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Abstract

The presence of cycles gives rise to the
difficulty in performing inference for MRFs.
Handling cycles efficiently would greatly
enhance our ability to tackle general MRFs.
In particular, for dual decomposition of
energy minimization (MAP inference), using
cycle subproblems leads to a much tighter
relaxation than using trees, but solving
the cycle subproblems turns out to be the
bottleneck.

In this paper, we present a fast and exact
algorithm for energy minimization in cycle
MRFs, which can be used as a subroutine
in tackling general MRFs. Our method
builds on junction-tree message passing, with
a large portion of the message entries pruned
for efficiency. The pruning conditions fully
exploit the structure of a cycle. Experimental
results show that our algorithm is more than
an order of magnitude faster than other
state-of-the-art fast inference methods, and it
performs consistently well in several different
real problems.

1. Introduction

We address the problem of energy minimization (MAP
inference) in cycle MRFs. Specifically, consider a MRF
over X = {X1:N} with connectivity X1 −X2 − · · · −
XN −X1. It is parametrized by N pairwise potentials:

Θ(X) =

N∑
i=1

θi (1)
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where θi has the scope θi(Xi, Xi+1) (XN+1 is X1).
Our goal is to find assignments to X1:N that minimize
the energy function (1).

Cycle MRFs could be useful as a modeling tool in its
own right. For example, a cycle over landmarks could
be used for top-down image segmentation (Heitz et al.,
2009). More importantly, cycles have been recognized
as a crucial component in tackling general MRFs
(Werner, 2008; Sontag & Jaakkola, 2008; Komodakis
& Paragios, 2008). In particular, a popular framework
for solving the (NP-hard) MAP inference problem for
general MRFs is to solve a LP relaxation of it by
dual decomposition (decomposing it into a number
of “easier” subproblems) (Komodakis et al., 2011;
Sontag et al., 2011). The tightness of the underlying
LP relaxation is determined by the choice of the
subproblems. If all subproblems are tree-structured,
the resulted LP relaxation is usually not tight for rich-
structured MRFs. Researchers have been focusing
on how to selectively add cycle subproblems in order
to tighten the relaxation (Sontag et al., 2008; 2012;
Batra et al., 2011). Solving a cycle MRF (usually
a triplet cluster) is a crucial subroutine in both (1)
evaluating the criterion for adding cycles/clusters and
(2) computing subgradients/messages for optimizing
the dual objective. However, it is usually the
bottleneck procedure especially when the variable
state spaces are large.

One way of solving the cycle MRF is by loopy max-
product BP, which has shown to be exact (Weiss,
2000) for MRFs with a single cycle. Although each
message passing step only takes O(K2) time (K is
variable cardinality), the number of iterations needed
for convergence is usually large, especially for small
and “frustrated” cycles encountered in tightening dual
decomposition. Another way of solving the cycle MRF
(which we build on) is to pass messages in the clique
tree (triangulated cycle), which takes O(K3) time if
the messages are computed in the naive way. Faster
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Figure 1. Messages passed in our fast cycle solver. Wide
red arrows: messages in the clique tree (triangulated
cycle). Narrow blue arrows: messages on cycle edges.

algorithms for computing the messages have been
proposed recently (Felzenszwalb & McAuley, 2011;
McAuley & Caetano, 2011); they still sequentially
compute all full messages. However, we observe that
only a tiny portion of the message entries need to
be computed in order to find the MAP assignment—
others can be pruned by conditions derived from the
global structure of the cycle.

The pruning strategy in general has been used
by existing work including search-based branch-and-
bound methods (Marinescu & Dechter, 2006; 2007;
Flerova et al., 2011; Sun et al., 2012), column
generation (Belanger et al., 2012), and fast min-sum
(Felzenszwalb & McAuley, 2011). We will elaborate
on the relation between our algorithm and existing
methods in Section 5. As our algorithm is specifically
tailored to cycle MRFs, it is usually more than an
order of magnitude faster than these general-purpose
methods.

2. Fast Cycle Solver

To solve the cycle MRF we triangulate it in a special
way (as in Fig. 1) such that X1 is in the scope of all
clique tree nodes. If we perform clique tree message
passing from left to right, we would compute clique
tree messages:

∆∗i (X1, Xi) = min
Xi−1

[∆∗i−1(X1, Xi−1) + θi−1(Xi−1, Xi)]

(2)
for i = 3 : N . (Note that ∆∗2 = θ1 in computing the
first message.) They are shown by wide red arrows in
Fig. 1.

Instead of computing the full messages ∆∗i , we
compute incomplete versions of them, denoted as
∆i. To explain how these incomplete messages are
computed we perceive each message ∆i as a set of all
its entries:

∆i = {∆i(x1, xi) | x1 ∈ V al(X1), xi ∈ V al(Xi)} (3)

where V al(X) is the domain of X. We use lowercase

x to denote specific assignments to variable X.

