# Sequential Bayesian Search <br> Appendices 

Zheng Wen Branislav Kveton Brian Eriksson Sandilya Bhamidipati

## A Proof of Theorem 1

Assume that at the beginning of game $t$, the system's belief in the user's preference is $\mathbb{P}_{t}$. Then, the certainty-equivalet user preference during game $t$ is

$$
\pi_{t}^{*}(i)=\mathbb{E}_{\pi \sim \mathbb{P}_{t}}[\pi(i)] \quad \forall i \in \mathcal{I} .
$$

Recall we define $\pi_{\text {min }}^{*}=\min _{i \in \mathcal{I}} \pi^{*}(i)$, Lemma A- 1 formalizes the result that if $\pi_{t}^{*}$ is "close" to $\pi^{*}$, then for any decision tree $T, \mathbb{E}_{i \sim \pi_{t}^{*}}[N(T, i)]$ is "close" to $\mathbb{E}_{i \sim \pi^{*}}[N(T, i)]$ :

Lemma A-1: For any decision tree $T$, we have that

$$
\begin{equation*}
\left|\mathbb{E}_{i \sim \pi^{*}}[N(T, i)]-\mathbb{E}_{i \sim \pi_{t}^{*}}[N(T, i)]\right| \leq \frac{\left\|\pi^{*}-\pi_{t}^{*}\right\|_{\infty}}{\pi_{\min }^{*}} \mathbb{E}_{i \sim \pi^{*}}[N(T, i)] . \tag{1}
\end{equation*}
$$

## Proof:

Notice that

$$
\begin{aligned}
\left|\mathbb{E}_{i \sim \pi^{*}}[N(T, i)]-\mathbb{E}_{i \sim \pi_{t}^{*}}[N(T, i)]\right| & =\left|\sum_{i \in \mathcal{I}}\left[\pi^{*}(i)-\pi_{t}^{*}(i)\right] N(T, i)\right| \\
& \leq \sum_{i \in \mathcal{I}}\left|\pi^{*}(i)-\pi_{t}^{*}(i)\right| N(T, i) \\
& =\sum_{i \in \mathcal{I}} \frac{\left|\pi^{*}(i)-\pi_{t}^{*}(i)\right|}{\pi^{*}(i)} \pi^{*}(i) N(T, i) \\
& \leq \max _{i \in \mathcal{I}}\left[\frac{\left|\pi^{*}(i)-\pi_{t}^{*}(i)\right|}{\pi^{*}(i)}\right] \sum_{i \in \mathcal{I}} \pi^{*}(i) N(T, i) \\
& =\max _{i \in \mathcal{I}}\left[\frac{\left|\pi^{*}(i)-\pi_{t}^{*}(i)\right|}{\pi^{*}(i)}\right] \mathbb{E}_{i \sim \pi^{*}}[N(T, i)] \\
& \leq \frac{\max _{i \in \mathcal{I}}\left|\pi^{*}(i)-\pi_{t}^{*}(i)\right|}{\pi_{\min }^{*}} \mathbb{E}_{i \sim \pi^{*}}[N(T, i)] \\
& =\frac{\left\|\pi^{*}-\pi_{t}^{*}\right\|_{\infty}}{\pi_{\min }^{*}} \mathbb{E}_{i \sim \pi^{*}}[N(T, i)],
\end{aligned}
$$

where the first inequality follows from the triangular inequality and the second inequality follows from the Hölder's inequality. Q.E.D.

Note that the bound in Lemma A-1 is tight in the following example. Assume $\mathcal{I}=\{1,2\}$ and

$$
\begin{aligned}
N(T, 1) & =0 \\
N(T, 2) & =1 \\
\pi^{*}(1) & =1-\varepsilon \\
\pi^{*}(2) & =\varepsilon \\
\pi_{t}^{*}(1) & =1-2 \varepsilon \\
\pi_{t}^{*}(2) & =2 \varepsilon .
\end{aligned}
$$

Then $\mathbb{E}_{i \sim \pi^{*}}[N(T, i)]=\varepsilon, \mathbb{E}_{i \sim \pi_{t}^{*}}[N(T, i)]=2 \varepsilon$, and therefore

$$
\left|\mathbb{E}_{i \sim \pi^{*}}[N(T, i)]-\mathbb{E}_{i \sim \pi_{t}^{*}}[N(T, i)]\right|=\varepsilon .
$$

On the other hand, we have $\left\|\pi^{*}-\pi_{t}^{*}\right\|_{\infty}=\varepsilon$. Furthermore, for $\varepsilon \leq \frac{1}{2}$, we have that

$$
\pi_{\min }^{*}=\pi^{*}(2)=\varepsilon
$$

Thus we have

$$
\frac{\left\|\pi^{*}-\pi_{t}^{*}\right\|_{\infty}}{\pi_{\min }^{*}} \mathbb{E}_{i \sim \pi^{*}}[N(T, i)]=\frac{\varepsilon}{\varepsilon} \varepsilon=\varepsilon
$$

Hence, the bound in Lemma A-1 is tight in this example.
Throughout this section, we assume the certainty-equivalent (CE) optimization problem is solved exactly, and use $T_{t}^{*}$ to denote the solution of the CE optimization problem in game $t, \forall t=0,1, \cdots$. Lemma A-2 states that if $\left\|\pi_{t}^{*}-\pi^{*}\right\|_{\infty}$ is "small", the one-game regret (conditioning on $\pi_{t}^{*}$ ) is also "small":

Lemma A-2: If $\left\|\pi^{*}-\pi_{t}^{*}\right\|_{\infty}<\pi_{\text {min }}^{*}$, then we have

$$
\begin{equation*}
\frac{2\left\|\pi^{*}-\pi_{t}^{*}\right\|_{\infty}}{\pi_{\min }^{*}-\left\|\pi^{*}-\pi_{t}^{*}\right\|_{\infty}} \mathbb{E}_{i \sim \pi^{*}}\left[N\left(T^{*}, i\right)\right] \geq \mathbb{E}_{i \sim \pi^{*}}\left[N\left(T_{t}^{*}, i\right)\right]-\mathbb{E}_{i \sim \pi^{*}}\left[N\left(T^{*}, i\right)\right] \geq 0 \tag{2}
\end{equation*}
$$

## Proof:

By definition of $T_{t}^{*}$, we have that

$$
\mathbb{E}_{i \sim \pi_{t}^{*}}\left[N\left(T^{*}, i\right)\right] \geq \mathbb{E}_{i \sim \pi_{t}^{*}}\left[N\left(T_{t}^{*}, i\right)\right]
$$

On the other hand, from the inequality (1), we have that

$$
\begin{aligned}
\mathbb{E}_{i \sim \pi_{t}^{*}}\left[N\left(T_{t}^{*}, i\right)\right] & \geq \mathbb{E}_{i \sim \pi^{*}}\left[N\left(T_{t}^{*}, i\right)\right]-\frac{\left\|\pi^{*}-\pi_{t}^{*}\right\|_{\infty}}{\pi_{\min }^{*}} \mathbb{E}_{i \sim \pi^{*}}\left[N\left(T_{t}^{*}, i\right)\right] \\
& =\frac{\pi_{\min }^{*}-\left\|\pi^{*}-\pi_{t}^{*}\right\|_{\infty} \mathbb{E}_{i \sim \pi^{*}}\left[N\left(T_{t}^{*}, i\right)\right]}{\pi_{\min }^{*}}
\end{aligned}
$$

Similarly, we have that

$$
\begin{aligned}
\mathbb{E}_{i \sim \pi_{t}^{*}}\left[N\left(T^{*}, i\right)\right] & \leq \mathbb{E}_{i \sim \pi^{*}}\left[N\left(T^{*}, i\right)\right]+\frac{\left\|\pi^{*}-\pi_{t}^{*}\right\|_{\infty}}{\pi_{\min }^{*}} \mathbb{E}_{i \sim \pi^{*}}\left[N\left(T^{*}, i\right)\right] \\
& =\frac{\pi_{\min }^{*}+\left\|\pi^{*}-\pi_{t}^{*}\right\|_{\infty}}{\pi_{\min }^{*}} \mathbb{E}_{i \sim \pi^{*}}\left[N\left(T^{*}, i\right)\right]
\end{aligned}
$$

Combining the above three inequalities, we have that

$$
\frac{\pi_{\min }^{*}+\left\|\pi^{*}-\pi_{t}^{*}\right\|_{\infty}}{\pi_{\min }^{*}} \mathbb{E}_{i \sim \pi^{*}}\left[N\left(T^{*}, i\right)\right] \geq \frac{\pi_{\min }^{*}-\left\|\pi^{*}-\pi_{t}^{*}\right\|_{\infty}}{\pi_{\min }^{*}} \mathbb{E}_{i \sim \pi^{*}}\left[N\left(T_{t}^{*}, i\right)\right]
$$

That is

$$
\frac{\pi_{\min }^{*}+\left\|\pi^{*}-\pi_{t}^{*}\right\|_{\infty}}{\pi_{\min }^{*}-\left\|\pi^{*}-\pi_{t}^{*}\right\|_{\infty}} \mathbb{E}_{i \sim \pi^{*}}\left[N\left(T^{*}, i\right)\right] \geq \mathbb{E}_{i \sim \pi^{*}}\left[N\left(T_{t}^{*}, i\right)\right]
$$

So we have

$$
\mathbb{E}_{i \sim \pi^{*}}\left[N\left(T_{t}^{*}, i\right)\right]-\mathbb{E}_{i \sim \pi^{*}}\left[N\left(T^{*}, i\right)\right] \leq \frac{2\left\|\pi^{*}-\pi_{t}^{*}\right\|_{\infty}}{\pi_{\min }^{*}-\left\|\pi^{*}-\pi_{t}^{*}\right\|_{\infty}} \mathbb{E}_{i \sim \pi^{*}}\left[N\left(T^{*}, i\right)\right]
$$

