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1. SVM has Optimal Sample Complexity

In this section we will show that the SVM, applied to ranking (as described in Section 3) has an O(n) sample
complexity. A related claim (without complete proof) has been made in (Radinsky & Ailon, 2011). We then
show that this sample complexity is tight.

Proposition 3.1. There is a constant d, so that for any 0 < η < 1, if we noiselessly measure dn/η2 binary
comparisons, chosen uniformly at random with replacement, and n > n0 is large enough, the SVM will produce
a prediction π̂, which satisfies

E(inv(π̂)) ≤ η

2

(
n
2

)
. (1)

Proof. First, note that in the noiseless case the datapoints xi,j with associated labels ȳi,j of Section 3 are linearly
separable. The SVM finds such a separator. Since the measured comparisons are chosen uniformly at random
with replacement, we can prove the outcome by appealing to learning-theoretic generalization bounds. Using
results in (for example) Bousquet et al. (2003) and a VC dimension bound of (Radinsky & Ailon, 2011), we have
the following Lemma:

Lemma. For δ > 0, and 0 < η < 1, if we noiselessly measure dn/η2 binary comparisons, chosen uniformly at
random with replacement, then for some constant c, with probability at least 1−δ the SVM produces a permutation
π̂ with

inv(π̂) ≤ η

 c√
d

+

√
2 log

(
2
δ

)
dn

(n
2

)
. (2)

To use this Lemma, first define

t = η

 c√
d

+

√
2 log

(
2
δ

)
dn

(n
2

)
. (3)

Then by the Lemma P(inv(π̂) > t) ≤ δ. Notice that if we plug in δ = 1 into t, we get a value t1 for which
P(inv(π̂) > t1) ≤ δ = 1

t1 = η

[
c√
d

+

√
2 log (2)

dn

](
n
2

)
. (4)

We will thus assume that for all t ≤ t1, we have P(inv(π̂) > t) ≤ 1. We can use this result to upper bound
E(inv(π̂)) as follows. Since inv(π̂) ≥ 0,

E(inv(π̂)) =

∫ ∞
0

P(inv(π̂) > t)dt ≤ t1 +

∫ ∞
t1

P(inv(π̂) > t)dt. (5)

All that remains is to express δ in terms of t. Rewriting, we find that

δ = 2 exp

{
− 1

2σ2
n

(t− µn)
2

}
(6)

σ2
n =

η2(n(n− 1))2

4dn
µn = η

cn(n− 1)

2
√
d

. (7)
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Returning to our original expectation,

E(inv(π̂)) ≤ t1 +

∫ ∞
t1

δdt (8)

= t1 + 2
√

2πσ2
n

∫ ∞
t1

1√
2πσ2

n

exp

{
− 1

2σ2
n

(t− µn)
2

}
dt (9)

= t1 + 2
√

2πσ2
nP(σnz + µn > t1) (10)

≤ t1 + 2
√

2πσ2
n (11)

= η

[
c√
d

+

√
2 log (2)

dn

](
n
2

)
+ 2η

√
2π
n(n− 1)

2
√
dn

(12)

= η

[
c√
d

+

√
2 log (2) +

√
8π√

dn

](
n
2

)
(13)

Suppose we set d = 16c2. Then for any η/4 > ε0 > 0, there is an n0 so that if n > n0,

E(inv(π̂)) ≤
[η

4
+ ε0

](
n
2

)
≤ η

2

(
n
2

)
. (14)

Next we prove the following proposition via results of Giesen et al. (Giesen et al., 2009) to show that the sample
complexity in Proposition 3.1 is effectively tight.

Proposition 3.2. For η < 1, any randomized, comparison-based algorithm that produces for all π∗ a prediction
π̂ with an expected risk of

E(inv(π̂)) ≤ η

2

(
n
2

)
(15)

must on expectation use at least Ω(n) comparisons in the worst case.

Proof. Recall that for two permutations π̂, π∗, Spearman’s footrule distance is defined to be

D(π̂) =

n∑
j=1

|π̂(j)− π∗(j)| . (16)

Giesen et al. (2009) give the following theorem (we restate slightly):

Theorem (Giesen et al. (2009)). Any randomized, comparison-based algorithm that produces for each input
permutation π∗ a prediction π̂ with expected Spearman’s footrule distance D(π̂) of at most n2/ν(n), must on
expectation use at least n (min(log(ν(n)), log(n))− 6) comparisons in the worst case.