Our algorithm will split the set into an active subset
and an inactive one: ∆i = ∆+

i ∪∆−i . Similarly we
also split the original energy terms θi into active and
inactive subsets. Only the active parts participate in
the partial min-sum operation (explained later). The
notations are summarized in Table 1.

Table 1. Summary of notations in Section 2
θi original energy terms (factors)
θ+i active entries of θi
θ−i inactive entries of θi
∆∗i clique tree messages, from (2)
∆i “incomplete” clique tree messages, from (4)
∆+

i active entries of ∆i

∆−i inactive entries of ∆i

δi messages on cycle edges

To define partial min-sum, we abbreviate (2) as
∆∗i = minsum(∆∗i−1,θi−1), which defines the min-
sum operation. Note that it can be performed (on
two sets of entries) as follows:

1. For all a := ∆∗i−1(x1, xi−1) ∈∆∗i−1

2. For all b := θi−1(xi−1, xi) ∈ θi−1

3. ∆∗i (x1, xi)← min(∆∗i (x1, xi), a + b)

Therefore it is straightforward to define partial min-
sum:

∆i = minsum(∆+
i−1,θ

+
i−1) (4)

by restricting the loops in the above algorithm to the
active subsets.

At the end of the clique chain we compute

Θ̂ = min(∆N + θN ) (5)

Note that ∆N and θN have the same scope (XN , X1).
Therefore we compute the sum and the min directly
(without restricting to active subsets), and trace back
to recover the corresponding assignment.

The general idea of our method is to repeatedly update
all ∆i by gradually adding entries to each θ+i and each
∆+

i . This process stops when we are guaranteed (by
the conditions given below) that we have obtained the
MAP solution of the problem.

We will first describe the stopping conditions and then
show the overall algorithm. To derive the stopping
conditions we need to use another set of messages δ2:N :

δi(Xi) = min
Xi+1

[δi+1(Xi+1) + θi(Xi, Xi+1)] (6)
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where δN+1 = 0 for i = N . These messages are passed
along the cycle edges (shown by the narrow blue arrows
in Fig. 1). Note that unlike in loopy BP, δ2:N do
not form a loop, so they are computed once and for
all. Computing them only has the time complexity of
O(K2).

Suppose that we are in the process of iteratively
updating the incomplete messages. Given current
∆3:N and the active/inactive split of ∆3:N−1 and
θ1:N−1, we assume that each incomplete message has
been computed according to (4), and we have the

current best solution with energy Θ̂ computed by (5).

The optimality of Θ̂ can be established by the following
conditions.

Proposition 1. Θ̂ is the global minimum of the cycle
MRF energy if all entries θi(xi, xi+1) ∈ θ−i , for i =
1 : N − 1, satisfy:

θi(xi, xi+1) > Θ̂−min
X1

∆i(X1, xi)− δi+1(xi+1) (7)

and all entries ∆i(x1, xi) ∈ ∆−i , for i = 3 : N − 1,
satisfy:

∆i(x1, xi) > Θ̂− δi(xi) (8)

Proof is given in supplement material. Here we give
some intuitive interpretations.

Given an entry in θ or ∆ we want to judge whether or
not it could possibly lead to a lower energy than Θ̂. If
not, we can safely leave it in the inactive set. Ideally,
we would like a tight bound, i.e. all entries except for
the ones corresponding to the MAP assignment satisfy
(7) and (8). Now the question is, how far are we from
that ideal bound? It turns out that we are only off by
the uncertainty on one variable X1. Specifically, for
(7), note that the term minX1

∆i(X1, xi) involves a
choice in X1, and the term δi+1(xi+1) also (implicitly)
involves a choices in X1, because it has minimized over
X1 in the beginning the δ messages. If we somehow
know that these two terms agree on their choices of
X1, it can be shown that we have the ideal bound,
i.e. all entries except for the ones corresponding to the
MAP assignment satisfy (7). We will make this precise
by a corollary in supplement material.

An analogous argument can be made for the two terms
∆i(x1, xi) and δi(xi) in (8).

Indeed, the connectivity on one variable is how the
cycle differs from a chain. In this regard, the
conditions (7) and (8) fully exploit the structure of
a cycle.

Now we come to the overall structure of the algorithm.
The general idea is to gradually put small batches of

Algorithm 1 Algorithm sketch of our fast cycle solver
1: T3:N ← ε
2: compute δ2:N

3: while conditions (7,8) are not met do
4: for i = 3 : N do
5: while no updates is made to ∆i do

6: if Ti < Θ̂−min δi then
7: Ti ← min{1.5× Ti, Θ̂−min δi}
8: Add entries ≤ min(Ti, RHS(7)) to θ+

i−1.