Finally, notice that by definition of $T^{*}$ (i.e. $\left.T^{*} \in \arg \min _{T} \mathbb{E}_{i \sim \pi^{*}}[N(T, i)]\right)$, we have that

$$
\mathbb{E}_{i \sim \pi^{*}}\left[N\left(T_{t}^{*}, i\right)\right] \geq \mathbb{E}_{i \sim \pi^{*}}\left[N\left(T^{*}, i\right)\right]
$$

Thus, we have proved Lemma A-2. Q.E.D.
Now we consider the case when the prior belief $\mathbb{P}_{0}$ of the system is modeled as a Dirichlet distribution with parameter $\alpha \in \Re_{+}^{M}$ (henceforth denoted as $\operatorname{Dir}(\alpha)$ ). Specifically, its probability density function (PDF) over the probability simplex $\Delta^{M-1}$ is given by

$$
f_{\mathbb{P}_{0}}(\pi)=\frac{1}{B(\alpha)} \prod_{i \in \mathcal{I}} \pi(i)^{\alpha(i)-1}, \forall \pi \in \Delta^{M-1}
$$

where $\pi(i)$ is the probability mass at item $i$, and $\alpha(i)$ is the associated parameter. $B(\alpha)$ is a normalizing constant given by

$$
B(\alpha)=\frac{\prod_{i \in \mathcal{I}} \Gamma(\alpha(i))}{\Gamma\left(\sum_{i \in \mathcal{I}} \alpha(i)\right)}
$$

where $\Gamma(\cdot)$ is the classical gamma function. The main advantage of Dirichlet prior is that it results in a simple posterior distribution, since it is the conjugate prior of the multinomial distribution. Specifically, $\forall t=0,1, \cdots$, we define the indicator vector $Z_{t} \in \Re^{M}$ as follows:

$$
Z_{t}(i)= \begin{cases}1 & \text { if } i=i_{t} \\ 0 & \text { otherwise }\end{cases}
$$

Then, based on the Bayes rule, the posterior belief at the beginning of game $t$ is

$$
\mathbb{P}_{t}=\operatorname{Dir}\left(\alpha+\sum_{\tau=0}^{t-1} Z_{\tau}\right)
$$

From the properties of Dirichlet distribution, we have that

$$
\pi_{t}^{*}(i)=\mathbb{E}_{\pi \sim \mathbb{P}_{t}}[\pi(i)]=\frac{\alpha(i)+\sum_{\tau=0}^{t-1} Z_{\tau}(i)}{\sum_{i^{\prime} \in \mathcal{I}}\left[\alpha\left(i^{\prime}\right)+\sum_{\tau=0}^{t-1} Z_{\tau}\left(i^{\prime}\right)\right]}
$$

Notice that $\sum_{i^{\prime} \in \mathcal{I}} \sum_{\tau=0}^{t-1} Z_{\tau}\left(i^{\prime}\right)=\sum_{\tau=0}^{t-1} \sum_{i^{\prime} \in \mathcal{I}} Z_{\tau}\left(i^{\prime}\right)=\sum_{\tau=0}^{t-1} 1=t$. Furthermore, we define $\alpha_{0}=\sum_{i^{\prime} \in \mathcal{I}} \alpha\left(i^{\prime}\right)$. Thus, we have

$$
\pi_{t}^{*}(i)=\frac{\alpha(i)+\sum_{\tau=0}^{t-1} Z_{\tau}(i)}{\alpha_{0}+t}=\frac{\alpha_{0}}{\alpha_{0}+t} \frac{\alpha(i)}{\alpha_{0}}+\frac{t}{\alpha_{0}+t} \frac{\sum_{\tau=0}^{t-1} Z_{\tau}(i)}{t}
$$

Throughout this paper, we use the convention that " $\frac{0}{0}=0$ ", so for $t=0$, we have $\pi_{0}^{*}(i)=\frac{\alpha(i)}{\alpha_{0}}$. The above equation has a very nice interpretation: notice that $\frac{\alpha(i)}{\alpha_{0}}$ is the estimate of $\pi^{*}(i)$ based on the prior belief,
while $\frac{\sum_{\tau=0}^{t-1} Z_{\tau}(i)}{t}$ is the estimate of $\pi^{*}(i)$ based on observations, the above equation states that $\pi_{t}^{*}(i)$ is a convex combination (weighted average) of these two estimates. Furthermore, the weights depend on $t$, the index of the current interactive game (or equivalently, the number of past observations).

From Hoeffding's inequality, $\forall \epsilon>0$, we have that

$$
\mathbb{P}\left(\left|\frac{\sum_{\tau=0}^{t-1} Z_{\tau}(i)}{t}-\pi^{*}(i)\right| \leq \epsilon\right) \geq 1-2 \exp \left(-2 \epsilon^{2} t\right)
$$

That is, for any $i \in \mathcal{I}$, at the beginning of game $t$, with probability at least $1-2 \exp \left(-2 \epsilon^{2} t\right)$, we have that

$$
\left|\frac{\sum_{\tau=0}^{t-1} Z_{\tau}(i)}{t}-\pi^{*}(i)\right| \leq \epsilon
$$

Let $E_{t}(i)$ denote the event that $\left|\frac{\sum_{\tau=0}^{t-1} Z_{\tau}(i)}{t}-\pi^{*}(i)\right|>\epsilon$. Then we have proved that $\mathbb{P}\left(E_{t}(i)\right) \leq 2 \exp \left(-2 \epsilon^{2} t\right)$ for any $i \in \mathcal{I}$. From the union bound of the probability, we have that

$$
\mathbb{P}\left(\cup_{i \in \mathcal{I}} E_{t}(i)\right) \leq \sum_{i \in \mathcal{I}} \mathbb{P}\left(E_{t}(i)\right) \leq 2 M \exp \left(-2 \epsilon^{2} t\right)
$$

Thus, with probability at least $1-2 M \exp \left(-2 \epsilon^{2} t\right)$, we have that

$$
\max _{i \in \mathcal{I}}\left|\frac{\sum_{\tau=0}^{t-1} Z_{\tau}(i)}{t}-\pi^{*}(i)\right| \leq \epsilon
$$

Finally, notice that $\forall i \in \mathcal{I}$, we have that

$$
\begin{aligned}
\left|\pi^{*}(i)-\pi_{t}^{*}(i)\right| & =\left|\frac{\alpha_{0}}{\alpha_{0}+t}\left(\frac{\alpha(i)}{\alpha_{0}}-\pi^{*}(i)\right)+\frac{t}{\alpha_{0}+t}\left(\frac{\sum_{\tau=0}^{t-1} Z_{\tau}(i)}{t}-\pi^{*}(i)\right)\right| \\
& \leq \frac{\alpha_{0}}{\alpha_{0}+t}\left|\frac{\alpha(i)}{\alpha_{0}}-\pi^{*}(i)\right|+\frac{t}{\alpha_{0}+t}\left|\frac{\sum_{\tau=0}^{t-1} Z_{\tau}(i)}{t}-\pi^{*}(i)\right|
\end{aligned}
$$

Thus we have that

$$
\begin{aligned}
\max _{i \in \mathcal{I}}\left|\pi^{*}(i)-\pi_{t}^{*}(i)\right| & \leq \max _{i \in \mathcal{I}}\left[\frac{\alpha_{0}}{\alpha_{0}+t}\left|\frac{\alpha(i)}{\alpha_{0}}-\pi^{*}(i)\right|+\frac{t}{\alpha_{0}+t}\left|\frac{\sum_{\tau=0}^{t-1} Z_{\tau}(i)}{t}-\pi^{*}(i)\right|\right] \\
& \leq \frac{\alpha_{0}}{\alpha_{0}+t} \max _{i \in \mathcal{I}}\left|\frac{\alpha(i)}{\alpha_{0}}-\pi^{*}(i)\right|+\frac{t}{\alpha_{0}+t} \max _{i \in \mathcal{I}}\left|\frac{\sum_{\tau=0}^{t-1} Z_{\tau}(i)}{t}-\pi^{*}(i)\right|
\end{aligned}
$$

Notice that $\max _{i \in \mathcal{I}}\left|\frac{\alpha(i)}{\alpha_{0}}-\pi^{*}(i)\right|$ is the maximum estimation error based on the prior belief, which is independent of the observations. On the other hand, $\max _{i \in \mathcal{I}}\left|\frac{\sum_{\tau=0}^{t-1} Z_{\tau}(i)}{t}-\pi^{*}(i)\right|$ is the maximum estimation error based on observations, which is a random variable.

Lemma A-3 upper bounds the regret in game $t$ :
Lemma A-3: $\forall t>0$ and $\forall 0<\eta \leq \frac{1}{3}$, if

$$
\frac{\alpha_{0}}{\alpha_{0}+t} \max _{i \in \mathcal{I}}\left|\frac{\alpha(i)}{\alpha_{0}}-\pi^{*}(i)\right|<\eta \pi_{\min }^{*}
$$

then we have that
$\mathbb{E}_{T_{t}^{*}}\left\{\mathbb{E}_{i \sim \pi^{*}}\left[N\left(T_{t}^{*}, i\right)\right]-\mathbb{E}_{i \sim \pi^{*}}\left[N\left(T^{*}, i\right)\right]\right\}<3 \eta \mathbb{E}_{i \sim \pi^{*}}\left[N\left(T^{*}, i\right)\right]+2 M|\mathcal{Q}| \exp \left\{4 \eta \pi_{\min }^{*} \alpha_{0} \max _{i \in \mathcal{I}}\left|\frac{\alpha(i)}{\alpha_{0}}-\pi^{*}(i)\right|-2\left[\eta \pi_{\min }^{*}\right]^{2} t\right\}$.

