective
itself as well as the blocks to be updated. Specifically,
we illustrate this by deriving a “unified” message
passing algorithm in the most general setup—an
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arbitrary dual decomposition. The resulted algorithm
(subproblem-tree calibration, or STC) has the following
properties:

1. It is formulated as message passing on a graph-
object (subproblem multi-graph, or SMG) that
generalizes traditional cluster (region) graphs.

2. It subsumes MPLP, MSD and TRW-S as special
cases when applied to their respective choices of
dual objectives and blocks. We will precisely
characterize the choices made by these existing
methods under our framework.

3. It achieves dual-optimal on blocks that can be
chosen in an extremely flexible manner, including
very large blocks. For example, we can choose a
block that spans all subproblems in an arbitrary
dual decomposition.

In other words, our framework attempts to charac-
terize the degrees of freedom we have in designing
a message passing algorithm (for MAP inference).
Understanding these flexibilities could help us better
understand existing methods, as well as design more
powerful ones. In practice, we observe that we
often get stuck in sub-optimal dual states when
only updating blocks chosen in a restricted manner,
whereas being able to choose blocks with more
flexibility could lead to better dual (and primal) states.

2. Background

2.1. MAP inference, LP relaxation, and dual
decomposition

The MAP inference problem over X = {X1:N} and
graph structure G = {V,E} can be formulated as:

maximize
X

Θ(X) (1)

where Θ(X) =
∑
α∈A θα(Xα); A is the set of MRF

cliques. Without loss of generality we choose A =
V ∪ E for a parametrization with unary and pairwise
potentials1. We use lowercase xi ∈ V al(Xi) and
x = {x1:N} to denote assignments to the variables.
Problem (1) is NP-hard in general (Shimony, 1994).

A large family of MAP inference methods builds
on solving a linear programming (LP) relaxation
(Wainwright & Jordan, 2008; Koller & Friedman,
2009):

maximize
µ∈M

Θ · µ (2)

1A high-order potential can be converted into unary and
pairwise potentials by introducing auxiliary variables.

where µ = {µi(xi), µij(xi, xj) | ∀i, xi, (i, j), (xi, xj)};
Θ is all MRF parameters {θi, θij} concatenated in
same ordering as µ. Choosing different polytopes M
results in different LP relaxations. One choice is the
marginal polytope:

MG = {µ | ∃p(X),
∑

x∈V al(X)

p(x) = 1, p(x) ≥ 0,

p(Xi) = µi, p(Xi, Xj) = µij , ∀i, (i, j)}
(3)

where p(Xi) and p(Xi, Xj) denote marginal distribu-
tions of p(X). When M =MG the LP relaxation (2)
is equivalent to the original problem (1). Therefore it
is also NP-hard—the marginal polytope is defined by
exponentially many faces (constraints).

A widely used choice for M is the local polytope:

ML ={µ | µij ≥ 0,
∑
xj

µij(Xi, xj) = µi(Xi),∑
xi

µi(xi) = 1, ∀i ∈ V, (i, j) ∈ E}
(4)

which only has a polynomial number of constraints,
and the LP relaxation (2) with ML is tractable. In
general ML is a loose outer bound of MG. Any
solution to (2) with M = ML is a vertex of ML.
If it happens to be a vertex ofMG, we have the exact
solution to (1). This is usually not the case except for
several special families such as the problems with tree
structures or sub-modular potentials etc.

Solving (2) using a standard LP solver is very
inefficient (Yanover et al., 2006) even with a tractable
choice of M. In practice we usually solve its dual
LP. Indeed, it is more convenient to start with a dual
decomposition, which directly gives us a dual LP (of
some underlying primal LP that we do not explicitly
deal with).

Specifically, consider a decomposition of Θ(X) into
subproblems c ∈ C, parametrized by {Θc}, which
altogether give rise to a reparametrization of Θ(x):

∀x,
∑
c∈C

Θc(x|c) = Θ(x) (5)

where x|c denotes restricting the joint assignment to
the scope of subproblem c. The subproblems could be
single nodes, edges, trees, or cycles that are assumed
to be tractable.