9: Add entries ≤ min(Ti, RHS(8)) to ∆+
i−1.

10: Perform partial min-sum (4). Update ∆i (and

Θ̂ if i = N)

entries into the active sets (using gradually increasing
thresholds), and performing the partial min-sums
iteratively. Each pass through the clique chain will
update Θ̂ and therefore the RHS of the conditions
(7) and (8) will become smaller. Once these
decreasing bounds meet the increasing thresholds,
we are guaranteed that the current solution (with

energy Θ̂) is optimal. Our algorithm is sketched in
Alg. 1. The strategy of using an increasing threshold to
update messages has also been used in (Felzenszwalb &
McAuley, 2011). In practice we offset all potentials to
be non-negative, so we can start with a small positive
number as threshold and increase it by multiplying
with some constant.

3. Solving Cycles in Dual
Decomposition

Consider energy minimization for general MRFs using
dual decomposition. For brevity we only give a
minimum introduction to the background, the general
framework and implications have been thoroughly
discussed in (Komodakis et al., 2011; Sontag et al.,
2011).

The general idea is to decompose the MRF into
subproblems {Θc} (e.g., trees, cycles), where c
indexes subproblems. Summing over {Θc} gives
a reparametrization of the original MRF energy.
Presumably the subproblems are easy to solve, and
each subproblem chooses its own assignment to the
variables. We aim at maximizing the dual objective:

D(Θc(X)) =
∑
c

min
X

(Θc(X)) (9)

which lower bounds the minimum energy of the
original MRF. Optimizing the dual objective can
be viewed as exchanging messages for mutual
agreements among subproblems (Wang & Koller,
2013). Maximizing (9) turns out to be the dual of
some underlying LP relaxation of the original energy
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minimization problem, whose tightness depends on the
choice of subproblems in the decomposition.

For rich structured models we usually have to add
cycle subproblems to the decomposition to tighten the
underlying LP relaxation. In such a scenario we need
a cycle solver in three situations:

1. To evaluate the criterion in selecting cycles to
tighten the relaxation, such as the criterion in
(Sontag et al., 2008).

2. To compute subgradients for optimizing the dual,
such as in (Komodakis et al., 2011).

3. To compute messages for optimizing the dual
(Wang & Koller, 2013), such as in MSD (Werner,
2007), MPLP (Globerson & Jaakkola, 2007) and
TRW-S (Kolmogorov, 2006).

In the first two cases our algorithm can be directly
plugged in. The third case has more subtlety, which
we will focus on in this section.

To compute the messages in dual algorithms listed in
the third case above, we usually need min-marginals
of the cycle subproblems. The min-marginal over one
variable Xi is defined as:

Mc
Xi

(xi) = min
Xi=xi

Θc(X) (10)

And we can define Mc
(Xi,Xj)

for an edge analogously.

However, our algorithm does not compute the min-
marginals. In the following we show a heuristic method
to address this issue, which works well in practice as
we demonstrate in experiments. However, it remains
an interesting open problem to design more principled
and efficient dual methods building on the fast cycle
solver.

3.1. Sparse updates in dual methods

We consider the dual method of (Kolmogorov, 2006)1,
which iterates over nodes/edges of the MRF and,
for each node/edge, average the min-marginals of all
subproblems sharing that node/edge. Specifically, if X
is selected as the node to be updated, the dual updates
are:

θcX(x)← θcX(x) + MX(x)−Mc
X(x), (11)

for ∀c ∈ J (X), ∀x ∈ V al(X), where J (X) denotes
all subproblems sharing X. The updates are applied
to θcX , the potential of subproblem c on X. And

1The sparse dual updates introduced here can be
applied to other dual methods similarly.

Table 2. Summary of notations in Section 3
J (X) set of subproblems containing variable X
Θc energy function of subproblem c
θcX potential of subproblem c on variable X
Mc

X min-marginal of subproblem c on variable X
MX average of Mc

X over c ∈ J (X)

M̂X average of “normalized” Mc
X over c ∈ J (X)

M̃c
X upper bound approximation of Mc

X

x∗c minimizer of Mc
X (and M̃c

X)
L subset of V al(X) with high priority (13)

MX =
∑

c∈J (X) M
c
X

|J (X)| is the average min-marginal. The

updates monotonically increase the dual objective (9).
To compute the dual updates we need min-marginals
from each subproblem. Table 2 summarizes notations
used in this section.