## Proof:

Proof: ${ }^{\alpha_{0}} \max _{i \in \mathcal{I}}\left|\frac{\alpha(i)}{\alpha_{0}+t}-\pi^{*}(i)\right|<\eta \pi_{\text {min }}^{*}$, thus, one sufficient condition to ensure that

$$
\max _{i \in \mathcal{I}}\left|\pi^{*}(i)-\pi_{t}^{*}(i)\right| \leq \eta \pi_{\min }^{*}
$$

is

$$
\begin{equation*}
\max _{i \in \mathcal{I}}\left|\frac{\sum_{\tau=0}^{t-1} Z_{\tau}(i)}{t}-\pi^{*}(i)\right| \leq \eta \pi_{\min }^{*}\left(1+\frac{\alpha_{0}}{t}\right)-\frac{\alpha_{0}}{t} \max _{i \in \mathcal{I}}\left|\frac{\alpha(i)}{\alpha_{0}}-\pi^{*}(i)\right| . \tag{3}
\end{equation*}
$$

Define $\epsilon=\eta \pi_{\text {min }}^{*}\left(1+\frac{\alpha_{0}}{t}\right)-\frac{\alpha_{0}}{t} \max _{i \in \mathcal{I}}\left|\frac{\alpha(i)}{\alpha_{0}}-\pi^{*}(i)\right|$, from the above discussion, we know that inequality (3) holds with probability at least $1-2 M \exp \left(-2 \epsilon^{2} t\right)$. Furthermore, from Lemma A-2, $\max _{i \in \mathcal{I}}\left|\pi^{*}(i)-\pi_{t}^{*}(i)\right| \leq$ $\eta \pi_{\text {min }}^{*}$ implies that

$$
\begin{equation*}
\frac{2 \eta}{1-\eta} \mathbb{E}_{i \sim \pi^{*}}\left[N\left(T^{*}, i\right)\right] \geq \mathbb{E}_{i \sim \pi^{*}}\left[N\left(T_{t}^{*}, i\right)\right]-\mathbb{E}_{i \sim \pi^{*}}\left[N\left(T^{*}, i\right)\right] \tag{4}
\end{equation*}
$$

Thus, we have proved that with probability at least $1-2 M \exp \left(-2 \epsilon^{2} t\right)$, inequality (4) holds. In other words, if we define $E$ as the event that inequality (4) holds, then we have that $\mathbb{P}(E) \geq 1-2 M \exp \left(-2 \epsilon^{2} t\right)$

On the other hand, notice that a naive bound on the regret is $\mathbb{E}_{i \sim \pi^{*}}\left[N\left(T_{t}^{*}, i\right)\right]-\mathbb{E}_{i \sim \pi^{*}}\left[N\left(T^{*}, i\right)\right] \leq|\mathcal{Q}|$. With $E$ defined as the event that inequality (4) holds and $\bar{E}$ defined as the complement of $E$, we have that:

$$
\begin{aligned}
\mathbb{E}_{T_{t}^{*}}\left\{\mathbb{E}_{i \sim \pi^{*}}\left[N\left(T_{t}^{*}, i\right)\right]-\mathbb{E}_{i \sim \pi^{*}}\left[N\left(T^{*}, i\right)\right]\right\} & \leq \mathbb{P}(E) \mathbb{E}_{T_{t}^{*}}\left\{\mathbb{E}_{i \sim \pi^{*}}\left[N\left(T_{t}^{*}, i\right)\right]-\mathbb{E}_{i \sim \pi^{*}}\left[N\left(T^{*}, i\right)\right] \mid E\right\} \\
& +[1-\mathbb{P}(E)] \mathbb{E}_{T_{t}^{*}}\left\{\mathbb{E}_{i \sim \pi^{*}}\left[N\left(T_{t}^{*}, i\right)\right]-\mathbb{E}_{i \sim \pi^{*}}\left[N\left(T^{*}, i\right)\right] \mid \bar{E}\right\} \\
& \leq \mathbb{P}(E) \frac{2 \eta}{1-\eta} \mathbb{E}_{i \sim \pi^{*}}\left[N\left(T^{*}, i\right)\right]+[1-\mathbb{P}(E)]|\mathcal{Q}| .
\end{aligned}
$$

On the other hand, notice that $\mathbb{E}_{i \sim \pi^{*}}\left[N\left(T^{*}, i\right)\right] \leq|\mathcal{Q}|$ by definition, and $\eta \leq \frac{1}{3}$ implies that $\frac{2 \eta}{1-\eta} \leq 1$, thus we have $\frac{2 \eta}{1-\eta} \mathbb{E}_{i \sim \pi^{*}}\left[N\left(T^{*}, i\right)\right] \leq|\mathcal{Q}|$. Together with $\mathbb{P}(E) \geq 1-2 M \exp \left(-2 \epsilon^{2} t\right)$, we have that

$$
\begin{aligned}
\mathbb{E}_{T_{t}^{*}}\left\{\mathbb{E}_{i \sim \pi^{*}}\left[N\left(T_{t}^{*}, i\right)\right]-\mathbb{E}_{i \sim \pi^{*}}\left[N\left(T^{*}, i\right)\right]\right\} & \leq\left[1-2 M \exp \left(-2 \epsilon^{2} t\right)\right] \frac{2 \eta}{1-\eta} \mathbb{E}_{i \sim \pi^{*}}\left[N\left(T^{*}, i\right)\right]+2 M \exp \left(-2 \epsilon^{2} t\right)|\mathcal{Q}| \\
& <\frac{2 \eta}{1-\eta} \mathbb{E}_{i \sim \pi^{*}}\left[N\left(T^{*}, i\right)\right]+2 M|\mathcal{Q}| \exp \left(-2 \epsilon^{2} t\right) .
\end{aligned}
$$

Notice that $0<\eta \leq \frac{1}{3}$ implies that $0<\frac{1}{1-\eta} \leq \frac{3}{2}$, thus $0<\frac{2 \eta}{1-\eta} \leq 3 \eta$. Hence we have that

$$
\mathbb{E}_{T_{t}^{*}}\left\{\mathbb{E}_{i \sim \pi^{*}}\left[N\left(T_{t}^{*}, i\right)\right]-\mathbb{E}_{i \sim \pi^{*}}\left[N\left(T^{*}, i\right)\right]\right\}<3 \eta \mathbb{E}_{i \sim \pi^{*}}\left[N\left(T^{*}, i\right)\right]+2 M|\mathcal{Q}| \exp \left(-2 \epsilon^{2} t\right) .
$$

From the definition of $\epsilon$, we have

$$
\begin{aligned}
\epsilon^{2} t & =\left[\eta \pi_{\min }^{*} \sqrt{t}+\frac{\alpha_{0}}{\sqrt{t}}\left(\eta \pi_{\min }^{*}-\max _{i \in \mathcal{I}}\left|\frac{\alpha(i)}{\alpha_{0}}-\pi^{*}(i)\right|\right)\right]^{2} \\
& =\left[\eta \pi_{\min }^{*}\right]^{2} t+2 \eta \pi_{\min }^{*} \alpha_{0}\left(\eta \pi_{\min }^{*}-\max _{i \in \mathcal{I}}\left|\frac{\alpha(i)}{\alpha_{0}}-\pi^{*}(i)\right|\right)+\frac{\alpha_{0}^{2}}{t}\left(\eta \pi_{\min }^{*}-\max _{i \in \mathcal{I}}\left|\frac{\alpha(i)}{\alpha_{0}}-\pi^{*}(i)\right|\right)^{2} \\
& >\left[\eta \pi_{\min }^{*}\right]^{2} t-2 \eta \pi_{\min }^{*} \alpha_{0} \max _{i \in \mathcal{I}}\left|\frac{\alpha(i)}{\alpha_{0}}-\pi^{*}(i)\right|,
\end{aligned}
$$

where the last inequality follows from the fact that $\frac{\alpha_{0}^{2}}{t}\left(\eta \pi_{\min }^{*}-\max _{i \in \mathcal{I}}\left|\frac{\alpha(i)}{\alpha_{0}}-\pi^{*}(i)\right|\right)^{2} \geq 0$ and $\left[\eta \pi_{\text {min }}^{*}\right]^{2} \alpha_{0}>$ 0 . So we have

$$
-2 \epsilon^{2} t<4 \eta \pi_{\min }^{*} \alpha_{0} \max _{i \in \mathcal{I}}\left|\frac{\alpha(i)}{\alpha_{0}}-\pi^{*}(i)\right|-2\left[\eta \pi_{\min }^{*}\right]^{2} t
$$

Thus, we have proved Lemma A-3. Q.E.D.
We define $\tau_{E}$ as

$$
\begin{equation*}
\tau_{E}=\min \left\{t \geq 4: \frac{\ln (t)}{t} \leq\left(\frac{\pi_{\min }^{*}}{6}\right)^{2} \text { and } \frac{4}{3} \alpha_{0} \max _{i \in \mathcal{I}}\left|\frac{\alpha(i)}{\alpha_{0}}-\pi^{*}(i)\right| \leq[t \ln (t)]^{\frac{1}{2}}\right\}, \tag{5}
\end{equation*}
$$

where $\ln (\cdot)$ is the logarithm function with base $e$. Notice that for $t \geq 3, \frac{\ln (t)}{t}$ is monotonically decreasing. Notice that $\tau_{E}$ depends on (1) $\pi_{\min }^{*}$ and (2) the "quality" of the prior. Lemma A-4 derives a more useful one-game regret bound based on Lemma A-3 and the definition of $\tau_{E}$ :

Lemma A-4: $\forall t \geq \tau_{E}$, we have

$$
\mathbb{E}_{T_{t}^{*}}\left\{\mathbb{E}_{i \sim \pi^{*}}\left[N\left(T_{t}^{*}, i\right)\right]-\mathbb{E}_{i \sim \pi^{*}}\left[N\left(T^{*}, i\right)\right]\right\}<\frac{6}{\pi_{\min }^{*}}\left[\frac{\ln (t)}{t}\right]^{\frac{1}{2}} \mathbb{E}_{i \sim \pi^{*}}\left[N\left(T^{*}, i\right)\right]+\frac{2 M|\mathcal{Q}|}{t^{2}},
$$

where $\tau_{E}$ is defined in Eqn(5).