Because Spearman’s footrule can be upper bounded by twice Kendall’s tau distance (Diaconis & Graham, 1977)
(i.e. D(π̂) ≤ 2inv(π̂)) we have that if

E (inv(π̂)) ≤ η

2

(
n
2

)
(17)

then

E (D(π̂)) ≤ E (2inv(π̂)) ≤ η
(
n
2

)
< η

n2

2
(18)

Combining with the above theorem of Giesen et al. (Giesen et al., 2009), we have the desired result.
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2. Proofs for BRE and URE

2.1. Proof of Theorem 4.1

Balanced Rank Estimation Algorithm (BRE): Measure each binary comparison independently with prob-
ability m(n)/n. Define the scores

Π̂(j) =

∑
i6=j si,j(2c̄i,j − 1)

2m(n)
∝
∑
i6=j

si,j(2c̄i,j − 1) . (19)

Predict π∗ by the ordering π̂ of the estimated scores, breaking ties randomly.

Theorem 4.1. For any fixed 0 < η < 1 there is a constant c(p, η) ∈ Θ(1/(2p − 1)2η2) so that if m(n)/n ≥
c(p, η)/n and n > n0, the Balanced Rank Estimation Algorithm satisfies

E(inv(π̂)) ≤ η

2

(
n
2

)
. (20)

Proof. Without loss of generality, we suppose that π∗ = (1, 2, . . . , n), so that π∗(j) = j. The true (rescaled) rank
score of object j is denoted by

Π∗(j) =
1

n

∑
i 6=j

ci,j =
j − 1

n
. (21)

Knowing the true scores Π∗ clearly suffices to predict the permutation π∗ with 0 Kendall tau distance. Equiv-
alently, it suffices to know the true scores up to global scaling and additive constants. We will show that the
Balanced Rank Estimation Algorithm produces an unbiased estimate of the scores

Π̃∗(j) = Π∗(j)(2p− 1) +

(
1− p− 1

2

)
n− 1

n
, (22)

where p parameterizes the observation model. We will then show that for large enough m(n), the probability
that we predict an incorrect binary comparison (i.e. we find that Π̂(j) < Π̂(i) even though i < j) will decay
fast enough with growing |j − i| to guarantee that the expected Kendall tau distance achieves the target. Our
interest lies in computing

E (inv(π̂)) = E

∑
i<j

1
(

Π̂(j) ≤ Π̂(i)
) (23)

=
∑
i<j

P
([

Π̂(i)− Π̃∗(i)
]
−
[
Π̂(j)− Π̃∗(j)

]
≥
[
Π̃∗(j)− Π̃∗(i)

])
. (24)

Bernstein concentration: Introduce binary random variables bi,j that capture if a comparison was flipped
or not. Let bi,j = 1 indicate that the measurement was not flipped. By assumption, the bi,j are i.i.d. and
P(bi,j = 1) = p. Hence, we can write c̄i,j = bi,jci,j + (1 − bi,j)(1 − ci,j). We study the difference between the
estimated scores and the target scores:

Π̂(j)− Π̃∗(j) = Π̂(j)−
(

Π∗(j)(2p− 1) +

(
1− p− 1

2

)
n− 1

n

)
(25)

=
1

n

∑
i 6=j

[
n

2m(n)
si,j (2 [bi,jci,j + (1− bi,j)(1− ci,j)]− 1)−

(
ci,j(2p− 1) +

(
1− p− 1

2

))]
(26)
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Note that given π∗, the variables in the sum are independent. Some algebra reveals:

E
(

n

2m(n)
si,j (2 [bi,jci,j + (1− bi,j)(1− ci,j)]− 1)−

(
ci,j(2p− 1) +

(
1− p− 1

2

)))
= 0 (27)

var

(
n

2m(n)
si,j (2 [bi,jci,j + (1− bi,j)(1− ci,j)]− 1)−

(
ci,j(2p− 1) +

(
1− p− 1

2

)))
≤ n

4m(n)
(28)∣∣∣∣ n

2m(n)
si,j (2 [bi,jci,j + (1− bi,j)(1− ci,j)]− 1)−

(
ci,j(2p− 1) +

(
1− p− 1

2

))∣∣∣∣ ≤ n+m(n)

2m(n)
. (29)

The difference
[
Π̂(i)− Π̃∗(i)