In our cycle solver we have computed ∆N + θN in
(5), which would give us the min-marginal M(XN ,X1)

if we were using the complete message ∆∗N . With
the incomplete message we get an element-wise upper
bound of the min-marginal, denoted by:

M̃(XN ,X1) = ∆N + θN (12)

And we can easily compute M̃XN
and M̃X1

from it.
As the cycle is symmetric, this can be computed for
any edge and node.

Directly using these upper-bound approximations in
dual methods does not work well, because the resulted
dual updates (messages) tend to overshoot, causing
large oscillation in the dual objective. However,
these approximate min-marginals bear important
information that we can exploit.

Specifically, let us denote x∗ = arg min M̃X(x). For

any other assignment x, the difference M̃X(x) −
M̃X(x∗) is an upper bound approximation of the
actual difference MX(x)−MX(x∗) (because we know

that M̃X(x∗) = MX(x∗) = Θ̂ from Proposition 1).
This difference is an indication of the “relevance” of
label x. The smaller the difference, the more likely
that x will become optimal (for that cycle subproblem)
and therefore affect the dual objective in subsequent
dual updates.

To make use of this information, given X as the next
node to be updated, we select an active label set
L ⊂ V al(X) as the assignments with highest priority
defined as:

priority(x) = − min
c∈J (X)

(M̃c
X(x)− M̃c

X(x∗c)), (13)

where x∗c is the optimal label for subproblem c.
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Given the selected label set L, we perform the dual
updates (11) only for x ∈ L. So we only need min-
marginals Mc

X(x) for a sparse subset of labels. Each
Mc

X(x) can be computed exactly by conditioning on
X = x and performing inference on the resulted chain
MRF. In practice we choose |L| to be a small number
to balance the effectiveness of dual updates and the
extra cost of computing Mc

X(x).

When the dual updates (11) are applied to a subset
L instead of V al(X), monotonicity in the dual is no
longer guaranteed. This can be fixed by “normalizing”
the dual updates as follows:

Proposition 2. Given X, if we perform sparse dual
updates for all c ∈ J (X) and x ∈ L ⊂ V al(X),
the dual objective (9) increases monotonically under
normalized updates (14), but not under (11).

θcX(x)← θcX(x) + M̂X(x) + Mc
X(x∗c)−Mc

X(x), (14)

where M̂X(x) =
∑

c∈J (X)(M
c
X(x)−Mc

X(x∗c))

|J (X)| .

Proof is given in supplement material. Intuitively we
just replaced each min-marginal with its “normalized”
version (subtracted the minimum energy of that
subproblem). This maintains the monotonicity of the
dual updates when performed on a subset of labels.

It worth noting that monotonicity is not sufficient for
converging to some desired dual state (such as weak
tree agreement (Kolmogorov, 2006)). Specifically, we
observe that if we only include currently optimal
labels in L, the algorithm would easily get stuck.
However, our selection criterion (13) also includes
many non-optimal labels into L. In our experiments
the sparse update (14) always converges to dual
optimal whenever the full TRW-S update (11) is able
to converge.

All the above discussion was for updating node X. It
can be easily generalized to updating edges as well, in
which case L would be a subset of the joint assignments
V al(Xi)× V al(Xj).

4. Experimental Results

All experiments are conducted using a single thread
on a 3.3GHz CPU and 16 Gigabytes of memory.

4.1. Synthetic cycle MRFs

First we evaluate our cycle solver on synthetic cycle
MRFs to compare it with various fast inference
algorithms. In Fig. 2, we show how running time scales
with the state space size K and number of variables
N , respectively. For each setting, running time

is averaged over 20 problem instances generated by
sampling all edge potentials fromN (0, 1). All methods
are plotted with error bars indicating standard
deviation across problem instances.

We can see that adapting to the problem structure
improves performance. AOBB (Marinescu & Dechter,
2006) is a completely general-purpose algorithm2, thus
it is not surprising that it does not beat specialized
methods. (Indeed, it is in some sense unfair to include
it in the comparison.) Naive and fast min-sums
(Felzenszwalb & McAuley, 2011) are tailored for tree-
width-two graphs3. Branch-and-Bound (Sun et al.,
2012) is designed for large state spaces. Our method
fully exploits the structure of a cycle. It outperforms
all other methods by more than an order of magnitude.
(Note that the time axis is in log scale.)

We also observe (from Fig. 2 right) that the
advantage of our cycle solver is especially prominent
in solving triangles (N = 3). Note that in dual
decomposition, we could triangulate any “untight”
cycle and only handle triangle subproblems. The trade
off between having fewer subproblems (large cycles)
and having smaller subproblems (triangles) deserves
further investigation.

4.2. Cycle subproblems in dual decomposition

To evaluate our cycle solver in dual decomposition, we
used four MAP inference tasks as described below.