## Proof:

For $\forall t \geq \tau_{E}$, we choose $\eta=\frac{2}{\pi_{\min }^{*}}\left[\frac{\ln (t)}{t}\right]^{\frac{1}{2}}$. We first show that this particular $\eta$ satisfies the conditions of Lemma A-3. Since $\frac{\ln (t)}{t}$ is monotonically decreasing for $t \geq 3$ and $t \geq \tau_{E} \geq 4$, we have that

$$
\eta=\frac{2}{\pi_{\min }^{*}}\left[\frac{\ln (t)}{t}\right]^{\frac{1}{2}} \leq \frac{2}{\pi_{\min }^{*}}\left[\frac{\ln \left(\tau_{E}\right)}{\tau_{E}}\right]^{\frac{1}{2}} \leq \frac{2}{\pi_{\min }^{*}} \frac{\pi_{\min }^{*}}{6}=\frac{1}{3} .
$$

On the other hand, since $t \ln (t)$ is monotonically increasing, thus, $t \geq \tau_{E}$ implies that

$$
\frac{4}{3} \alpha_{0} \max _{i \in \mathcal{I}}\left|\frac{\alpha(i)}{\alpha_{0}}-\pi^{*}(i)\right| \leq[t \ln (t)]^{\frac{1}{2}} .
$$

Thus

$$
\frac{\alpha_{0}}{\alpha_{0}+t} \max _{i \in \mathcal{I}}\left|\frac{\alpha(i)}{\alpha_{0}}-\pi^{*}(i)\right|<\frac{\alpha_{0}}{t} \max _{i \in \mathcal{I}}\left|\frac{\alpha(i)}{\alpha_{0}}-\pi^{*}(i)\right| \leq \frac{3[t \ln (t)]^{\frac{1}{2}}}{4 t}=\frac{2}{\pi_{\min }^{*}}\left[\frac{\ln (t)}{t}\right]^{\frac{1}{2}} \frac{3 \pi_{\min }^{*}}{8}=\frac{3 \pi_{\min }^{*}}{8} \eta<\eta \pi_{\min }^{*} .
$$

Thus, the conditions of Lemma A-3 are satisfied and we have that
$\mathbb{E}_{T_{t}^{*}}\left\{\mathbb{E}_{i \sim \pi^{*}}\left[N\left(T_{t}^{*}, i\right)\right]-\mathbb{E}_{i \sim \pi^{*}}\left[N\left(T^{*}, i\right)\right]\right\}<3 \eta \mathbb{E}_{i \sim \pi^{*}}\left[N\left(T^{*}, i\right)\right]+2 M|\mathcal{Q}| \exp \left\{4 \eta \pi_{\min }^{*} \alpha_{0} \max _{i \in \mathcal{I}}\left|\frac{\alpha(i)}{\alpha_{0}}-\pi^{*}(i)\right|-2\left[\eta \pi_{\min }^{*}\right]^{2} t\right\}$.
Notice that

$$
4 \eta \pi_{\min }^{*} \alpha_{0} \max _{i \in \mathcal{I}}\left|\frac{\alpha(i)}{\alpha_{0}}-\pi^{*}(i)\right|=8\left[\frac{\ln (t)}{t}\right]^{\frac{1}{2}} \alpha_{0} \max _{i \in \mathcal{I}}\left|\frac{\alpha(i)}{\alpha_{0}}-\pi^{*}(i)\right| \leq 8\left[\frac{\ln (t)}{t}\right]^{\frac{1}{2}} \frac{3}{4}[t \ln (t)]^{\frac{1}{2}}=6 \ln (t),
$$

and

$$
2\left[\eta \pi_{\min }^{*}\right]^{2} t=2\left[\left(\frac{2}{\pi_{\min }^{*}}\left[\frac{\ln (t)}{t}\right]^{\frac{1}{2}}\right) \pi_{\min }^{*}\right]^{2} t=2\left[\left(2\left[\frac{\ln (t)}{t}\right]^{\frac{1}{2}}\right)\right]^{2} t=8 \ln (t)
$$

Thus we have

$$
\exp \left\{4 \eta \pi_{\min }^{*} \alpha_{0} \max _{i \in \mathcal{I}}\left|\frac{\alpha(i)}{\alpha_{0}}-\pi^{*}(i)\right|-2\left[\eta \pi_{\min }^{*}\right]^{2} t\right\} \leq \exp \{6 \ln (t)-8 \ln (t)\}=\exp \{-2 \ln (t)\}=\frac{1}{t^{2}} .
$$

On the other hand, we have that $3 \eta=\frac{6}{\pi_{\text {min }}^{*}}\left[\frac{\ln (t)}{t}\right]^{\frac{1}{2}}$, thus we have

$$
\begin{aligned}
\mathbb{E}_{T_{t}^{*}}\left\{\mathbb{E}_{i \sim \pi^{*}}\left[N\left(T_{t}^{*}, i\right)\right]-\mathbb{E}_{i \sim \pi^{*}}\left[N\left(T^{*}, i\right)\right]\right\} & <3 \eta \mathbb{E}_{i \sim \pi^{*}}\left[N\left(T^{*}, i\right)\right]+2 M|\mathcal{Q}| \exp \left\{4 \eta \pi_{\min }^{*} \alpha_{0} \max _{i \in \mathcal{I}}\left|\frac{\alpha(i)}{\alpha_{0}}-\pi^{*}(i)\right|-2\left[\eta \pi_{\min }^{*}\right]^{2} t\right\} \\
& \leq \frac{6}{\pi_{\min }^{*}}\left[\frac{\ln (t)}{t}\right]^{\frac{1}{2}} \mathbb{E}_{i \sim \pi^{*}}\left[N\left(T^{*}, i\right)\right]+\frac{2 M|\mathcal{Q}|}{t^{2}} .
\end{aligned}
$$

Q.E.D.

In this remainder of this section, we prove Theorem 1:

## Proof of Theorem 1:

Notice that a naive bound on $\mathbb{E}_{T_{t}^{*}}\left\{\mathbb{E}_{i \sim \pi^{*}}\left[N\left(T_{t}^{*}, i\right)\right]-\mathbb{E}_{i \sim \pi^{*}}\left[N\left(T^{*}, i\right)\right]\right\}$ is

$$
\mathbb{E}_{T_{t}^{*}}\left\{\mathbb{E}_{i \sim \pi^{*}}\left[N\left(T_{t}^{*}, i\right)\right]-\mathbb{E}_{i \sim \pi^{*}}\left[N\left(T^{*}, i\right)\right]\right\} \leq|\mathcal{Q}| .
$$

Thus, for $0 \leq \tau<\tau_{E}$, we have that

$$
\sum_{t=0}^{\tau} \mathbb{E}_{T_{t}^{*}}\left\{\mathbb{E}_{i \sim \pi^{*}}\left[N\left(T_{t}^{*}, i\right)\right]-\mathbb{E}_{i \sim \pi^{*}}\left[N\left(T^{*}, i\right)\right]\right\} \leq|\mathcal{Q}|(\tau+1) .
$$

On the other hand, from Lemma A-4, for $\tau \geq \tau_{E}$, we have that

$$
\begin{aligned}
\sum_{t=0}^{\tau} \mathbb{E}_{T_{t}^{*}}\left\{\mathbb{E}_{i \sim \pi^{*}}\left[N\left(T_{t}^{*}, i\right)\right]-\mathbb{E}_{i \sim \pi^{*}}\left[N\left(T^{*}, i\right)\right]\right\} & =\sum_{t=0}^{\tau_{E}-1} \mathbb{E}_{T_{t}^{*}}\left\{\mathbb{E}_{i \sim \pi^{*}}\left[N\left(T_{t}^{*}, i\right)\right]-\mathbb{E}_{i \sim \pi^{*}}\left[N\left(T^{*}, i\right)\right]\right\} \\
& +\sum_{t=\tau_{E}}^{\tau} \mathbb{E}_{T_{t}^{*}}\left\{\mathbb{E}_{i \sim \pi^{*}}\left[N\left(T_{t}^{*}, i\right)\right]-\mathbb{E}_{i \sim \pi^{*}}\left[N\left(T^{*}, i\right)\right]\right\} \\
& \leq|\mathcal{Q}| \tau_{E}+\sum_{t=\tau_{E}}^{\tau} \mathbb{E}_{T_{t}^{*}}\left\{\mathbb{E}_{i \sim \pi^{*}}\left[N\left(T_{t}^{*}, i\right)\right]-\mathbb{E}_{i \sim \pi^{*}}\left[N\left(T^{*}, i\right)\right]\right\} \\
& \leq|\mathcal{Q}| \tau_{E}+\sum_{t=\tau_{E}}^{\tau}\left[\frac{6}{\pi_{\min }^{*}}\left[\frac{\ln (t)}{t}\right]^{\frac{1}{2}} \mathbb{E}_{i \sim \pi^{*}}\left[N\left(T^{*}, i\right)\right]+\frac{2 M|\mathcal{Q}|}{t^{2}}\right],
\end{aligned}
$$

where the first inequality follows from the naive bound and the second inequality follows from Lemma A-4. Since $\tau_{E}>1$, we have that

$$
\sum_{t=\tau_{E}}^{\tau} \frac{1}{t^{2}}<\sum_{t=\tau_{E}}^{\infty} \frac{1}{t^{2}}<\sum_{t=\tau_{E}}^{\infty} \frac{1}{(t-1) t}=\sum_{t=\tau_{E}}^{\infty}\left[\frac{1}{t-1}-\frac{1}{t}\right]=\frac{1}{\tau_{E}-1} .
$$