]
−
[
Π̂(j)− Π̃∗(j)

]
can be written as a sum of 2n − 3 independent terms with

magnitude no more than twice and variance no more than four times that stated above. Thus, we can derive a
Bernstein concentration inequality (Boucheron et al., 2004). Conditioned on π∗, one can show that

P
([

Π̂(i)− Π̃∗(i)
]
−
[
Π̂(j)− Π̃∗(j)

]
≥
[
Π̃∗(j)− Π̃∗(i)

])
(30)

= P
(

2m(n)

2(n+m(n))

n

2n− 3

([
Π̂(i)− Π̃∗(i)

]
−
[
Π̂(j)− Π̃∗(j)

])
≥ 2m(n)

2(n+m(n))

n

2n− 3

[
Π̃∗(j)− Π̃∗(i)

])
(31)

≤ exp

−
(2n− 3)

(
n

2n−3

)2 [
Π̃∗(j)− Π̃∗(i)

]2
2 (n+m(n))2

m(n)2

(
4n

4m(n)
m(n)2

(n+m(n))2 +
( n

2n−3 )[Π̃∗(j)−Π̃∗(i)]
3

m(n)
n+m(n)

)
 (32)

≤ exp

{
−
[
j − i
n

]2
3

32
(2p− 1)2m(n)

}
, (33)

where we used the fact that we must eventually have n > 3 as well as m(n) < n− 3 if n > n0. Returning to the
expected Kendall tau distance of Eq. (24), we may bound

E (inv(π̂)) ≤
∑
i<j

exp

{
−
[
j − i
n

]2
3

32
(2p− 1)2m(n)

}
(34)

=

n−1∑
k=1

(n− k) exp

{
−
[
k

n

]2
3

32
(2p− 1)2m(n)

}
(35)

≤
∫ n

0

(n− k) exp

{
−
[
k

n

]2
3

32
(2p− 1)2m(n)

}
dk (36)

= n2

√
π 3

32 (2p− 1)2m(n) erf
(√

3
32 (2p− 1)2m(n)

)
+ exp

{
− 3

32 (2p− 1)2m(n)
}
− 1

2 3
32 (2p− 1)2m(n)

(37)

≤ n

n− 1

√
128

3

2

2(2p− 1)
√
m(n)

(
n
2

)
. (38)

For this bound to be no larger than η
2

(
n
2

)
, we need

η >
n

n− 1

√
128

3

2

(2p− 1)
√
m(n)

, (39)

so that a suitable m(n) exists which satisfies m(n) ∈ Θ(1/((2p− 1)2η2)).
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2.2. Proof of Theorem 4.2

Balanced Rank Estimation Algorithm (BRE): Measure each binary comparison independently with prob-
ability m(n)/n. Define the scores

Π̂(j) =

∑
i6=j si,j(2c̄i,j − 1)

2m(n)
∝
∑
i6=j

si,j(2c̄i,j − 1) . (40)

Predict π∗ by the ordering π̂ of the estimated scores, breaking ties randomly.

Theorem 4.2. For c > 0, if each comparison is measured with probability m(n)/n = c log(n)/n, Balanced Rank

Estimation produces with probability at least 1− 2n1−an 3
8 (2p−1)2ν2c a permutation π̂ with

max
j
|π̂(j)− π∗(j)| ≤ νn, (41)

where an is a sequence with an → 1.

Proof. Without loss of generality, we suppose that π∗ = (1, 2, . . . , n), so that π∗(j) = j. The true (rescaled) rank
score of object j is denoted by

Π∗(j) =
1

n

∑
i 6=j

ci,j =
j − 1

n
. (42)

Knowing the true scores Π∗ clearly suffices to predict the permutation π∗ with 0 Kendall tau distance. Equiv-
alently, it suffices to know the true scores up to global scaling and additive constants. We will show that the
Balanced Rank Estimation Algorithm produces an unbiased estimate of the scores

Π̃∗(j) = Π∗(j)(2p− 1) +

(
1− p− 1

2

)
n− 1

n
. (43)

In particular, we will show that for a large enough m(n), the difference |Π̂(j) − Π̃∗(j)| is with high probability
small for all j and that we will thus not confuse the relative ordering of two objects that are further than twice
this difference apart in π∗.