Synthetic Grid. We generated a five-by-five grid
MRF (four-neighbors connectivity) with 25 variables
and 1,000 states for each variables. All potentials are
drawn from N (0, 1).

Pose Estimation. The task is to estimate the
image positions of six upper-body parts of a human
depicted in a single image. Each part is a variable,
whose state space consists of discrete image positions
pre-selected by some detector. The MRF is fully
connected (with 15 edges), and the edge potentials
capture spatial consistency of the parts. We used the
problem instances provided in the software package of
(Sun et al., 2012). The variable cardinality varies from
269 to 750.

SIFT Matching. We formulate the problem of
matching two sets of image feature as MAP inference.
Each feature point in the source image is a variable, its

2We also tried to run AND/OR graph best-first search
(Marinescu & Dechter, 2007). It performs no better than
AOBB in this task.

3It has been shown that (Felzenszwalb & McAuley,
2011) outperforms (McAuley & Caetano, 2011) in this task,
so we did not include the latter into comparison.
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Figure 2. Comparing Cycle Solvers. Note that time axis is in log scale. AOBB is AND/OR graph branch-and-
bound (Marinescu & Dechter, 2006). Naive-MinSum is the naive way of passing clique tree messages. Fast-MinSum
is algorithm 2 in (Felzenszwalb & McAuley, 2011). Loopy-BP is loopy min-sum message passing. Sometimes it takes
extremely long to converge, especially for short cycles. We always cut it off at 500 seconds. Branch-and-Bound is the
method of (Sun et al., 2012).

state space is all feature points in the target image4.
The problem instance we constructed has 68 variables,
each has 1,021 states. The unary potentials measure
similarity between the SIFT feature descriptors (Lowe,
2004). The MRF is constructed by connecting
each source image feature point to its 3-nearest-
neighbors (according to Euclidean distance, in source
image). The resulted graph has many cycles.
Pairwise potentials measure spatial consistency of two
assignments5.

Protein Design. The protein design benchmark
(Yanover et al., 2006) features very densely connected
MAP-MRF instances. Each MRF typically has
hundreds of variables, thousands of edges, tens of
thousands of triplet cycles. The cardinality of
variables range from 2 to 180.

Experiments on these MRF inference problems focus
on evaluating our method in two aspects:

1. Does the sparse dual update strategy (Section 3.1)
optimize the dual effectively? Does the speed
advantage of our fast cycle solver overcome the
extra cost of filling-in the sparse min-marginals?

2. How does our cycle solver compare to other meth-
ods in solving the cycle subproblems encountered
in dual decomposition? They may have different
properties from the standalone synthetic cycles.

4In practice one might want to disallow many-to-one
mapping, or allow outliers in source image (that map to
nothing). We ignore these issues here for simplicity.

5We measure spatial consistency by exp(−(d0 − d1)2),
where d0 is the distance between the two source image
points; d1 is the distance between the two target image
points.

We address each of them below.

Comparing Dual Objectives. Among all cycle
solvers we compared in Section 4.1, Fast-MinSum
(Felzenszwalb & McAuley, 2011) is the fastest one that
provides exact min-marginals, for which there is no
need to use sparse dual updates as in Section 3.1).
Therefore we focus on comparing Fast-MinSum and
our cycle solver.

In Fig. 3, we show primal-dual plots for each of the
four tasks. The three methods been compared are:

1. Tree Decomposition: Decompose the MRF
into all its constituent edges. It has the same
duality gap as decomposing into larger trees. The
latter has no speed advantage unless the MRF
structure allows us to construct large “ monotonic
chains” (Kolmogorov, 2006). This usually has a
large duality gap for rich-structured models6.

2. Cycle Decomposition Fast-MinSum: Use
a fixed number of cycle subproblems, and fill-
in uncovered edges (if there is any) using edge
subproblems7. For Synthetic Grid we use all 16
quads. For Pose Estimation and SIFT Matching
we use all triangles. For Protein Design we use
2,000 cycles selected using the criterion of (Sontag
et al., 2008). Fast-MinSum is used to solve cycles.

6However, tree decomposition turns out to be tight for
all Pose Estimation instances from (Sun et al., 2012). This
is because the unary potentials are overwhelmingly strong
comparing to the pairwise potentials. This is not the case
for most fully connected MRFs.

7We first run tree-decomposition to convergence and
switch to the cycle mode, except for the Pose Estimation
case, where we directly start with the cycle mode.