On the other hand, notice that $\frac{\ln (t)}{t}$ is monotonically decreasing on interval $\left[\tau_{E}-1, \infty\right)$ (Since $\tau_{E}-1 \geq 3$ ), and the derivative of the function $[t \ln (t)]^{\frac{1}{2}}$ is $\frac{1}{2}\left[\frac{1}{t \ln (t)}\right]^{\frac{1}{2}}+\frac{1}{2}\left[\frac{\ln (t)}{t}\right]^{\frac{1}{2}}$, we have that

$$
\sum_{t=\tau_{E}}^{\tau}\left[\frac{\ln (t)}{t}\right]^{\frac{1}{2}}<\int_{\tau_{E}-1}^{\tau}\left[\frac{\ln (t)}{t}\right]^{\frac{1}{2}} d t<\int_{\tau_{E}-1}^{\tau}\left(\left[\frac{\ln (t)}{t}\right]^{\frac{1}{2}}+\left[\frac{1}{t \ln (t)}\right]^{\frac{1}{2}}\right) d t=2[\tau \ln (\tau)]^{\frac{1}{2}}-2\left[\left(\tau_{E}-1\right) \ln \left(\tau_{E}-1\right)\right]^{\frac{1}{2}} .
$$

Thus, for $\tau \geq \tau_{E}$, we have that

$$
\begin{aligned}
& \sum_{t=0}^{\tau} \mathbb{E}_{T_{t}^{*}}\left\{\mathbb{E}_{i \sim \pi^{*}}\left[N\left(T_{t}^{*}, i\right)\right]-\mathbb{E}_{i \sim \pi^{*}}\left[N\left(T^{*}, i\right)\right]\right\} \leq|\mathcal{Q}| \tau_{E}+\sum_{t=\tau_{E}}^{\tau}\left[\frac{6}{\pi_{\min }^{*}}\left[\frac{\ln (t)}{t}\right]^{\frac{1}{2}} \mathbb{E}_{i \sim \pi^{*}}\left[N\left(T^{*}, i\right)\right]+\frac{2 M|\mathcal{Q}|}{t^{2}}\right] \\
< & |\mathcal{Q}| \tau_{E}+\frac{12 \mathbb{E}_{i \sim \pi^{*}}\left[N\left(T^{*}, i\right)\right]}{\pi_{\min }^{*}}\left\{[\tau \ln (\tau)]^{\frac{1}{2}}-\left[\left(\tau_{E}-1\right) \ln \left(\tau_{E}-1\right)\right]^{\frac{1}{2}}\right\}+\frac{2 M|\mathcal{Q}|}{\tau_{E}-1}=O\left([\tau \ln (\tau)]^{\frac{1}{2}}\right) .
\end{aligned}
$$

Q.E.D.

## B Proof of Theorem 2

Throughout this section, we assume that the certainty-equivalent (CE) optimization problem is solved by the greedy algorithm, and use $T_{t}^{g}$ to denote the solution based on the greedy algorithm of the CE optimization problem in game $t, \forall t=0,1, \cdots$. Note that in the proof, we still use $T_{t}^{*}$ to denote the exact solution of the CE optimization problem in game $t$. Lemma A-5 is the counterpart of Lemma A-2 in this case:

Lemma A-5: If $\left\|\pi^{*}-\pi_{t}^{*}\right\|_{\infty}<\pi_{\text {min }}^{*}$, then we have

$$
\mathbb{E}_{i \sim \pi^{*}}\left[N\left(T_{t}^{\mathrm{g}}, i\right)\right] \leq \mathbb{E}_{i \sim \pi^{*}}\left[N\left(T^{*}, i\right)\right]\left[\frac{\pi_{\min }^{*}+\left\|\pi^{*}-\pi_{t}^{*}\right\|_{\infty}}{\pi_{\min }^{*}-\left\|\pi^{*}-\pi_{t}^{*}\right\|_{\infty}}\right]^{2} \ln \left(\frac{e}{\pi_{\min }^{*}-\left\|\pi^{*}-\pi_{t}^{*}\right\|_{\infty}}\right) .
$$

## Proof:

Before proceeding, notice that from Theorem 10 of [1], we have that

$$
\mathbb{E}_{i \sim \pi_{t}^{*}}\left[N\left(T_{t}^{\mathrm{g}}, i\right)\right] \leq \mathbb{E}_{i \sim \pi_{t}^{*}}\left[N\left(T_{t}^{*}, i\right)\right]\left(\ln \left(\frac{1}{\min _{i} \pi_{t}^{*}(i)}\right)+1\right),
$$

where $T_{t}^{*}$ is the exact solution of the CE optimization problem in game $t$, and $T_{t}^{\mathrm{g}}$ is the approximation solution based on the greedy algorithm. From Lemma A-1, we know that

$$
\mathbb{E}_{i \sim \pi_{t}^{*}}\left[N\left(T_{t}^{\mathrm{g}}, i\right)\right] \geq \frac{\pi_{\min }^{*}-\left\|\pi^{*}-\pi_{t}^{*}\right\|_{\infty}}{\pi_{\min }^{*}} \mathbb{E}_{i \sim \pi^{*}}\left[N\left(T_{t}^{\mathrm{g}}, i\right)\right]
$$

and

$$
\mathbb{E}_{i \sim \pi_{t}^{*}}\left[N\left(T_{t}^{*}, i\right)\right] \leq \frac{\pi_{\min }^{*}+\left\|\pi^{*}-\pi_{t}^{*}\right\|_{\infty}}{\pi_{\min }^{*}} \mathbb{E}_{i \sim \pi^{*}}\left[N\left(T_{t}^{*}, i\right)\right]
$$

Thus we have that

$$
\begin{aligned}
& \frac{\pi_{\min }^{*}-\left\|\pi^{*}-\pi_{t}^{*}\right\|_{\infty}}{\pi_{\min }^{*}} \mathbb{E}_{i \sim \pi^{*}}\left[N\left(T_{t}^{\mathrm{g}}, i\right)\right] \\
\leq & \frac{\pi_{\min }^{*}+\left\|\pi^{*}-\pi_{t}^{*}\right\|_{\infty}}{\pi_{\min }^{*}} \mathbb{E}_{i \sim \pi^{*}}\left[N\left(T_{t}^{*}, i\right)\right]\left(\ln \left(\frac{1}{\min _{i} \pi_{t}^{*}(i)}\right)+1\right) .
\end{aligned}
$$

We define $c=\frac{\pi_{\min }^{*}+\left\|\pi^{*}-\pi_{t}^{*}\right\|_{\infty}}{\pi_{\min }^{*}-\left\|\pi^{*}-\pi_{t}^{*}\right\|_{\infty}}$, thus we have that

$$
\mathbb{E}_{i \sim \pi^{*}}\left[N\left(T_{t}^{\mathrm{g}}, i\right)\right] \leq c \mathbb{E}_{i \sim \pi^{*}}\left[N\left(T_{t}^{*}, i\right)\right]\left(\ln \left(\frac{1}{\min _{i} \pi_{t}^{*}(i)}\right)+1\right)
$$

Combining with Lemma A-2, we have that

$$
\begin{equation*}
\mathbb{E}_{i \sim \pi^{*}}\left[N\left(T_{t}^{\mathrm{g}}, i\right)\right] \leq c^{2} \mathbb{E}_{i \sim \pi^{*}}\left[N\left(T^{*}, i\right)\right]\left(\ln \left(\frac{1}{\min _{i} \pi_{t}^{*}(i)}\right)+1\right) \tag{6}
\end{equation*}
$$

Finally, assume that $\min _{i} \pi_{t}^{*}(i)=\pi_{t}^{*}\left(i^{*}\right)$, we have that

$$
\min _{i} \pi_{t}^{*}(i)=\pi_{t}^{*}\left(i^{*}\right)=\pi^{*}\left(i^{*}\right)+\left[\pi_{t}^{*}\left(i^{*}\right)-\pi^{*}\left(i^{*}\right)\right] \geq \pi_{\min }^{*}-\left\|\pi^{*}-\pi_{t}^{*}\right\|_{\infty} .
$$

So we have

$$
\ln \left(\frac{1}{\min _{i} \pi_{t}^{*}(i)}\right) \leq \ln \left(\frac{1}{\pi_{\min }^{*}-\left\|\pi^{*}-\pi_{t}^{*}\right\|_{\infty}}\right) .
$$

Hence

$$
\ln \left(\frac{1}{\min _{i} \pi_{t}^{*}(i)}\right)+1 \leq \ln \left(\frac{1}{\pi_{\min }^{*}-\left\|\pi^{*}-\pi_{t}^{*}\right\|_{\infty}}\right)+1=\ln \left(\frac{e}{\pi_{\min }^{*}-\left\|\pi^{*}-\pi_{t}^{*}\right\|_{\infty}}\right) .
$$