Bernstein concentration: Introduce binary random variables bi,j that capture if a comparison was flipped
or not. Let bi,j = 1 indicate that the measurement was not flipped. We assume that P(bi,j = 1) = p and that the
bi,j are i.i.d. Hence, we can write c̄i,j = bi,jci,j + (1− bi,j)(1− ci,j). As in Theorem 4.2, we study the difference
between the estimated scores and the rescaled and translated target scores:

Π̂(j)− Π̃∗(j) = Π̂(j)−
(

Π∗(j)(2p− 1) +

(
1− p− 1

2

)
n− 1

n

)
(44)

=
1

n

∑
i 6=j

[
n

2m(n)
si,j (2 [bi,jci,j + (1− bi,j)(1− ci,j)]− 1)−

(
ci,j(2p− 1) +

(
1− p− 1

2

))]
(45)

Note that given π∗, the variables in the sum are independent. The following result, which were previously used
in Theorem 4.2, can be shown

E
(

n

2m(n)
si,j (2 [bi,jci,j + (1− bi,j)(1− ci,j)]− 1)−

(
ci,j(2p− 1) +

(
1− p− 1

2

)))
= 0 (46)

var

(
n

2m(n)
si,j (2 [bi,jci,j + (1− bi,j)(1− ci,j)]− 1)−

(
ci,j(2p− 1) +

(
1− p− 1

2

)))
≤ n

4m(n)
(47)∣∣∣∣ n

2m(n)
si,j (2 [bi,jci,j + (1− bi,j)(1− ci,j)]− 1)−

(
ci,j(2p− 1) +

(
1− p− 1

2

))∣∣∣∣ ≤ n+m(n)

2m(n)
. (48)
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Thus, we can derive a Bernstein concentration inequality (Boucheron et al., 2004). Conditioned on π∗,

P
(∣∣∣Π̂(j)− Π̃∗(j)

∣∣∣ > t
)

= P
(∣∣∣∣ n

n− 1

2m(n)

n+m(n)
Π̂(j)− n

n− 1

2m(n)

n+m(n)
Π̃∗(j)

∣∣∣∣ > n

n− 1

2m(n)

n+m(n)
t

)
(49)

≤ 2 exp

−
(n− 1)t2

(
n
n−1

)2

2 (n+m(n))2

4m(n)2

(
n

4m(n)
4m(n)2

(n+m(n))2 + t
3

n
n−1

2m(n)
n+m(n)

)
 (50)

≤ 2 exp

{
− n

n+m(n)

t24m(n)

2
(
1 + 2t

3

)} . (51)

Since there are n items to be sorted, we apply a union bound

P
(
∃j :

∣∣∣Π̂(j)− Π̃∗(j)
∣∣∣ > t

)
≤ 2 exp

{
− n

n+m(n)

t24m(n)

2
(
1 + 2t

3

) + log(n)

}
. (52)

The concentration result tells us that the relative ordering of two objects that are far apart in the true ordering
(large t) is harder to confuse than that of nearby objects (small t). Thus, as n gets large, the relative ordering of
any sufficiently well-separated pair in π∗ should with high probability be predicted correctly in π̂. Specifically,
we have the following Lemma.

Lemma 4.3. For some a > 0 and b ∈ R, if ∀j,
∣∣∣Π̂(j)− (Π∗(j)a+ b)

∣∣∣ ≤ t, then ∀j, |π̂(j)− π∗(j)| ≤ 2tn/a.

Proof. We have π̂(j) 6= π∗(j) when one or more elements in Π̂ are mapped to the wrong side of Π̂(j). Equivalently,
to bound |π̂(j)− π∗(j)| we can count how many elements of Π̂ can at most map to the same value Π̂(j) and to
assume that the sorting algorithm breaks ties in the least favorable way. Note that

n

a

∣∣∣Π̂(j)− (Π∗(j)a+ b)
∣∣∣ =

∣∣∣∣na Π̂(j)−
(
j − 1 +

nb

a

)∣∣∣∣ < tn

a
. (53)

Hence, |π̂(j)− π∗(j)| ≤ 2tn/a.

Putting it together: By the definition of the mean score Π̃∗ in Eq. (43), we see that we need a = (2p − 1)
for Lemma 4.3. Then, in order to show that ∀j, |π̂(j) − π∗(j)| ≤ νn with high probability, we need that
with high probability ∀j, |Π̂(j) − Π̃∗(j)| ≤ (2p − 1)ν/2. Looking at Eq. (52), we can achieve this if we let
m(n) ≥ c(p, ν) log(n), for a sufficiently large constant c(p, ν). Then, as n → ∞, with high probability ∀j,
|π̂(j)− π∗(j)| ≤ νn.