A Fast and Exact Energy Minimization Algorithm for Cycle MRFs

0 500 1000 1500 2000 2500
−170

−160

−150

−140

−130

−120

−110

−100

Synthetic Grid: N=25, K=1000

Seconds

O
bj

ec
tiv

e

 

 

Tree Decomposition
Cycle Decomposition Fast−MinSum
Cycle Decomposition Ours

0 10 20 30 40 50 60 70 80 90 100

−1.6

−1.4

−1.2

−1

Pose Estimation as MAP−MRF

Seconds

O
bj

ec
tiv

e

 

 

Tree Decomposition
Cycle Decomposition Fast−MinSum
Cycle Decomposition Ours

0 100 200 300 400 500 600 700
−95

−94.5

−94

−93.5

−93

−92.5

−92

−91.5

−91

−90.5

−90

Sift Matching as MAP−MRF

Seconds

O
bj

ec
tiv

e

 

 

Tree Decomposition
Cycle Decomposition Fast−MinSum
Cycle Decomposition Ours

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−310

−300

−290

−280

−270

−260

−250

−240

−230

Protein Design as MAP−MRF

Seconds

O
bj

ec
tiv

e

 

 

Tree Decomposition
Cycle Decomposition Fast−MinSum
Cycle Decomposition Ours

Figure 3. Primal-dual objectives in four MRF energy minimization tasks. See text for explanation.

Table 3. Average time (seconds) for solving one cycle subproblem in dual decomposition. Loopy-BP is cut off at 200
seconds if not converging.

K Fast-MinSum Loopy-BP Branch-and-Bound Ours
Synthetic Grid 1000 16.4 (55 ×) 200 (667 ×) 33.2 (111 ×) 0.30
Pose Estimation 269∼750 0.54 (18 ×) 66.7 (2,223 ×) 0.18 (6 ×) 0.03
Sift Matching 1021 14.0 (93 ×) 87.8 (585 ×) 0.88 (5.9 ×) 0.15
Protein Design 2∼180 0.0023 (3.8 ×) 88.9 (14,574 ×) 0.28 (459 ×) 0.00061

3. Cycle Decomposition Ours: Same as the
previous one except that our cycle solver and
sparse dual updates8 are used. We observe
that this converges much faster than using
Fast-MinSum in the first three cases. In the
fourth case (Protein Design) the performances
are comparable. This is because the variable
cardinality in this case is much smaller, and the
speed advantage of our cycle solver is not as large
as in the other cases.

For the tasks with multiple problem instances (Protein
Design and Pose Estimation), we only show the
primal-dual plot of one instance. Different problem
instances are qualitatively very similar.

Comparing Cycle Solver Time. We compare
our cycle solver with three methods (that appeared
more competitive in Section 4.1) on cycle subproblems
encountered in dual decomposition. For each of the
four tasks we sample about a hundred cycle instances,
which span all stages of optimizing the dual. In Table 3
we show the average running time for solving a cycle,
as well as its ratio with our cycle solver. We observe
that Loopy-BP performs very badly in these usually
“frustrated” cycles encountered in dual decomposition.
Fast-MinSum and Branch-and-Bound may work well
in one case but not so good in another. This could
be because they are sensitive to different properties of
the potentials in different problems. Our cycle solver
works consistently well in all cases.

8We set |L| to be 1
10

of variable cardinality in all cases.

4.3. Effect of cycle reparametrization

In this part we further analyze the behavior of our
cycle solver. Notably it does not have a preferable
worst-case guarantee (just like most branch-and-
bound or pruning based methods). So one might
ask: in what situations does our method work
unsatisfactorily, and how to avoid those situations?

We do not have a conclusive theoretical characteriza-
tion at this point. But we will show some empirical
results to provide some insights on this issue.

Intuitively, our algorithm works better if the stopping
criteria in Proposition 1 are tighter, which requires
different parts of the cycle having more “mutual
agreement”. So we consider a local reparametrization
to increase/decrease mutual agreement among edge
potentials. Specifically, consider the two edge
potentials θ1(X1, X2) and θN (XN , X1). Let η1 =
minX2 θ1 and ηN = minXN

θN . Note that both η are
unary tables of X1. Consider the following updates
(denoted as Ω±):

θ1 ← θ1±
(ηN − η1)

2
, θN ← θN±

(η1 − ηN )

2
(15)

Note that Ω+ will increase mutual agreement, whereas
Ω− will decrease mutual agreement (between θ1 and
θN ).

To see the effect of these reparametrizations, we
repeatedly apply Ω+ (or Ω−) to randomly selected
nodes in the cycle, and measure the running time of
different cycle solvers. Fig. 4 shows the running time
(and its standard deviations) of three methods under
repeated applications of Ω+ (or Ω−) to the cycle (−20
means applying Ω− to randomly selected nodes 20
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Figure 5. In the Synthetic Grid experiment, applying Ω+
has a great impact on the cycle solver running time
when the cycle potentials are iteratively updated in dual
decomposition. See text for more explanation.

times). The problem instances are randomly generated
(as in Section 4.1) with N = 10, K = 500. We
observe that the negative reparametrizations have no
influence on Naive-MinSum, small influence on Fast-
MinSum, and very large influence on our method.
This experiment characterizes the situation that our
method needs to avoid, and also suggests a simple
heuristic to get out of it: using Ω+.