Plug the above inequality into Eqn(6), we have proved Lemma A-5. Q.E.D.
Lemma A-6 upper bounds the scaled regret in game $t$ :
Lemma A-6: $\forall t>0$ and $\forall 0<\eta<1$, if

$$
\left[\frac{1+\eta}{1-\eta}\right]^{2} \ln \left(\frac{1}{1-\eta}\right)+\frac{4 \eta}{(1-\eta)^{2}} \ln \left(\frac{e}{\pi_{\min }^{*}}\right) \leq 1 \quad \text { and } \quad \frac{\alpha_{0}}{\alpha_{0}+t} \max _{i \in \mathcal{I}}\left|\frac{\alpha(i)}{\alpha_{0}}-\pi^{*}(i)\right|<\eta \pi_{\min }^{*},
$$

then we have that

$$
\begin{aligned}
& \mathbb{E}_{T_{t}^{g}}\left\{\mathbb{E}_{i \sim \pi^{*}}\left[N\left(T_{t}^{\mathrm{g}}, i\right)\right]-\ln \left(\frac{e}{\pi_{\min }^{*}}\right) \mathbb{E}_{i \sim \pi^{*}}\left[N\left(T^{*}, i\right)\right]\right\} \\
< & \left\{\left[\frac{1+\eta}{1-\eta}\right]^{2} \ln \left(\frac{1}{1-\eta}\right)+\frac{4 \eta}{(1-\eta)^{2}} \ln \left(\frac{e}{\pi_{\min }^{*}}\right)\right\} \mathbb{E}_{i \sim \pi^{*}}\left[N\left(T^{*}, i\right)\right] \\
+ & 2 M|\mathcal{Q}| \exp \left(4 \eta \pi_{\min }^{*} \alpha_{0} \max _{i \in \mathcal{I}}\left|\frac{\alpha(i)}{\alpha_{0}}-\pi^{*}(i)\right|-2\left[\eta \pi_{\min }^{*}\right]^{2} t\right) .
\end{aligned}
$$

## Proof:

Since $\frac{\alpha_{0}}{\alpha_{0}+t} \max _{i \in \mathcal{I}}\left|\frac{\alpha(i)}{\alpha_{0}}-\pi^{*}(i)\right|<\eta \pi_{\text {min }}^{*}$, thus, one sufficient condition to ensure that

$$
\max _{i \in \mathcal{I}}\left|\pi^{*}(i)-\pi_{t}^{*}(i)\right| \leq \eta \pi_{\min }^{*}
$$

is

$$
\begin{equation*}
\max _{i \in \mathcal{I}}\left|\frac{\sum_{\tau=0}^{t-1} Z_{\tau}(i)}{t}-\pi^{*}(i)\right| \leq \eta \pi_{\min }^{*}\left(1+\frac{\alpha_{0}}{t}\right)-\frac{\alpha_{0}}{t} \max _{i \in \mathcal{I}}\left|\frac{\alpha(i)}{\alpha_{0}}-\pi^{*}(i)\right| . \tag{7}
\end{equation*}
$$

We define $\epsilon=\eta \pi_{\min }^{*}\left(1+\frac{\alpha_{0}}{t}\right)-\frac{\alpha_{0}}{t} \max _{i \in \mathcal{I}}\left|\frac{\alpha(i)}{\alpha_{0}}-\pi^{*}(i)\right|$. From the discussion before Lemma A-3, we know that inequality (7) holds with probability at least $1-2 M \exp \left(-2 \epsilon^{2} t\right)$. Furthermore, from Lemma A-5, $\left\|\pi^{*}-\pi_{t}^{*}\right\| \leq \eta \pi_{\text {min }}^{*}$ implies that

$$
\mathbb{E}_{i \sim \pi^{*}}\left[N\left(T_{t}^{\mathrm{g}}, i\right)\right] \leq \mathbb{E}_{i \sim \pi^{*}}\left[N\left(T^{*}, i\right)\right]\left[\frac{1+\eta}{1-\eta}\right]^{2} \ln \left(\frac{e}{\pi_{\min }^{*}(1-\eta)}\right) .
$$

Thus we have that

$$
\begin{align*}
& \mathbb{E}_{i \sim \pi^{*}}\left[N\left(T_{t}^{\mathrm{g}}, i\right)\right]-\ln \left(\frac{e}{\pi_{\min }^{*}}\right) \mathbb{E}_{i \sim \pi^{*}}\left[N\left(T^{*}, i\right)\right] \\
\leq & \left\{\left[\frac{1+\eta}{1-\eta}\right]^{2} \ln \left(\frac{e}{\pi_{\min }^{*}(1-\eta)}\right)-\ln \left(\frac{e}{\pi_{\min }^{*}}\right)\right\} \mathbb{E}_{i \sim \pi^{*}}\left[N\left(T^{*}, i\right)\right] \\
= & \left\{\left[\frac{1+\eta}{1-\eta}\right]^{2} \ln \left(\frac{1}{1-\eta}\right)+\frac{4 \eta}{(1-\eta)^{2}} \ln \left(\frac{e}{\pi_{\min }^{*}}\right)\right\} \mathbb{E}_{i \sim \pi^{*}}\left[N\left(T^{*}, i\right)\right] . \tag{8}
\end{align*}
$$

Thus, we have proved that with probability at least $1-2 M \exp \left(-2 \epsilon^{2} t\right)$, inequality (8) holds. In other words, if we define $E$ as the event that inequality (8) holds, then we have that $\mathbb{P}(E) \geq 1-2 M \exp \left(-2 \epsilon^{2} t\right)$.

On the other hand, notice that a naive bound on the scaled regret is

$$
\mathbb{E}_{i \sim \pi^{*}}\left[N\left(T_{t}^{\mathrm{g}}, i\right)\right]-\ln \left(\frac{e}{\pi_{\min }^{*}}\right) \mathbb{E}_{i \sim \pi^{*}}\left[N\left(T^{*}, i\right)\right] \leq|\mathcal{Q}| .
$$

With $E$ defined as the event that inequality (8) holds and $\bar{E}$ defined as the complement of $E$, we have that:

$$
\begin{aligned}
& \mathbb{E}_{T_{t}^{\mathrm{g}}}\left\{\mathbb{E}_{i \sim \pi^{*}}\left[N\left(T_{t}^{\mathrm{g}}, i\right)\right]-\ln \left(\frac{e}{\pi_{\min }^{*}}\right) \mathbb{E}_{i \sim \pi^{*}}\left[N\left(T^{*}, i\right)\right]\right\} \\
\leq & \mathbb{P}(E) \mathbb{E}_{T_{t}^{\mathrm{g}}}\left\{\left.\mathbb{E}_{i \sim \pi^{*}}\left[N\left(T_{t}^{\mathrm{g}}, i\right)\right]-\ln \left(\frac{e}{\pi_{\min }^{*}}\right) \mathbb{E}_{i \sim \pi^{*}}\left[N\left(T^{*}, i\right)\right] \right\rvert\, E\right\} \\
+ & {[1-\mathbb{P}(E)] \mathbb{E}_{T_{t}^{\mathrm{g}}}\left\{\left.\mathbb{E}_{i \sim \pi^{*}}\left[N\left(T_{t}^{\mathrm{g}}, i\right)\right]-\ln \left(\frac{e}{\pi_{\min }^{*}}\right) \mathbb{E}_{i \sim \pi^{*}}\left[N\left(T^{*}, i\right)\right] \right\rvert\, \bar{E}\right\} } \\
\leq & \mathbb{P}(E)\left\{\left[\frac{1+\eta}{1-\eta}\right]^{2} \ln \left(\frac{1}{1-\eta}\right)+\frac{4 \eta}{(1-\eta)^{2}} \ln \left(\frac{e}{\pi_{\min }^{*}}\right)\right\} \mathbb{E}_{i \sim \pi^{*}}\left[N\left(T^{*}, i\right)\right]+[1-\mathbb{P}(E)]|\mathcal{Q}| .
\end{aligned}
$$

On the other hand, notice that $\mathbb{E}_{i \sim \pi^{*}}\left[N\left(T^{*}, i\right)\right] \leq|\mathcal{Q}|$ by definition, and $\left[\frac{1+\eta}{1-\eta}\right]^{2} \ln \left(\frac{1}{1-\eta}\right)+\frac{4 \eta}{(1-\eta)^{2}} \ln \left(\frac{e}{\pi_{\min }^{*}}\right) \leq$ 1, thus we have

$$
\left\{\left[\frac{1+\eta}{1-\eta}\right]^{2} \ln \left(\frac{1}{1-\eta}\right)+\frac{4 \eta}{(1-\eta)^{2}} \ln \left(\frac{e}{\pi_{\min }^{*}}\right)\right\} \mathbb{E}_{i \sim \pi^{*}}\left[N\left(T^{*}, i\right)\right] \leq|\mathcal{Q}| .
$$

Together with $\mathbb{P}(E) \geq 1-2 M \exp \left(-2 \epsilon^{2} t\right)$, we have that

$$
\begin{aligned}
& \mathbb{E}_{T_{t}^{\mathrm{g}}}\left\{\mathbb{E}_{i \sim \pi^{*}}\left[N\left(T_{t}^{\mathrm{g}}, i\right)\right]-\ln \left(\frac{e}{\pi_{\min }^{*}}\right) \mathbb{E}_{i \sim \pi^{*}}\left[N\left(T^{*}, i\right)\right]\right\} \\
\leq & \left\{\left[\frac{1+\eta}{1-\eta}\right]^{2} \ln \left(\frac{1}{1-\eta}\right)+\frac{4 \eta}{(1-\eta)^{2}} \ln \left(\frac{e}{\pi_{\min }^{*}}\right)\right\} \mathbb{E}_{i \sim \pi^{*}}\left[N\left(T^{*}, i\right)\right]+2 M|\mathcal{Q}| \exp \left(-2 \epsilon^{2} t\right)
\end{aligned}
$$

