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1 Code

Please check http://mlg.eng.cam.ac.uk/andrew/ for updates on code release.

2 Detailed Derivations for Spectral Mixture Kernels

A stationary kernel k(x, x′) is the inverse Fourier transform of its spectral density S(s),

k(τ) =

∫
S(s)e2πis

>τds , (1)

where τ = x− x′.

First suppose

S(s) =
1√
2πσ2

exp{− 1

2σ2
(s− µ)2} , (2)

where s, µ, σ and τ = x− x′ are scalars. Substituting (2) into (1),

k(x, x′) =

∫
exp(2πis(x− x′)) 1√

2πσ2
exp(− 1

2σ2
(s− µ)2)ds (3)

let τ = x− x′

=
1√
2πσ2

∫
exp[2πiτ − 1

2σ2
(s2 − 2µs+ µ2)]ds (4)

=
1√
2πσ2

∫
exp[− 1

2σ2
s2 + (2πiτ +

µ

σ2
)s− µ2

σ2
]ds (5)

let a =
1

2σ2
, b = 2πiτ +

µ

σ2
, c = − µ2

2σ2

=
1√
2πσ2

∫
exp(−a(s− b

2a
)2) exp(

b2

4a
+ c)ds (6)

= exp[(2πiτ +
µ

σ2
)2
σ2

2
− µ2

2σ2
] (7)

= exp[(−4π2τ2 + 4πiτ
µ

σ2
+
µ2

σ4
)
σ2

2
− µ2

2σ2
] (8)

= exp[−2π2(x− x′)2σ2][cos(2π(x− x′)µ) + i sin(2π(x− x′)µ))] . (9)
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Noting that the spectral density S(s) must be symmetric (Rasmussen and Williams, 2006), we let

φ(s ;µ, σ2) =
1√
2πσ2

exp{− 1

2σ2
(s− µ)2}, and (10)

S(s) = [φ(s) + φ(−s)]/2 . (11)

Closely following the above derivation, substituting (11) into (1) gives

k(τ) = exp{−2π2τ2σ2} cos(2πτµ) . (12)

If φ(s) is instead a mixture ofQGaussians on RP , where the qth component has mean vector µq = (µ
(1)
q , . . . , µ

(P )
q )

and covariance matrix Mq = diag(v
(1)
q , . . . , v

(P )
q ), and τp is the pth component of the P dimensional vec-

tor τ = x− x′, then the integral in (1) becomes a sum of a product of the one dimensional integrals we
encountered to derive (12), from which it follows that

k(τ) =

Q∑
q=1

wq

P∏
p=1

exp{−2π2τ2p v
(p)
q } cos(2πτpµ(p)

q ). (13)

3 Comment on Training Hyperparameters

Generally, we have had success naively training kernel hyperparameters using conjugate gradients (we use
Carl Rasmussen’s 2010 version of minimize.m) to maximize the marginal likelihood p(y|θ) of the data
y given hypers θ, having analytically integrated away a zero mean Gaussian process. We have found
subtracting an empirical mean from the data prior to training hyperparameters (with conjugate gradients)
undesirable, sometimes leading to local optima with lower marginal likelihoods, particularly on small
datasets with a rising trend.
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