Probability of success. The probability that the preconditions to Lemma 4.3 hold depend on the constant
c(p, ν). Specifically,

P
(
∀j :

∣∣∣Π̂(j)− Π̃∗(j)
∣∣∣ < (2p− 1)ν

2

)
(54)

≥ 1− 2 exp


1− n

n+ c(p, ν) log(n)

((2p− 1)ν)2c(p, ν)

2
(

1 + (2p−1)ν
3

)
 log(n)

 (55)

≥ 1− 2 exp

{[
1− n

n+ c(p, ν) log(n)

3

8
((2p− 1)ν)2c(p, ν)

]
log(n)

}
(56)

= 1− 2n1−an 3
8 (2p−1)2ν2c(p,ν), (57)

where an = n/(n+ c(p, ν) log(n))→ 1.
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2.3. Proof of Theorem 4.5

Unbalanced Rank Estimation Algorithm (URE): Measure each binary comparison independently with
probability m(n)/n. Define the scores

Π̂(j) =
1

m(n)

∑
i6=j

si,j c̄i,j ∝
∑
i6=j

si,j c̄i,j . (58)

Predict π∗ by the ordering π̂ of the estimated scores, breaking ties randomly.

Theorem 4.5. For any fixed 0 < η < 1, there is a constant c(p, η) ∈ Θ(1/((2p − 1)2η2)) so that if each
comparison is measured with probability at least m(n)/n ≥ c(p, η)/n, the Unbalanced Rank Estimation Algorithm
satisfies

E(inv(π̂)) ≤ η

2

(
n
2

)
. (59)

Proof. Without loss of generality, we suppose that π∗ = (1, 2, . . . , n), so that π∗(j) = j. The true (rescaled) rank
of object j is denoted by

Π∗(j) =
1

n

∑
i 6=j

ci,j =
j − 1

n
. (60)

It suffices to know the true ranking scores up to global scaling and additive constants. One can show that the
Unbalanced Rank Estimation Algorithm produces an unbiased estimate of the scores

Π̃∗(j) = Π∗(j)(2p− 1) + (1− p)n− 1

n
. (61)

We will show that for a large enough m(n), the probability that we predict an incorrect binary comparison (i.e.
we find that Π̂(j) < Π̂(i) even though i < j) will decay fast enough with growing |j − i| to guarantee that the
expected Kendall tau distance achieves the target. Our interest lies in upper bounding

E (inv(π̂)) = E

∑
i<j

1
(

Π̂(j) ≤ Π̂(i)
) (62)

=
∑
i<j

P
([

Π̂(i)− Π̃∗(i)
]
−
[
Π̂(j)− Π̃∗(j)

]
≥
[
Π̃∗(j)− Π̃∗(i)

])
. (63)

Bernstein concentration: We introduce binary random variables bi,j which encode whether or not a com-
parison was flipped. Let bi,j = 1 indicate that the measurement was not flipped. By assumption, the bi,j are
i.i.d. and P(bi,j = 1) = p. With this, we can write c̄i,j = bi,jci,j + (1− bi,j)(1− ci,j) and so

Π̂(j)− Π̃∗(j) = Π̂(j)−
(

Π∗(j)(2p− 1) + (1− p)n− 1

n

)
(64)

=
1

n

∑
i 6=j

[
n

m(n)
si,j [bi,jci,j + (1− bi,j)(1− ci,j)]− (ci,j(2p− 1) + (1− p))

]
. (65)

Given π∗, the random variables inside the sum are independent and one can show that

E
(

n

m(n)
si,j [bi,jci,j + (1− bi,j)(1− ci,j)]− (ci,j(2p− 1) + (1− p))

)
= 0 (66)

1

n− 1

∑
i 6=j

var

(
n

m(n)
si,j [bi,jci,j + (1− bi,j)(1− ci,j)]− (ci,j(2p− 1) + (1− p))

)
(67)

≤ n

m(n)

1

n− 1
[(j − 1)p+ (n− j)(1− p)] (68)∣∣∣∣ n

m(n)
si,j [bi,jci,j + (1− bi,j)(1− ci,j)]− (ci,j(2p− 1) + (1− p))