Note that (5) has exponentially many constraints.
A succinct way to enforce them is to express the
reparametrization in terms of messages:

Θc = Θc
0 +

∑
c′: Xc∩X′

c 6=∅

δc′→c(Xc ∩X′c) (6)
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where the messages satisfy δc′→c = −δc→c′ . The
initial subproblem potentials Θc

0 are assumed to
satisfy (5). They can be constructed, for example,
by splitting the original potentials. It is easy to check
that subproblem potentials defined by (6) satisfy (5)
for any choice of the messages.

Note that the scopes of messages are defined by
Xc ∩ X′c, which is the intersections among Xc (with
a subscript): the original MRF variables covered by
subproblem c. This is to distinguish from Xc (with
a superscript), which are subproblem variables. For
example, if subproblems c and c′ both cover X1

(orginal MRF variable), we would have Xc
1 and Xc′

1 :
two different variables with independent assignments.

Since each subproblem has its own copy of variables
Xc, summing over their optimal values gives rise to
an upper bound of (1) because each subproblem is
maximized independently. This upper bound is a
function of the messages:

D({δc′→c}) =
∑
c∈C

max
Xc

Θc(Xc). (7)

It turns out that (7) is a dual problem of (2) under
some choice of M. The tightness of the underlying
M depends on our choice of the subproblems. It has
been shown (Komodakis et al., 2011) that choosing
only tree structured subproblems leads to a dual of (2)
withM =ML. Duals of tightened LP relaxations can
be constructed by introducing complex subproblems
such as cycles.

Given a decomposition, our goal is to minimize (7) by
rearranging subproblem potentials (via message pass-
ing), thereby solving the underlying LP relaxation.

2.2. Bethe cluster (region) graph

In principle the messages δc′→c in (6) can be
defined between all pairs of overlapping subproblems.
However, a rather restricted form has been dominantly
used in defining such messages: the Bethe cluster
graph. It has a bipartite structure with one layer of
“factor” nodes and one layer of small (usually unary)
nodes encoding intersections between the factors.
Specifically, consider using the set of subproblem C =
{i}∪F consisting of unary subproblems {i} and larger
subproblems (factors) F . So the dual (7) takes a
restricted form:

D({δf→i}) =
∑
i

max
Xi

θi(Xi) +
∑
f

max
Xf

Θf (Xf ) (8)

where the messages are only defined between the
two layers because of the bipartite structure. This

construction is shown in Fig. 1 (a) and (c). Note that
we used superscripts (instead of subscripts) in θi and
Xi to indicate that these are subproblem potentials
and variables to distinguish from the orginal MRF
potentials θi and variables Xi.

It has been shown (Meltzer et al., 2009; Sontag
& Jaakkola, 2009; Sontag et al., 2011) that many
existing algorithms, including (Globerson & Jaakkola,
2007; Sontag et al., 2008; 2011; Werner, 2007; Sontag
& Jaakkola, 2009; Tarlow et al., 2011; Komodakis
& Paragios, 2008; Meltzer et al., 2009), can be
interpreted as passing messages on the Bethe cluster
graph and thereby optimizing the dual objective (8).
This “restricted” design had arisen from the historical
concern of satisfying the running intersection property,
thus alleviating double-counting in loopy BP (Weiss,
2000). However, this is no longer relevant under the
modern view of message passing as a BCD algorithm.
To this end, we will introduce a more general graph-
object: subproblem multi-graph (Sec. 3.1) to serve the
role of traditional cluster graphs. This more general
setup allows us to pass messages in more flexible ways
and achieve better dual (and primal) states in many
situations (as shown in experiments).

3. The STC Framework

3.1. Subproblem multi-graph and subproblem
trees

For notation simplicity, in this paper we treat graphs
G and trees T as sets consisting of nodes and edges.
So we will use T ⊂ G to denote that T is a subgraph
of G. And we will use e ∈ T or c ∈ T to denote that
edge e or node c is in the tree.