In dual decomposition, when solving cycle subprob-
lems under repeated dual updates. The updates tend
to “pull” different edges of the cycle away from each
other (a similar effect as Ω−). To tackle this, we apply
Ω+ once for each node of the cycle before running our
cycle solver. This is very effective as shown in Fig. 5.
Note that the extra cost of applying Ω+ has been
included. This heuristic was used in all experiments
of Section 4.2.

5. Related Work

Our method is closely related to the fast min-sum
(Felzenszwalb & McAuley, 2011). The key difference is
that, fast min-sum computes each min-sum message in
isolation, and prunes out entries that are not necessary
in computing that (full) message; our method updates
all min-sum messages iteratively, and prunes out

entries that are not necessary in computing the MAP
assignment. Our strategy exploits the global structure
of the cycle and prunes out much more entries.

Comparing to traditional branch-and-bound methods
(e.g., (Sun et al., 2012)), our algorithm is different
in two aspects: (1) We do not explicitly maintain
branches. Indeed, the message entries implicitly define
a large number of overlapping “branches”. (2) The
“bound” in our method (Proposition 1) fully exploits
the structure of a cycle, thus is much tighter than that
derived from general principles.

Pruning in message passing has also been implemented
using column generation (Belanger et al., 2012), which
is very different from our approach. First of all,
(Belanger et al., 2012) handles chains instead of cycles.
Even if we generalize it by applying the same principles
to the “clique chain” (triangulated cycle), there are
still two key differences. (1) Since column generation
is equivalent to cutting plane in the dual, the messages
(dual variables) upon convergence need to be dual
feasible. However, when our stopping criteria are
met, the (incomplete) messages are generally not dual
feasible, i.e. our stopping criterion is tighter than
that derived from the general principles of column
generation. (2) Moreover, the efficiency of column
generation oracle relies on data-independent terms
(precomputed bounds on the transitions), whereas our
approach does not have such constraints.

The standard LP relaxation can also be tightened
without explicitly solving cycle MRFs. For example
(Komodakis & Paragios, 2008) proposed to repair cy-
cles, which resembles subgradient updates (Komodakis
et al., 2011) in dual decomposition—they both focus
on updating dual variables associated with currently
optimal labels. Note that it does not circumvent
the intrinsic cubic complexity of cycle MRFs, because
each cycle may need to be repaired with respect to
all labels (anchor nodes) for one variable, and each
repairing operation is quadratic in the state space size.
Sontag et al. (2009) proposed to partition the state
spaces and only enforce consistency at the coarse level.
Yarkony et al. (2011) proposed to use binary cycle
subproblems constructed by partitioning the state
spaces. These binary cycles enforce fewer constraints,
so we may need a large number of them for one cycle
in the graph.
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Appendix

Proof of Proposition 1

Proposition 1. Θ̂ is the global minimum of the cycle
MRF energy if all entries θi(xi, xi+1) ∈ θ−i , for i =
1 : N − 1, satisfy (7):

θi(xi, xi+1) > Θ̂−min
X1

∆i(X1, xi)− δi+1(xi+1)

and all entries ∆i(x1, xi) ∈ ∆−i , for i = 3 : N − 1,
satisfy (8):

∆i(x1, xi) > Θ̂− δi(xi)

Proof. It suffices to show that, if θi(xi, xi+1) satisfies
(7), any assignment with Xi = xi and Xi+1 = xi+1

must have higher energy than Θ̂; if ∆i(x1, xi) satisfies
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(8), any assignment with X1 = x1 and Xi = xi must

have higher energy than Θ̂.

Note that we have i = 2 : N − 1 for both (7) and (8).
(Remember that ∆2 is just θ1.) We use induction on
i simultaneously for (7) and (8), i.e. the i case for (7)
and (8) needs to be derived from the 2 : i− 1 cases for
both of them.

For i = 2, the energy with assignment (x2, x3) is

Θ(X) =θ1(X1, x2) + θ2(x2, x3) + θ3(x3, X4) +

N∑
i=4

θi

≥min
X1

θ1(X1, x2) + θ2(x2, x3) + δ3(x3) > Θ̂

(16)

where the first inequality follows from the definition of
the cycle messages δ and the second inequality is just
(7). Similarly, the energy with assignment (x1, x2) is

Θ(X) =θ1(x1, x2) + θ2(x2, X3) +

N∑
i=3

θi

≥θ1(x1, x2) + δ2(x2) > Θ̂

(17)

where the second inequality is just (8).