∣∣∣∣ ≤ n

m(n)
. (69)
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The difference
[
Π̂(i)− Π̃∗(i)

]
−
[
Π̂(j)− Π̃∗(j)

]
can be written as a sum of 2n − 3 independent, zero-mean

random variables, with magnitude at most twice and variance at most four times the above. Using the variance
and magnitude bound, we can derive the following Bernstein concentration result (Boucheron et al., 2004).
Conditioned on π∗,

P
([

Π̂(i)− Π̃∗(i)
]
−
[
Π̂(j)− Π̃∗(j)

]
≥
[
Π̃∗(j)− Π̃∗(i)

])
(70)

= P
(
m(n)

2n

n

2n− 3

([
Π̂(i)− Π̃∗(i)

]
−
[
Π̂(j)− Π̃∗(j)

])
≥ m(n)

2n

n

2n− 3

[
Π̃∗(j)− Π̃∗(i)

])
(71)

≤ exp

−
(2n− 3)

[
Π̃∗(j)− Π̃∗(i)

]2
2 (2(2n−3))2

m(n)2

(
4 n
m(n)

1
n−1 [(j − 1)p+ (n− j)(1− p)] m(n)2

4n2 +
[Π̃∗(j)−Π̃∗(i)]

3
m(n)

2(2n−3)

)
 (72)

≤ exp

{
−
[
j − i
n

]2
3

100
(2p− 1)2m(n)

}
. (73)

Then plugging this in the expected Kendall tau distance,

E (inv(π̂)) ≤
∑
i<j

exp

{
−
[
j − i
n

]2
3

100
(2p− 1)2m(n)

}
(74)

=

n−1∑
k=1

(n− k) exp

{
−
[
k

n

]2
3

100
(2p− 1)2m(n)

}
(75)

≤
∫ n

0

(n− k) exp

{
−
[
k

n

]2
3

100
(2p− 1)2m(n)

}
dk (76)

= n2

√
π 3

100 (2p− 1)2m(n) erf
(√

3
100 (2p− 1)2m(n)

)
+ exp{− 3

100 (2p− 1)2m(n)} − 1

2 3
100 (2p− 1)2m(n)

(77)

≤ n

n− 1

√
400

3

2

2(2p− 1)
√
m(n)

(
n
2

)
. (78)

For this bound to be no larger than η
2

(
n
2

)
, we need

η >
n

n− 1

√
400

3

2

(2p− 1)
√
m(n)

, (79)

so that a suitable m(n) exists which satisfies m(n) ∈ Θ
(
1/((2p− 1)2η2)

)
.
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2.4. Proof of Theorem 4.6

Unbalanced Rank Estimation Algorithm (URE): Measure each binary comparison independently with
probability m(n)/n. Define the scores

Π̂(j) =
1

m(n)

∑
i6=j

si,j c̄i,j ∝
∑
i6=j

si,j c̄i,j . (80)

Predict π∗ by the ordering π̂ of the estimated scores, breaking ties randomly.

Theorem 4.6. For c > 0, if each comparison is measured with probability m(n)/n = c log(n)/n, Unbalanced
Rank Estimation produces with probability at least

1− 2n1− 3
2 [(2p−1)2ν2/(3(1−p)+(5p−1)ν)]c (81)

a permutation π̂ with

|π∗(j)− π̂(j)| ≤
{

4νn if π∗(j) < νn

4
√
ν
√
π∗(j)n if π∗(j) ≥ νn . (82)

Proof. Without loss of generality, we suppose that π∗ = (1, 2, . . . , n), so that π∗(j) = j. To prove this theorem,
we need to refine the Bernstein concentration from Theorem 4.5. The true (rescaled) rank score of object j is
denoted by

Π∗(j) =
1

n

∑
i 6=j

ci,j =
j − 1

n
. (83)

It suffices to know the true ranking scores up to global scaling and additive constants. We will show that the
Unbalanced Rank Estimation Algorithm produces an unbiased estimate of the scores

Π̃∗(j) = Π∗(j)(2p− 1) + (1− p)n− 1

n
. (84)

Bernstein concentration: We introduce binary random variables bi,j which encode whether or not a com-
parison was flipped. Let bi,j = 1 indicate that the measurement was not flipped. By assumption, the bi,j are
i.i.d. and P(bi,j = 1) = p. With this, we can write c̄i,j = bi,jci,j + (1− bi,j)(1− ci,j) and so