Given a dual decomposition with subproblems C , we
build a graph-object as follows:

Definition 1 (Subproblem Multi-Graph/Tree).
Given C, the subproblem multi-graph (SMG)
G = (V, E) has one node for each c ∈ C, and one
edge between c and c′ for each tuple (c, c′, ϕ), where
ϕ ∈ V ∪E is shared by c and c′. A subproblem tree
is a tree T ⊂ G.

Note that we use (V,E) for the MRF graph and (V, E)
for SMG.

This construction is illustrated in Fig. 1 (b) where
we decompose the MRF (Fig. 1 (a)) into four
subproblems.

Note that if we include all unary subproblems into
the decomposition, we would get a SMG similar to
Fig. 1 (c) but with extra edges among the non-unary
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(a) MRF (b) SMG (c) Bethe cluster graph (d) MSD (e) MPLP and MSD++

(f) TRW-S* (g) Tree-BCD (h) Spanning tree of SMG (i) MSD# and MPLP#

Figure 1. Examples of subproblem multi-graph and subproblem trees. See text for explanation.

subproblems. So a tree in the Bethe cluster graph
(which we call a Bethe tree) is also a subproblem tree
by definition. Therefore all conclusions in this paper
on subproblem trees apply to Bethe trees.

Fig. 1 (d) to (i) are examples of subproblem trees.
They correspond to blocks updated by different
algorithms as explained later. Note that (d) (e) and
(i) are Bethe trees corresponding to the Bethe cluster
graph (c); (f) and (h) are trees in the SMG (b); (g)
is a Bethe tree of a different dual decomposition (with
all edges and nodes as subproblems).

For each SMG edge (c, c′, ϕ) ∈ E , we have messages2

δc′→c(Xϕ) = −δc→c′(Xϕ). Therefore the block (of
dual variables) associated with subproblem tree T is
given by

BT = {δc′→c(Xϕ) : (c, c′, ϕ) ∈ T }. (9)

3.2. Max-consistency and dual-optimal on
trees

Given a block BT associated with some subproblem
tree T , we want to achieve dual-optimal w.r.t. that
block:

Definition 2 (Dual-optimal on T ). The subproblem
potentials {Θc} are dual-optimal on T if we can
not further decrease the dual objective by changing
messages in BT .

A message passing algorithm achieves this by enforcing
some consistency constraint. We first identify a
constraint that is equivalent to dual-optimal on T .

2The messages defined in (6) appear to have larger
scopes. However, if the MRF is parametrized over A =
V ∪ E, we can always reparametrize the messages in (6)
using messages over unary or pairwise scopes. For high-
order MRFs we could allow ϕ to be larger scopes as well.

Definition 3 (Assignments agree on T ). Assignments
to all subproblems {xc}c∈T agree on T , denoted as
{xc} ∼ T , if for ∀(c, c′, ϕ) ∈ T we have xcϕ = xc

′

ϕ .

Definition 4 (Weak max-consistency on T ).
{Θc}c∈T satisfies weak max-consistency if∑

c∈T
max
Xc

Θc(Xc) = max
{Xc}∼T

∑
c∈T

Θc(Xc) (10)

That is, maximizing each subproblem independently
gets to the same optimal value as maximizing them
while requiring the assignments to agree on the tree.
This condition turns out to be equivalent to dual
optimal on T (Proposition 1). We will show that
our message passing algorithm (Sec. 3.3) enforces this
constraint for arbitrary T .

We now identify two other stronger constraints
(enforced by existing algorithms) that are sufficient
but not necessary for dual-optimal on T .

Let M c
ϕ be the (log)-max-marginals of c on ϕ:

M c
ϕ(xϕ) = max

Xc|ϕ=xϕ

Θc(Xc), (11)

Note that if ϕ = (i, j) ∈ E, Xc|ϕ = xϕ means Xc
i = xi

and Xc
j = xj .