For i > 2, the energy with assignment (xi, xi+1) is

Θ(X) ≥
N−2∑
i=1

θi+θi−1(Xi−1, xi)+θi(xi, xi+1)+δi+1(xi+1)

(18)
However, because ∆i has been computed from partial
min-sums, the first two terms are not lower bounded
by minX1

∆i(X1, xi). (If they were, we would not need
induction in the proof.)

We divide the space X = ⊗iV al(Xi) of all assignments
into two halves. Let X0 be all such X that the
assignment to X1:i−1 corresponds to at least one entry
in ∆ or θ left out in partial min-sums. By induction
we know that Θ(X)|X∈X0

> Θ̂.

For any X /∈ X0, by definition all the entries in ∆3:i−1
and θ1:i−1 have participated in the partial min-sums.
Therefore we have

N−2∑
i=1

θi + θi−1(Xi−1, xi) ≥ min
X1

∆i(X1, xi) (19)

Substituting it back to (18) and using (7) we have

Θ(X) > Θ̂. The induction step for (8) can be proved
analogously.

The following corollary attempts to make the following
statement (from Section 2) precise.

“If we somehow know that these two terms (last
two terms in (7)) agree on their choices of X1, it
can be shown that we have the ideal bound, i.e. all
entries except for the ones corresponding to the MAP
assignment satisfy (7).”

Corollary 1. If Θ̂ is the global minimum of the cycle
MRF energy, for any entry θi(xi, xi+1), i = 1 : N −1,
satisfying

θi(xi, xi+1) ≤ Θ̂−min
X1

∆i(X1, xi)− δi+1(xi+1), (20)

if the last two terms agree on the assignment of X1,
then there exists a minimum energy assignment (with

energy Θ̂) that has Xi = xi and Xi+1 = xi+1.

Proof. Note that (20) can be written as:

θi(xi, xi+1) + min
X1

∆i(X1, xi) + δi+1(xi+1) ≤ Θ̂ (21)

Consider tracing back through the messages
∆i(X1, xi), and minimize over X1, we would get
assignment to X1:i, with Xi = xi. Tracing back
through the messages δi+1(xi+1) we would get
assignments to Xi+1:N+1, with Xi+1 = xi+1. Note
that XN+1 is X1. However, their assignments were
obtained independently in the above process. By
our assumption they should agree. So we have an
assignment to X1:N by putting together the two parts
from above. Its energy is the LHS of (21). Therefore
we have found a minimum energy assignment with
Xi = xi and Xi+1 = xi+1.

Proof of Proposition 2

Proposition 2. Given X, if we perform sparse dual
updates for all c ∈ J (X) and x ∈ L ⊂ V al(X),
the dual objective (9) increases monotonically under
normalized updates (14), but not under (11).

θcX(x)← θcX(x) + M̂X(x) + Mc
X(x∗c)−Mc

X(x) (14)

where M̂X(x) =
∑

c∈J (X)(M
c
X(x)−Mc

X(x∗c))

|J (X)| .

Proof. In performing dual updates, all potentials of
subproblem c are fixed except for θcX . If we perform
clique tree min-sum message passing for subproblem
c with X in the root node. The incoming message
of the root node will not change with updates to
θcX . Therefore the updates can be perceived as been
applied to the min-marginals directly. From (14) we
have:

M̊c
X(x)← M̂X(x) + Mc

x(x∗c) (22)

for normalized updates, where M̊c
X is the new min-

marginal. The new minimum energy for subproblem c
is minx M̊c

X(x).
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By definition we know that M̂X(x) ≥ 0 for all x.

Therefore M̊c
X(x) ≥ Mc

X(x∗c) for any x ∈ L that has
been included in updates. If Mc

X(x) is not updated

we have M̊c
X(x) = Mc

X(x) ≥ Mc
X(x∗c) by definition.

Combining these we have:

min
l

M̊c
X(x) ≥Mc

X(x∗c) (23)

This says that the new minimum energy for
subproblem c is no less than its old minimum energy.
Since this holds for all subproblems, the dual objective
increases monotonically. However we do not have such
guarantees for unnormalized moves. To complete the
proof we need a counter example.

Consider a case with two subproblems c0 and c1. Let
Mc0

X be (0.2, 0.3, 0.1) and Mc1
X be (0.8, 0.8, 0.9), The

old dual objective is 0.9. If we perform unnormalized
dual updates to the first and third label, the min-
marginals become (0.5, 0.3, 0.5) and (0.5, 0.8, 0.5). The
new dual objective is 0.8, smaller than the old one.