From the definition of $\epsilon$, we have

$$
\begin{aligned}
\epsilon^{2} t & =\left[\eta \pi_{\min }^{*} \sqrt{t}+\frac{\alpha_{0}}{\sqrt{t}}\left(\eta \pi_{\min }^{*}-\max _{i \in \mathcal{I}}\left|\frac{\alpha(i)}{\alpha_{0}}-\pi^{*}(i)\right|\right)\right]^{2} \\
& =\left[\eta \pi_{\min }^{*}\right]^{2} t+2 \eta \pi_{\min }^{*} \alpha_{0}\left(\eta \pi_{\min }^{*}-\max _{i \in \mathcal{I}}\left|\frac{\alpha(i)}{\alpha_{0}}-\pi^{*}(i)\right|\right)+\frac{\alpha_{0}^{2}}{t}\left(\eta \pi_{\min }^{*}-\max _{i \in \mathcal{I}}\left|\frac{\alpha(i)}{\alpha_{0}}-\pi^{*}(i)\right|\right)^{2} \\
& >\left[\eta \pi_{\min }^{*}\right]^{2} t-2 \eta \pi_{\min }^{*} \alpha_{0} \max _{i \in \mathcal{I}}\left|\frac{\alpha(i)}{\alpha_{0}}-\pi^{*}(i)\right|,
\end{aligned}
$$

where the last inequality follows from the fact that $\frac{\alpha_{0}^{2}}{t}\left(\eta \pi_{\min }^{*}-\max _{i \in \mathcal{I}}\left|\frac{\alpha(i)}{\alpha_{0}}-\pi^{*}(i)\right|\right)^{2} \geq 0$ and $\left[\eta \pi_{\text {min }}^{*}\right]^{2} \alpha_{0}>$ 0 . So we have

$$
-2 \epsilon^{2} t<4 \eta \pi_{\min }^{*} \alpha_{0} \max _{i \in \mathcal{I}}\left|\frac{\alpha(i)}{\alpha_{0}}-\pi^{*}(i)\right|-2\left[\eta \pi_{\min }^{*}\right]^{2} t .
$$

Thus, we have proved Lemma A-6. Q.E.D.
Before proceeding, we derive a sufficient condition for

$$
\left[\frac{1+\eta}{1-\eta}\right]^{2} \ln \left(\frac{1}{1-\eta}\right)+\frac{4 \eta}{(1-\eta)^{2}} \ln \left(\frac{e}{\pi_{\min }^{*}}\right) \leq 1
$$

that is easy to verify. Notice that $f(\eta)=\left[\frac{1+\eta}{1-\eta}\right]^{2} \ln \left(\frac{1}{1-\eta}\right)+\frac{4 \eta}{(1-\eta)^{2}} \ln \left(\frac{e}{\pi_{\min }^{*}}\right)$ is an increasing and continuous function of $\eta$ on interval $[0,1)$, and $f(0)=0, \lim _{\eta \uparrow 1} f(\eta)=\infty$, thus, there exists an $\eta^{*} \in(0,1)$ such that $f\left(\eta^{*}\right)=1$. Similarly, we can show that $g(\eta)=\left[\frac{1+\eta}{1-\eta}\right]^{2} \ln \left(\frac{1}{1-\eta}\right)+\frac{4 \eta}{(1-\eta)^{2}}$ is an increasing and continuous function of $\eta$, and $g(0.1378)=1$.

We now show that if $\eta \leq \frac{0.1378}{\ln \left(\frac{e}{\pi_{\min }}\right)}$, then $f(\eta) \leq 1$. Notice that since $\ln \left(\frac{e}{\pi_{\min }^{*}}\right) \geq 1$, then we have $\frac{0.1378}{\ln \left(\frac{e}{\pi_{\min }^{*}}\right)} \leq 0.1378$. Thus we have, for $\eta \leq \frac{0.1378}{\ln \left(\frac{e}{\pi_{\min }^{*}}\right)}$,

$$
\begin{equation*}
f(\eta) \leq f\left[\frac{0.1378}{\ln \left(\frac{e}{\pi_{\min }}\right)}\right] \leq g(0.1378)=1 . \tag{9}
\end{equation*}
$$

Thus, one sufficient condition for $\left[\frac{1+\eta}{1-\eta}\right]^{2} \ln \left(\frac{1}{1-\eta}\right)+\frac{4 \eta}{(1-\eta)^{2}} \ln \left(\frac{e}{\pi_{\min }^{*}}\right) \leq 1$ is that $\eta \leq \frac{0.1378}{\ln \left(\frac{e}{\pi_{\min }^{*}}\right)}$.
We define $\tau_{G}$ as

$$
\begin{equation*}
\tau_{G}=\min \left\{t \geq 4: \frac{\ln (t)}{t} \leq\left(\frac{0.0689 \pi_{\min }^{*}}{\ln \left(\frac{e}{\pi_{\min }^{*}}\right)}\right)^{2} \text { and } \frac{4}{3} \alpha_{0} \max _{i \in \mathcal{I}}\left|\frac{\alpha(i)}{\alpha_{0}}-\pi^{*}(i)\right| \leq[t \ln (t)]^{\frac{1}{2}}\right\} . \tag{10}
\end{equation*}
$$

Lemma A-7 derives a more useful one-game regret bound based on Lemma A-5 and definition of $\tau_{G}$ :
Lemma A-7: $\forall t \geq \tau_{G}$, we have that

$$
\begin{aligned}
& \mathbb{E}_{T_{t}^{g}}\left\{\mathbb{E}_{i \sim \pi^{*}}\left[N\left(T_{t}^{\mathrm{g}}, i\right)\right]-\ln \left(\frac{e}{\pi_{\min }^{*}}\right) \mathbb{E}_{i \sim \pi^{*}}\left[N\left(T^{*}, i\right)\right]\right\} \\
< & {\left[8+12 \ln \left(\frac{e}{\pi_{\min }^{*}}\right)\right] \frac{1}{\pi_{\min }^{*}}\left[\frac{\ln (t)}{t}\right]^{\frac{1}{2}} \mathbb{E}_{i \sim \pi^{*}}\left[N\left(T^{*}, i\right)\right]+\frac{2 M|\mathcal{Q}|}{t^{2}} . }
\end{aligned}
$$

## Proof:

For $t \geq \tau_{G}$, we choose $\eta=\frac{2}{\pi_{\text {min }}^{*}}\left[\frac{\ln (t)}{t}\right]^{\frac{1}{2}}$. We first show that this particular $\eta$ satisfies the conditions of Lemma A-6. Since $\frac{\ln (t)}{t}$ is monotonically decreasing for $t \geq 3$ and $t \geq \tau_{G} \geq 4$, we have that

$$
\eta=\frac{2}{\pi_{\min }^{*}}\left[\frac{\ln (t)}{t}\right]^{\frac{1}{2}} \leq \frac{2}{\pi_{\min }^{*}}\left[\frac{\ln \left(\tau_{G}\right)}{\tau_{G}}\right]^{\frac{1}{2}} \leq \frac{0.1378}{\ln \left(\frac{e}{\pi_{\min }^{*}}\right)} .
$$

From the discussion above, we have $\left[\frac{1+\eta}{1-\eta}\right]^{2} \ln \left(\frac{1}{1-\eta}\right)+\frac{4 \eta}{(1-\eta)^{2}} \ln \left(\frac{e}{\pi_{\min }^{*}}\right) \leq 1$ for $\eta=\frac{2}{\pi_{\min }^{*}}\left[\frac{\ln (t)}{t}\right]^{\frac{1}{2}}$.
On the other hand, since $t \ln (t)$ is monotonically increasing, thus, $t \geq \tau_{G}$ implies that

$$
\frac{4}{3} \alpha_{0} \max _{i \in \mathcal{I}}\left|\frac{\alpha(i)}{\alpha_{0}}-\pi^{*}(i)\right| \leq[t \ln (t)]^{\frac{1}{2}}
$$

Similarly as the proof for Lemma A-4, we have that

$$
\frac{\alpha_{0}}{\alpha_{0}+t} \max _{i \in \mathcal{I}}\left|\frac{\alpha(i)}{\alpha_{0}}-\pi^{*}(i)\right|<\frac{\alpha_{0}}{t} \max _{i \in \mathcal{I}}\left|\frac{\alpha(i)}{\alpha_{0}}-\pi^{*}(i)\right| \leq \frac{3[t \ln (t)]^{\frac{1}{2}}}{4 t}=\frac{2}{\pi_{\min }^{*}}\left[\frac{\ln (t)}{t}\right]^{\frac{1}{2}} \frac{3 \pi_{\min }^{*}}{8}=\frac{3 \pi_{\min }^{*}}{8} \eta<\eta \pi_{\min }^{*} .
$$

Thus, the conditions of Lemma A-6 are satisfied. Furthermore, similarly as the proof for Lemma A-4, we have that

$$
\exp \left\{4 \eta \pi_{\min }^{*} \alpha_{0} \max _{i \in \mathcal{I}}\left|\frac{\alpha(i)}{\alpha_{0}}-\pi^{*}(i)\right|-2\left[\eta \pi_{\min }^{*}\right]^{2} t\right\} \leq \exp \{6 \ln (t)-8 \ln (t)\}=\exp \{-2 \ln (t)\}=\frac{1}{t^{2}}
$$

for $t \geq \tau_{G}$.
We now bound the term $\left[\frac{1+\eta}{1-\eta}\right]^{2} \ln \left(\frac{1}{1-\eta}\right)+\frac{4 \eta}{(1-\eta)^{2}} \ln \left(\frac{e}{\pi_{\min }^{*}}\right)$. Notice that for $t \geq \tau_{G}$, we have that

$$
\eta=\frac{2}{\pi_{\min }^{*}}\left[\frac{\ln (t)}{t}\right]^{\frac{1}{2}} \leq \frac{0.1378}{\ln \left(\frac{e}{\pi_{\min }^{*}}\right)} \leq 0.1378 .
$$