The following consistency constraint requires the
subproblem to agree on their max-marginals over the
tree:

Definition 5 (Strong max-consistency3 on T ).
{Θc}c∈T satisfies strong max-consistency if M c

ϕ =

M c′

ϕ , ∀(c, c′, ϕ) ∈ T .

Another consistency constraint requires that the

3This corresponds to “max-consistency” in (Meltzer
et al., 2009).
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subproblem potentials match the max-marginals of the
tree distribution:

Definition 6 (MPLP max-consistency on T ). For
Bethe tree T with N unary clusters, {θi,Θf}i,f∈T
satisfies MPLP max-consistency if θi = 1

Nµ
T
i and

Θf = µTf −
∑
i∈f, i∈T

Nf
i

N µ
T
i where µTi and µTf are

max-marginals4 of the tree T , and Nf
i is the number of

unary clusters in the subtree rooted by i on the opposite
side of f .

Note that MPLP max-consistency is only defined for
Bethe trees. With a slight abuse of notation, we used
i ∈ f in the above definition to denote that the scope of
unary subproblem i is contained in the scope of factor
subproblem f in a Bethe cluster graph.

The relations among these consistency constraints are
given below.

Proposition 1. For any Bethe tree T ,

MPLP max-consistency =⇒ weak max-consistency

For any subproblem tree T (including Bethe trees),

strong max-consistency =⇒ weak max-consistency.
weak max-consistency ⇐⇒ dual-optimal on T .

Proof for this (as well as all other propositions
in the rest of this paper) are given in Appendix
(supplement material), where we also give an example
that satisfies weak max-consistency but not the other
two.

The two stronger constraints are enforced by existing
methods:

Proposition 2. Max-sum diffusion (MSD) (Werner,
2007) performs BCD on the Bethe dual (8). Each
BCD step enforces strong max-consistency for a Bethe
tree consisting of one f ∈ F and one i ∈ f (as in
Fig. 1 (d)).

Proposition 3. TRW-S (Kolmogorov, 2006) per-
forms BCD on the dual (7) where each subproblem
c ∈ C is a tree (of the MRF). Each BCD step enforces
strong max-consistency for a subproblem tree T with
nodes VT = {c : scope(c) ⊃ ϕ} for a given ϕ ∈ V ∪E,
and edges (c, c′, ϕ) that constitute a tree over VT 5.

Proposition 4. MPLP (Globerson & Jaakkola, 2007;
Sontag et al., 2011) performs BCD on the Bethe dual

4 Max-marginals of subproblem tree T over c̃ is defined
as µTc̃ (xc̃) = max{Xc}∼T , Xc̃=xc̃

∑
c∈T Θc(Xc).

5In TRW-S the subproblems (MRF trees) can be
connected in arbitrary ways into T . Because all edges in T
have the same scope ϕ, strong max-consistency essentially
requires the max-marginals on ϕ to be the same for all
c ∈ T .

(8). Each BCD step enforces MPLP max-consistency
for a Bethe tree consisting of one f ∈ F and all i ∈ f
(as in Fig. 1 (e)).

Proposition 5. Tree-BCD (Sontag & Jaakkola, 2009)
performs BCD on the Bethe dual (8) where all f are
pairwise factors (i, j). Each BCD step enforces MPLP
max-consistency for a Bethe tree corresponding to a
spanning tree of the MRF (as in Fig. 1 (g)).

Note that a spanning tree of the MRF (with |V | − 1
edges) is much smaller than a spanning tree of the
SMG (of a dual decomposition into all edges and
nodes). The latter contains all (possibly O(|V |2))
edges of the MRF.

3.3. The STC algorithm

Now we show how to attain weak max-consistency
for any subproblem tree (such as Fig. 1 (h) and
(i)). To express the algorithm concisely, we use

x
m−→ y to denote two updates: x ← x − m and

y ← y + m. We assume subproblem solvers for all
c that output M c

ϕ. For tree-structured subproblems
this is straightforward. For cycle subproblems we use
(Felzenszwalb & McAuley, 2011) which provides a fast
way of computing the junction-tree messages.