Π̂(j)− Π̃∗(j) = Π̂(j)−
(

Π∗(j)(2p− 1) + (1− p)n− 1

n

)
(85)

=
1

n

∑
i 6=j

[
n

m(n)
si,j [bi,jci,j + (1− bi,j)(1− ci,j)]− (ci,j(2p− 1) + (1− p))

]
. (86)

Given π∗, the random variables inside the sum are independent. Furthermore, one can show the following results,
previously used in Theorem 4.5

E
(

n

m(n)
si,j [bi,jci,j + (1− bi,j)(1− ci,j)]− (ci,j(2p− 1) + (1− p))

)
= 0 (87)

1

n− 1

∑
i 6=j

var

(
n

m(n)
si,j [bi,jci,j + (1− bi,j)(1− ci,j)]− (ci,j(2p− 1) + (1− p))

)
(88)

≤ n

m(n)

1

n− 1
[(j − 1)p+ (n− j)(1− p)] (89)∣∣∣∣ n

m(n)
si,j [bi,jci,j + (1− bi,j)(1− ci,j)]− (ci,j(2p− 1) + (1− p))

∣∣∣∣ ≤ n

m(n)
. (90)
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With this we can derive a refined Bernstein concentration result (Boucheron et al., 2004). Conditioned on π∗,

P
(∣∣∣Π̂(j)− Π̃∗(j)

∣∣∣ > t
)

(91)

= P
(
m(n)

n

n

n− 1

∣∣∣Π̂(j)− Π̃∗(j)
∣∣∣ > m(n)

n

n

n− 1
t

)
(92)

≤ 2 exp

−
(n− 1)t2

(
n
n−1

)2

2 n2

m(n)2

(
n

m(n)
1

n−1 [(j − 1)p+ (n− j)(1− p)] m(n)2

n2 + t
3
m(n)
n

n
n−1

)
 (93)

≤ 2 exp

{
− t2m(n)

2
(
j
np+ (1− p) + t

3

)} . (94)

Let us now substitute different values of t. To begin, if j < νn, then by rescaling t,

P
(∣∣∣Π̂(j)− Π̃∗(j)

∣∣∣ > √νt) ≤ 2 exp

{
− νt2m(n)

2
(
j
np+ (1− p) + t

3

√
ν
)} (95)

≤ 2 exp

−
√
νt2m(n)

2
(√

νp+ 1√
ν

(1− p) + t
3

)
 (96)

And if j ≥ νn, by rescaling t,

P

(∣∣∣Π̂(j)− Π̃∗(j)
∣∣∣ >√ j

n
t

)
≤ 2 exp

−
t2m(n)

2nj

(
j
np+ (1− p) + t

3

√
j
n

)
 (97)

≤ 2 exp

−
√
νt2m(n)

2
(√

νp+ 1√
ν

(1− p) + t
3

)
 . (98)

Notice that the upper bounds do not depend on j and are identical in the two cases. Hence, we see that the
concentration result becomes strong for small j < νn as n gets large, but remains relatively weak for large j ≈ n.
Define the events

Aj =


{∣∣∣Π̂(j)− Π̃∗(j)

∣∣∣ > √νt} if j < νn{∣∣∣Π̂(j)− Π̃∗(j)
∣∣∣ >√ j

n t

}
if j ≥ νn.

(99)

Applying a union bound, we find

P

 n⋃
j=1

Aj

 ≤ 2 exp

−
√
νt2m(n)

2
(√

νp+ 1√
ν

(1− p) + t
3

) + log(n)

 . (100)

To use the bound in Eq. (100), we first prove the following Lemma.

Lemma 4.7. For some a > 0, 0 < γ < a2 and arbitrary b ∈ R, if

|Π̂(j)− (Π∗(j)a+ b)| ≤
{
γ/a if j < γn/a2√
γj/n if j ≥ γn/a2 , (101)

then

|π̂(j)− π∗(j)| ≤
{

4γn/a2 if j < γn/a2

4
√
γjn/a if j ≥ γn/a2 . (102)
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Proof. Let Π̃∗ = Π∗(j)a + b. We need to bound the number of elements of Π̂ that can appear on the wrong
side of Π̂(j). The prediction π̂(j) can deviate from π∗(j) by at most the number of such misplaced elements. It
suffices to bound the number of elements of Π̂ that can take on the same value Π̂(j) and then to assume that the
Unbalanced Rank Estimation Algorithm breaks ties in the least favorable way. To maximize the number of such
confusions, the estimated score Π̂(j) must deviate up from its mean value Π̃∗(j) as much as possible, since then
the most elements k with Π̃∗(k) > Π̂(j) can map down to Π̂(j), and the most elements k with Π̂(j) > Π̃∗(k) can
map up to Π̂(j) (The conditions of the lemma ensure that larger deviations are possible for large k than small
k.) Specifically, if j ≥ γn/a2 then we should have Π̂(j) = Π̃∗(j) +

