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This document includes the following supplementary
materials to the main text of the paper.

Section 1: experimental data descriptions.
Section 2: detailed algorithm derivation.

Section 3: study of robustness by using ¢ ;-norm
loss.

Section 4: additional single-label classification re-
sults.

1. Data description

In Section 4 of the main text of this paper, we exper-
iment with the following three multi-label image data
sets, which are broadly used computer vision studies.

MSRC-v2! data set is an extension of MSRC-v1 data
set, which has 591 images annotated by 22 classes at
pixel level. In our experiments, we use the image level
annotation.

TRECVID 2005 data set? contains 61901 sub-
shots labeled with 39 concepts according to LSCOM-
Lite annotations (Naphade et al., 2005). Following
(Wang et al., 2009b), we randomly sample the data
such that each concept (label) has at least 100 video
key frames.

NUS-WIDE-Object data set® was created by Lab
for Media Search in National University of Singapore.
The data set includes 269,648 images and the associ-
ated tags from Flickr, with a total number of 5,018
unique tags. For the Object subset, we randomly se-
lect images from the data set, such that at least 200
images are selected for each class.

"http://research.microsoft.com /en-
us/projects/objectclassrecognition

*http://www-nlpir.nist.gov/projects/trecvid/

Shttp://lms.comp.nus.edu.sg/research /NUS-
WIDE.htm

For the auxiliary image data set and the three
target data sets described above, following
(Gehler & Nowozin, 2009), we extract SIFT de-
scriptors for the experimental images, which are
computed on a regular grid on the image with a
spacing of 10 pixels and for the four different radii
r = 4,8,12,16. The descriptors are subsequently
quantized into a vocabulary of 300 visual words that
is generated by k-means clustering.

2. Detailed derivation of the algorithm

Due to the non-smoothness of the ¢5 ;-norm function,
the objective Jrp.sTr, in Eq. (9) is highly non-smooth
as it involves K +2 terms of ¢5 ;-norm. Thus, minimiz-
ing Jrp.str, is hard in general by existing algorithms.
In this section, we derive an efficient algorithm to solve
it.

Because Jrp.s71, has two variables, i.e., D and A, we
alternately optimize them.

First, when D is fixed, the objective Jgrp.sTr in
Eq. (10) can be decoupled to the following problems
for each k(0 < k < K):

min J (Ag) = ||[(Xk — DAk)THQ)l T A Akl - (1)

Because the function f (M) = [[M][,; is non-smooth
and not differentiable when M = 0, as mentioned
earlier in footnote 1 in the main text of the pa-
per, following (Gorodnitsky & Rao, 1997), we intro-
duce a small perturbation ¢ > 0 to replace [|[M]|,

by 32 o/llm[3 +¢. Apparently, 37, \/|m?[3 + ¢ re-
duces to [[M]|, ; and the perturbed objective reduces
to our original objective in Eq. (10), when ¢ — 0. In
the sequel of this document, we implicit apply this re-
placement for all [|-[| ;.

Taking the derivative of J with respect to Ay, and
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setting the derivative as zero, we have:

oJ

TA = —2D"X;U; + 2D" DA, U;, + 2AV A, =0 |
k

(2)
where Uy, is a diagonal matrix with the i-th diago-
nal element as 1/ (2]|(Xx); — D (Ax),ll,) and Vj is
a diagonal matrix with the i-th diagonal element as

1/ (2 H(Ak)l 2). Here (X},), is the i-th column of X},

(Ay), is the i-th column of Ay and (Aj)" is the i-th
row of Ay. Because Uy is a diagonal matrix, the equa-
tion in Eq. (2) can be decoupled into ny subproblems
for each column of Ay, i.e., (Ay), (1 < i < ny), as fol-
lowing:

(Uk)y; D* (Xk); = ((Uk)n‘ DD + /\Vk) (Ar);
(3)
which is a linear equation and can be efficiently solved.
Here (Uy),, is the i-th diagonal element of Uy. Upon

solution, A can be constructed from the resulted
A,(1<k<K).

Note that, both Uy and V, are dependent on Ay and
D. Therefore they are unknown variables and can be
seen as two latent variables of the objective Jrp_sTL,
which can be solved under the same alternative opti-
mization framework.

i

Second, when fixing K, we need to solve the following
problem:
in|[(X - DAY . 4
in | -DAY, @
Instead of solving Eq. (4), under the framework of al-
ternating optimization, we solve the following prob-
lem:

2
in |[(X - DA)"|
iz & -pAY] ®
where X = }NC(U)% and A = K(U)%. Here,

U is a diagonal matrix, whose i-th diagonal el-
ement is Wgq = 1/ Hil — Dglz||2, i.e., U =
diag (diag (Uy),...,diag (Ug)). Eq. (5) can be solved
following (Lee et al., 2007), which solves the La-
grangian dual problem and much faster than standard
QCQP solver.

Finally, upon the solved Ay and D, Uy (thereby U)
and Vj are updated by their respective definitions.