Our algorithm (Alg. 1) calibrates a subproblem-tree by
an upstream pass and a downstream pass; both update
subproblem potentials “in place” without storing any
message (although conceptually it can be viewed
as updating the messages in (7) as well). The

Algorithm 1 Subproblem tree calibration (STC)

1: INPUT: T ; allocation weight ac for each c ∈ T
satisfying ac ≥ 0,

∑
c∈T ac = 1.

2: / * upstream pass * /
3: for edges (c, c′, ϕ) in upstream order do

4: Θc
Mc

ϕ−−−→ Θc′ , where c is a child of c′

5: / * downstream pass * /
6: wc ←

∑
c̃∈Tc ac̃ for all c ∈ T , where Tc is the subtree

rooted by c
7: for nodes c′ in downstream order do
8: (P-STC only) precompute all M c′

ϕ used below
9: for all c (children of c′) do

10: Θc′
(wc/wc′ )·M

c′
ϕ−−−−−−−−−→ Θc

11: (S-STC only) wc′ ← wc′ − wc

downstream pass of STC can be performed for each
children of a node either sequentially or in parallel.
They differ in line 8 and 11 of Alg. 1. We call these
two alternatives S-STC and P-STC, respectively. Any
statement about STC in the following, if not specified,
applies to both P-STC and S-STC.

Overall we repeatedly choose different trees and
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perform the calibration.

Proposition 6. STC enforces weak max-consistency
for any T and any allocation weights ac satisfying ac ≥
0,

∑
c∈T ac = 1.

Note that this (together with Proposition 1) implies
monotonicity and convergence of the overall algorithm.

We now clarify the relations between STC and existing
methods.

Proposition 7. Applying P-STC to the Bethe tree
specified in Proposition 4 with allocation weights ai =
1
|f | , af = 0 is equivalent to MPLP.

Proposition 8. Applying STC to the Bethe tree
specified in Proposition 2 with allocation weights af =
0.5, ai = 0.5 is equivalent to MSD.

Proposition 9. Applying STC to the subproblem
tree specified in Proposition 3 with uniform allocation
weights ac = 1

|T | is equivalent to TRW-S.

This implies that STC actually enforces strong max-
consistency when applied to settings of MSD and
TRW-S. Indeed, we have:

Proposition 10. If all edges of T have same scope
ϕ, P-STC is equivalent to S-STC. Both achieve strong
max-consistency when applied with uniform allocation
weights ac = 1

|T |

This condition (all edges of T have the same scope) is
satisfied in MSD and TRW-S.

Given Proposition 9, we can easily generalize TRW-S
beyond tree subproblems6. We call this generalized
algorithm TRW-S*: applying STC to a subproblem
tree consists of all subproblems sharing a given MRF
node or edge, as in Fig. 1 (f). It will appear in
experiments.

3.4. Fixed-point characterization

In this part we give a fixed-point characterization
of the STC algorithm, and we show that it is in
fact equivalent to the weak tree agreement (WTA)
condition (Kolmogorov, 2006). Indeed, the fact that
TRW-S (Kolmogorov, 2006) is a special case of STC
suggests that the latter should be at least as powerful
as the former.

Definition 7 (WTA2). Subproblem potentials {Θc}
satisfy weak tree-agreement-two (WTA2) if for any
subproblem tree T , ∃{xc} ∼ T that are optimal for
each c ∈ T individually.

6However, the acceleration trick by monotonic chains is
not applicable in general.

Proposition 11 (STC Fixed-Point). If {Θc} do not
satisfy WTA2, we can always find T such that applying
STC to T decreases the dual objective. If {Θc} satisfy
WTA2, applying STC to any T does not change the
dual objective and preserves the WTA2 condition.

We re-state the WTA condition from (Kolmogorov,
2006) in a slightly generalized form (allowing c to be
arbitrary subproblems, not restricted to trees).