√
γj/n. If j < γn/a2, then we should have,

Π̂(j) = Π̃∗(j) + γ/a. For the following, denote tj =
√
γj/n/a, which is how much the rescaled score Π̂(j)/a can

differ from Π̃∗(j)/a = Π∗(j) + b/a if j ≥ γn/a2.

Suppose that j ≥ γn/a2. The largest element k̄ that can overlap with j satisfies

Π̃∗(k̄)n

a
− tk̄n =

Π̃∗(j)n

a
+ tjn (103)

k̄ − 1 +
bn

a
− tk̄n = j − 1 +

bn

a
+ tjn (104)

k̄ − tk̄n = j + tjn (105)

k̄ −
√
nk̄
√
γ

a
= j +

√
nj
√
γ

a
. (106)

Since
√
k̄ ≥ 0, we use the positive solution given by the quadratic formula:

√
k̄ =

√
nγ/a+

√
nγ/a2 + 4

√
nj
√
γ/a+ 4j

2
(107)

=

√
nγ/a+

√(√
nγ/a+ 2

√
j
)2

2
(108)

=

√
nγ

a
+
√
j. (109)

With this, we have

tk̄ =

√
k̄

n

√
γ

a
=

√
nγ/a+

√
j

√
n

√
γ

a
=

γ

a2
+

√
γ

a

√
j

n
. (110)

By this derivation, at most tk̄n elements k with Π̃∗(k) > Π̂(j) can map down to Π̂(j). Furthermore, at most
tjn elements k with Π̂(j) > Π̃∗(k) can map up to Π̂(j). Taken together, because tj ≤ tk̄, at most (tj + tk̄)n ≤
2tk̄n = 2γn/a2 + 2

√
γ
√
jn/a elements k can map onto Π̂(j). This means, even if the sorting algorithm breaks

ties in the least favorable way, we have ∀j ≥ γn/a2

|π̂(j)− π∗(j)| ≤ 2tk̄n =
2γn

a2
+

2
√
γjn

a
. (111)

Note that if j ≥ γn/a2, the second term in Eq. (111) is at least as large as the first term. So ∀j ≥ γn/a2

|π̂(j)− π∗(j)| ≤ 4
√
γjn

a
. (112)

On the other hand, if j ≤ γn/a2, then at most k̄ elements can map to Π̂(j). The upper limit k̄ is largest when
j = γn/a2. Thus,

|π̂(j)− π∗(j)| ≤ k̄ =
√
k̄

2

=
γn

a2
+

2
√
γnj

a
+ j =

4γn

a2
. (113)
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We can now prove the theorem. In the context of Π̃∗ in Eq. (84), a = (2p− 1). For any 0 < ν < 1, set γ = νa2

in Lemma 4.7. If we set t = a
√
ν, then the union bound in Eq. (100) controls the probability that the bounds on

the scores required by the lemma will be satisfied so that we can use the lemma to draw the desired conclusion.
Specifically, with these settings, if m(n) ≥ c(p, ν) log(n) with the constant c(p, ν) large enough, then by the
lemma we predict with high probability the first νn elements j of π∗ with accuracy |π̂(j)−π∗(j)| ≤ 4νn and the
remaining elements with accuracy |π̂(j)− π∗(j)| ≤ 4

√
ν
√
jn.

Probability of success. The probability that the preconditions to Lemma 4.7 hold depend on the constant
c(p, ν). Specifically,

1− P

 n⋃
j=1

Aj

 ≥ 1− 2 exp

−
√
ν ((2p− 1)

√
ν)

2
c(p, ν) log(n)

2
(√

νp+ 1√
ν

(1− p) + (2p−1)
√
ν

3

) + log(n)

 (114)

= 1− 2n1− 3
2

(2p−1)2ν2

(3(1−p)+(5p−1)ν)
c(p,ν) (115)
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