The whole procedures to optimize Jrp.st1, Eq. (10) is
summarized in Algorithm 1. The convergence of the
algorithm is guaranteed by Theorem 1 in the main text
of the paper, which has been rigorously proved. More-
over, when the objective value in the iterations remains
unchanged, due to step 3 of Algorithm 1, the K.K.T.
condition in Eq. (2) or Eq. (3) is satisfied, which indi-

oast - = |
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Figure 1. Comparison of the robustness of the proposed
RD-STL method and STL method against noises in la-
beled images on TRECVID 2007 data set. Obviously, our
method is impacted much less by the noises.

cates that the objective function reaches the optimal
value?.

3. Study of the robustness against
noises in labeled images

Although we introduce robustness in the proposed RD-
STL method mainly addressing the outlier samples in
unlabeled images due to their randomness and high
heterogeneity, our model is also robust against noises
in training images because of the ¢5 ; loss function used
in Jgp in Eq. (9). We evaluate this by manually intro-
ducing noises in the labeled images on TRECVID 2007
data set. Specifically, for each class we randomly pick
up a certain percentage of labeled images and set their
labels to be incorrect, to emulate noises. When we vary
the amount of the imposed noises, we examine the clas-
sification performances of the proposed method, which
are shown in Figure 1. We also report the classifica-
tion accuracies of SLT (Raina et al., 2007) method at
every corresponding noise condition for comparison.
From Figure 1 we can see that the classification per-
formance of our method does not degrades much when
the amount of noises increases, whereas the classifica-
tion performance of SLT method drops significantly
with the increase of imposed noises. These results are
consistent with the mathematical formulations of these
two methods in that SLT method uses squared /5 loss
function while the reconstruction errors in proposed
RD-STL method are not squared. Therefore, the pro-
posed method is more robust against noises in training
data, which adds to its practical value.

“We rigorously proved that the objective function value
is non-increasing during iterations. For most machine
learning problems, such proofs provide some guarantee of
the algorithm. In general, proving the solution converge to
a fixed point using Cauchy theorem is much harder, and
such proofs exits for only very limited cases.
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4. Improved single-label image
classification

Besides evaluating the proposed methods in multi-
label image data sets as in the main text of the pa-
per, we also evaluate our new approach on the three
following single-label image data sets.

Caltech-101 data set® contains 8677 images of
objects, belonging to 101 categories. Following
(Dueck & Frey, 2007), besides using the full Caltech-
101 data set, we also use the following two subsets
of the data, which leads to two different classification
tasks: the 7-class subset includes Faces, Motorbikes,
Dolla-Bill, Garfield, Snoopy, Stop-Sign, Windsor-
Chair, and has 441 images in total; and the 20-class
subset includes Faces, Leopards, Motorbikes, Binoc-
ular, Brain, Camera, Car-Side, Dollar-Bill, Ferry,
Garfield, Hedgehog, Pagoda, Rhino, Snoopy, Stapler,
Stop-Sign, Water-Lilly, Windsor-Chair, Wrench, Yin-
Yang, and has 1230 images. contains 8677 images
of objects, belonging to 101 categories. Following
(Dueck & Frey, 2007), we use two subsets of the data:
a T7-class subset with 441 images and a 20-class subset
with 1230 images.

MSRC-v1 data set® contains 240 images with 9
classes. Following (Lee & Grauman, 2009), we refine
the data set to get 7 classes including tree, building,
airplane, cow, face, car, bicycle, and each refined class
has 30 images. Compared to the Caltech-101 data set,
MSRC-v1 data set has more clutter and variability in
the objects appearances. MSRC-v1 data set contains
240 images with 9 classes. Following (Lee & Grauman,
2009), we refine the data set to get 7 classes, each of
which has 30 images.

Following (Vedaldi & Fulkerson, 2008), we extract
DSIFT features for both labeled and unlabeled im-
ages. Following (Wang et al., 2009a), we resize the
images to 256 x 256 and extract features with grid size
of 5 pixels. As a result, 2601 DSIFT features of are
exacted for every image. The experimental results us-
ing DSIFT image descriptors under the same settings
as Section 4 are reported in Table 1. Besides the same
observations reported in the main text, we can see that
our method is able to achieve state-of-the-art classifi-
cation performance, which adds to its practical value.

5. Image Classification with Irrelevant
Unlabeled Data

One of the main advantage of self-taught learning lies
in that it is able to leverage the large amount of inex-
pensive unlabeled data. Besides evaluating the perfor-
mance of the proposed methods when unlabeled data
are relevant to the labeled data as in Section 4 of the
main text of the paper and Section 4 in this supplemen-
tary document, though from different distributions, we
also evaluate our new method when the unlabeled data
are irrelevant. To emulate this by generating random
vectors as unlabeled data, and the classification per-
formance on the four single-label image data sets are
reported in the second row of Table 2. As a baseline,
we also report the performance of our method when it
does not utilize the unlabeled, which is equivalent to
solve the following problem:

Jrn (D, A) = H (X — DA)T

K
+A> Akl 5 (6)
1 k=1

2,

where X = [X1,...,Xg] and A = [A},..., Ag]. The
results when not using unlabeled data are shown in
the first row of Table 2. From the results we can see
that, when using irrelevant unlabeled data, the perfor-
mance of our method is about same as the that when
not using any unlabeled data. This is because our new
method is able to automatically identify relevant dic-
tionary bases by the structured sparse regularization
introduced in Eqs.8 9 to learn an adaptive dictionary,
such that irrelevant, or even harmful data, will not be
able to impact the classification performance of our
new self-taught learning method.
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