Definition 8 (WTA). Subproblem potentials {Θc}
satisfy weak tree-agreement (WTA) if we can find a
subset of optimal assignments for each c, denoted as
OPT (c), such that: for any small subproblem tree T
consists of two nodes c and c′ connected by (c, c′, ϕ),
we have: for ∀xc ∈ OPT (c) , ∃xc′ ∈ OPT (c′),
{xc,xc′} ∼ T .

Comparing to WTA, WTA2 appears to assert a weaker
constraint on more general T . This originates from the
fact that STC calibrates more general T and enforces
a weaker consistency constraint than that of MSD
and TRW-S. However asymptotically they are equally
powerful:

Proposition 12. WTA2 is equivalent to WTA.

3.5. Choosing allocation weights

In this part we clarify the role of allocation weights
ac, which are responsible for the message coefficients
in the downstream pass of STC. As we have seen in
Proposition 8 and 7, there are subtle (but important)
differences between MPLP and MSD in this aspect.
(This has also been noted in (Sontag et al., 2011).)

In order to understand the role of allocation weights ac,
we first show some detailed characterization of STC.

Proposition 13 (STC Allocation). After STC, for
each subproblem c we have:

max
Xc

Θc(Xc) = ac · max
{Xc̃}∼T

∑
c̃∈T

Θc̃(Xc̃) (12)

Intuitively, the downstream pass allocate “energy” to
all subproblems according to their allocation weights.
We can further show that:

Proposition 14 (Detailed Monotonicity). Let D0,
D1, D2 be the dual objective value before STC,
after upstream pass, and after downstream pass,
respectively. We have D0 ≥ D1 = D2. Moreover, the
dual objective remains constant in each single step of
the downstream pass.

That is, the downstream pass essentially moves around
in a plateau of the dual, preparing for the next
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downhill move. Therefore the allocation weights
determine where to settle on that plateau.

When T is a Bethe tree, two styles of allocation have
been used. One is the MPLP-style allocation, which
assigns zero weights to all non-unary subproblems, and
uniformly allocate among unary subproblems. This is
the case for MPLP and Tree-BCD7. The other is the
MSD-style allocation, which assigns uniform allocation
weights to all subproblems. This is the case for MSD
and its generalized version MSD++ (Sontag et al.,
2011).

Given our framework, it is straightforward to further
generalize these two styles of allocation to spanning
trees of the Bethe cluster graph (as in Fig. 1 (i)).
We call these two algorithms MPLP# and MSD#,
respectively8. They will appear in experiments.

3.6. Generate primal solutions

Given subproblem potentials, solutions to the original
MAP inference problem can be constructed in different
ways (Komodakis et al., 2011). For example, when
unary subproblems are present, we could simply
take the assignments that minimize each unary
subproblem. Or we could visit all subproblems in turn,
and for each one commit the variables in its scope to
the subproblem solution.

In order to better leverage “beliefs” of different sub-
problems as well as “smoothness” across subproblems,
we propose the following method, which works better
in practice comparing to other heuristics. (The
comparison is not shown due to space limit.) In
practice, one could construct multiple assignments
from different heuristics and choose the one with the
best objective value.

We visit the variables (in the original MRF) in some
ordering, for example, X1, X2, · · ·XN . And for Xi we
choose the assignment:

xi = argmax
∑

c:i∈scope(c)

max
Xc\Xi

Θc(Xc|Xj = xj ,∀j < i)

(13)
That is, when visiting each Xi, we choose its
assignment to maximize the sum of all max-marginals
from all subproblems covering Xi. And then we fix
Xi = xi in all subproblems (this will affect subsequent
visits to these subproblems).

7Although Tree-BCD is not a special case of STC. We
can define its choice of allocation weights according to the
distribution of “energy” in its calibrated tree.

8Specifically, MPLP# means applying STC with
MPLP-style allocation weights to randomly selected
spanning trees as in Fig. 1 (i), and similarily for MSD#.