Thus we have $\left[\frac{1+\eta}{1-\eta}\right]^{2} \leq 1.7415<2$, and $\frac{1}{(1-\eta)^{2}} \leq 1.3452<1.5$. On the other hand, notice that $\ln \left(\frac{1}{1-\eta}\right) \leq 2 \eta$ for $0 \leq \eta \leq \frac{1}{2}$, thus, for $\eta \leq 0.1378$, we have that

$$
\left[\frac{1+\eta}{1-\eta}\right]^{2} \ln \left(\frac{1}{1-\eta}\right)+\frac{4 \eta}{(1-\eta)^{2}} \ln \left(\frac{e}{\pi_{\min }^{*}}\right)<4 \eta+6 \eta \ln \left(\frac{e}{\pi_{\min }^{*}}\right)=\left[4+6 \ln \left(\frac{e}{\pi_{\min }^{*}}\right)\right] \frac{2}{\pi_{\min }^{*}}\left[\frac{\ln (t)}{t}\right]^{\frac{1}{2}}
$$

Combining the above inequalities and the result of Lemma A-6, we have that

$$
\begin{aligned}
& \mathbb{E}_{T_{t}^{\mathrm{g}}}\left\{\mathbb{E}_{i \sim \pi^{*}}\left[N\left(T_{t}^{\mathrm{g}}, i\right)\right]-\ln \left(\frac{e}{\pi_{\min }^{*}}\right) \mathbb{E}_{i \sim \pi^{*}}\left[N\left(T^{*}, i\right)\right]\right\} \\
< & {\left[4+6 \ln \left(\frac{e}{\pi_{\min }^{*}}\right)\right] \frac{2}{\pi_{\min }^{*}}\left[\frac{\ln (t)}{t}\right]^{\frac{1}{2}} \mathbb{E}_{i \sim \pi^{*}}\left[N\left(T^{*}, i\right)\right]+\frac{2 M|\mathcal{Q}|}{t^{2}} }
\end{aligned}
$$

for $t \geq \tau_{G}$. Q.E.D.
Finally, we prove Theorem 2.

## Proof of Theorem 2:

The proof is similar to Theorem 1. Specifically, for $0 \leq \tau<\tau_{G}$, we have that

$$
\sum_{t=0}^{\tau} \mathbb{E}_{T_{t}^{\mathrm{g}}}\left\{\mathbb{E}_{i \sim \pi^{*}}\left[N\left(T_{t}^{\mathrm{g}}, i\right)\right]-\ln \left(\frac{e}{\pi_{\min }^{*}}\right) \mathbb{E}_{i \sim \pi^{*}}\left[N\left(T^{*}, i\right)\right]\right\} \leq|\mathcal{Q}|(\tau+1)
$$

On the other hand, from Lemma A-7, for $\tau \geq \tau_{G}$, we have that

$$
\begin{aligned}
& \sum_{t=0}^{\tau} \mathbb{E}_{T_{t}^{\mathrm{g}}}\left\{\mathbb{E}_{i \sim \pi^{*}}\left[N\left(T_{t}^{\mathrm{g}}, i\right)\right]-\ln \left(\frac{e}{\pi_{\min }^{*}}\right) \mathbb{E}_{i \sim \pi^{*}}\left[N\left(T^{*}, i\right)\right]\right\} \\
= & \sum_{t=0}^{\tau_{G}-1} \mathbb{E}_{T_{t}^{\mathrm{g}}}\left\{\mathbb{E}_{i \sim \pi^{*}}\left[N\left(T_{t}^{\mathrm{g}}, i\right)\right]-\ln \left(\frac{e}{\pi_{\min }^{*}}\right) \mathbb{E}_{i \sim \pi^{*}}\left[N\left(T^{*}, i\right)\right]\right\} \\
+ & \sum_{t=\tau_{G}}^{\tau} \mathbb{E}_{T_{t}^{g}}\left\{\mathbb{E}_{i \sim \pi^{*}}\left[N\left(T_{t}^{\mathrm{g}}, i\right)\right]-\ln \left(\frac{e}{\pi_{\min }^{*}}\right) \mathbb{E}_{i \sim \pi^{*}}\left[N\left(T^{*}, i\right)\right]\right\} \\
\leq & |\mathcal{Q}| \tau_{G}+\sum_{t=\tau_{G}}^{\tau} \mathbb{E}_{T_{t}^{g}}\left\{\mathbb{E}_{i \sim \pi^{*}}\left[N\left(T_{t}^{\mathrm{g}}, i\right)\right]-\ln \left(\frac{e}{\pi_{\min }^{*}}\right) \mathbb{E}_{i \sim \pi^{*}}\left[N\left(T^{*}, i\right)\right]\right\} \\
\leq & |\mathcal{Q}| \tau_{G}+\sum_{t=\tau_{G}}^{\tau}\left[\left[8+12 \ln \left(\frac{e}{\pi_{\min }^{*}}\right)\right] \frac{1}{\pi_{\min }^{*}}\left[\frac{\ln (t)}{t}\right]^{\frac{1}{2}} \mathbb{E}_{i \sim \pi^{*}}\left[N\left(T^{*}, i\right)\right]+\frac{2 M|\mathcal{Q}|}{t^{2}}\right],
\end{aligned}
$$

where the first inequality follows from the naive bound and the second inequality follows from Lemma A-7. Since $\tau_{G}>1$, we have that

$$
\sum_{t=\tau_{G}}^{\tau} \frac{1}{t^{2}}<\sum_{t=\tau_{G}}^{\infty} \frac{1}{t^{2}}<\sum_{t=\tau_{G}}^{\infty} \frac{1}{(t-1) t}=\sum_{t=\tau_{G}}^{\infty}\left[\frac{1}{t-1}-\frac{1}{t}\right]=\frac{1}{\tau_{G}-1} .
$$

On the other hand, notice that $\frac{\ln (t)}{t}$ is monotonically decreasing on interval $\left[\tau_{G}-1, \infty\right)$ (Since $\tau_{G}-1 \geq 3$ ), and the derivative of the function $[t \ln (t)]^{\frac{1}{2}}$ is $\frac{1}{2}\left[\frac{1}{t \ln (t)}\right]^{\frac{1}{2}}+\frac{1}{2}\left[\frac{\ln (t)}{t}\right]^{\frac{1}{2}}$, we have that

$$
\sum_{t=\tau_{G}}^{\tau}\left[\frac{\ln (t)}{t}\right]^{\frac{1}{2}}<\int_{\tau_{G}-1}^{\tau}\left[\frac{\ln (t)}{t}\right]^{\frac{1}{2}} d t<\int_{\tau_{G}-1}^{\tau}\left(\left[\frac{\ln (t)}{t}\right]^{\frac{1}{2}}+\left[\frac{1}{t \ln (t)}\right]^{\frac{1}{2}}\right) d t=2[\tau \ln (\tau)]^{\frac{1}{2}}-2\left[\left(\tau_{G}-1\right) \ln \left(\tau_{G}-1\right)\right]^{\frac{1}{2}} .
$$

Thus, for $\tau \geq \tau_{G}$, we have that

$$
\begin{aligned}
& \sum_{t=0}^{\tau} \mathbb{E}_{T_{t}^{g}}\left\{\mathbb{E}_{i \sim \pi^{*}}\left[N\left(T_{t}^{\mathrm{g}}, i\right)\right]-\ln \left(\frac{e}{\pi_{\min }^{*}}\right) \mathbb{E}_{i \sim \pi^{*}}\left[N\left(T^{*}, i\right)\right]\right\} \\
\leq & |\mathcal{Q}| \tau_{G}+\sum_{t=\tau_{G}}^{\tau}\left[\left[8+12 \ln \left(\frac{e}{\pi_{\min }^{*}}\right)\right] \frac{1}{\pi_{\min }^{*}}\left[\frac{\ln (t)}{t}\right]^{\frac{1}{2}} \mathbb{E}_{i \sim \pi^{*}}\left[N\left(T^{*}, i\right)\right]+\frac{2 M|\mathcal{Q}|}{t^{2}}\right] \\
< & |\mathcal{Q}| \tau_{G}+\left[16+24 \ln \left(\frac{e}{\pi_{\min }^{*}}\right)\right] \frac{\mathbb{E}_{i \sim \pi^{*}}\left[N\left(T^{*}, i\right)\right]}{\pi_{\min }^{*}}\left\{[\tau \ln (\tau)]^{\frac{1}{2}}-\left[\left(\tau_{G}-1\right) \ln \left(\tau_{G}-1\right)\right]^{\frac{1}{2}}\right\}+\frac{2 M|\mathcal{Q}|}{\tau_{G}-1} \\
= & O\left([\tau \ln (\tau)]^{\frac{1}{2}}\right) .
\end{aligned}
$$

Notice that $\ln \left(\frac{e}{\pi_{\min }^{*}}\right) \geq 1$, so we have

$$
\begin{aligned}
& \sum_{t=0}^{\tau} \mathbb{E}_{T_{t}^{\mathrm{g}}}\left\{\mathbb{E}_{i \sim \pi^{*}}\left[N\left(T_{t}^{\mathrm{g}}, i\right)\right]-\ln \left(\frac{e}{\pi_{\min }^{*}}\right) \mathbb{E}_{i \sim \pi^{*}}\left[N\left(T^{*}, i\right)\right]\right\} \\
< & |\mathcal{Q}| \tau_{G}+40 \ln \left(\frac{e}{\pi_{\min }^{*}}\right) \frac{\mathbb{E}_{i \sim \pi^{*}}\left[N\left(T^{*}, i\right)\right]}{\pi_{\min }^{*}}\left\{[\tau \ln (\tau)]^{\frac{1}{2}}-\left[\left(\tau_{G}-1\right) \ln \left(\tau_{G}-1\right)\right]^{\frac{1}{2}}\right\}+\frac{2 M|\mathcal{Q}|}{\tau_{G}-1} \\
= & O\left([\tau \ln (\tau)]^{\frac{1}{2}}\right) .
\end{aligned}
$$

Q.E.D.

## References

[1] Daniel Golovin and Andreas Krause. Adaptive submodularity: Theory and applications in active learning and stochastic optimization. Journal of Artificial Intelligence Research, 42:427-486, 2011.