4. Experimental Results

[Experiment Setup] We used three MAP inference
tasks in experiments: (1) The protein design
benchmark (Yanover et al., 2006). We use the 20
largest problems from that dataset, with number of
variables from 101 to 180, number of edges from
1,973 to 3,005, variable cardinality up to 154. (2)
Synthetic 20-by-20 grid with variable cardinality of
100. Potentials are dawn from N (0, 1). (3) The
“object detection” task from PIC-20119. There are
37 problem instances, each has 60 variables and 1,770
edges, variable cardinality from 11 to 21. Each task
corresponds to one row in Fig. 2.

For each tasks, we use two settings: with or without
cycle subproblems (loose or tightened LP relaxation).
The former corresponds to the left two columns in
Fig. 2, and the latter corresponds to the right two
columns. Each setting for each task is shown by a
primal(right)-dual(left) pair of figures (averaged over
all problem instances). Each primal-dual pair share
one legend.

The cycles in dual decomposition are selected in a
static manner by applying the criterion of (Sontag
et al., 2008) to the original edge potentials. We did
this (instead of dynamically adding cycles) because our
goal is to compare different dual methods and we want
them to always operate on the same dual problem.
For protein design and PIC, we selected 500 triangles
for each problem instance. For grid, we used all 381
squares of size four.

[Methods Compared] Among the methods com-
pared, MPLP (Globerson & Jaakkola, 2007), MSD++
(Sontag et al., 2011), Tree-BCD (Sontag & Jaakkola,
2009), TRW-S MonoChain (Kolmogorov, 2006) are
existing methods. TRW-S* is a straightforward
generalization of a existing method. MPLP#,
MSD#, and STC are new methods derived from our
framework. Here STC means calibrating randomly
chosen spanning trees of the SMG without unary
subproblems (as in Fig. 1 (h)). For TRW-S
MonoChain we used the code of (Szeliski et al., 2008).
Note that it is only applicable to the grid problem
with long monotonic chains. For TRW-S* we use
MRF edges (and cycles for the tightened setting) as
subproblems. All other methods have been explained
in earlier sections.

[Result Analysis] When cycle subproblems are
present, we observe that STC and TRW-S* performs
significantly better in all tasks. The crucial difference

9http://www.cs.huji.ac.il/project/PASCAL/index.
php

http://www.cs.huji.ac.il/project/PASCAL/index.php
http://www.cs.huji.ac.il/project/PASCAL/index.php
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Figure 2. Experimental results. This figure is better viewed in color.

is that: these two methods allow the subproblems
communicating through MRF edges, whereas all other
methods are restricted to passing messages over MRF
nodes (they use the Bethe cluster graph as in Fig. 1
(c)). This reveals the limitation of this bipartite
construction.

For sparse MRFs (the grid case), getting more
subproblems involved in each BCD steps turns out
to be important. As we can see from the second
plot in the first column of Fig. 2. The methods that
updates “global” blocks (STC, Tree-BCD, MPLP#,
MSD#) performs significantly better than the ones
with “local” blocks (MPLP, MSD++, and TRW-S*).
Note that TRW-S MonoChain get stuck at an even
worse dual state than the “local” methods. This is
because its block selection (and ordering) is even more
restrictive due to using monotonic chains.

Overall, we observe that different methods tend to
“converge” to different dual objectives, Even though
the dual objectives in each plot should have exactly
the same optimal value. Note that all these methods
perform BCD—they achieve dual optimal on a block
in each step. Therefore choosing blocks (as well as
choosing plateau dual states) is very important to the
performance (and final result) of a message passing

algorithm. Generally speaking, being able to choose
blocks and plateau states in a more flexible manner (as
our framework reveals) could help us get to better dual
states, whereas making these choices in a restricted
manner (as most existing methods do) could easily get
stuck.

5. Conclusion

Our framework revealed two dimensions of flexibility
in designing a message passing algorithm for MAP
inference: choosing blocks to update, and choosing a
dual state on a plateau in each BCD step. The STC
algorithm can be applied with extreme flexibility in
these choices. Although these choices appear to be
important to performance, any known fixed strategy
in making them does not seem to be optimal across
different scenarios. If we could find principled and
adaptive strategies in making these choices, we will be
able to design much more powerful message passing
algorithms.
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