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Abstract

Gaussian processes are rich distributions over
functions, which provide a Bayesian nonpara-
metric approach to smoothing and interpola-
tion. We introduce simple closed form ker-
nels that can be used with Gaussian pro-
cesses to discover patterns and enable extrap-
olation. These kernels are derived by mod-
elling a spectral density – the Fourier trans-
form of a kernel – with a Gaussian mixture.
The proposed kernels support a broad class
of stationary covariances, but Gaussian pro-
cess inference remains simple and analytic.
We demonstrate the proposed kernels by dis-
covering patterns and performing long range
extrapolation on synthetic examples, as well
as atmospheric CO2 trends and airline pas-
senger data. We also show that it is possible
to reconstruct several popular standard co-
variances within our framework.

1. Introduction

Machine learning is fundamentally about pattern dis-
covery. The first machine learning models, such as the
perceptron (Rosenblatt, 1962), were based on a simple
model of a neuron (McCulloch & Pitts, 1943). Papers
such as Rumelhart et al. (1986) inspired hope that it
would be possible to develop intelligent agents with
models like neural networks, which could automati-
cally discover hidden representations in data. Indeed,
machine learning aims not only to equip humans with
tools to analyze data, but to fully automate the learn-
ing and decision making process.

Research on Gaussian processes (GPs) within the ma-
chine learning community developed out of neural net-
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works research, triggered by Neal (1996), who observed
that Bayesian neural networks became Gaussian pro-
cesses as the number of hidden units approached in-
finity. Neal (1996) conjectured that “there may be
simpler ways to do inference in this case”.

These simple inference techniques became the corner-
stone of subsequent Gaussian process models for ma-
chine learning (Rasmussen & Williams, 2006). These
models construct a prior directly over functions, rather
than parameters. Assuming Gaussian noise, one can
analytically infer a posterior distribution over these
functions, given data. Gaussian process models have
become popular for non-linear regression and classifi-
cation (Rasmussen & Williams, 2006), and often have
impressive empirical performance (Rasmussen, 1996).

The properties of likely functions under a GP, e.g.,
smoothness, periodicity, etc., are controlled by a posi-
tive definite covariance kernel1, an operator which de-
termines the similarity between pairs of points in the
domain of the random function. The choice of ker-
nel profoundly affects the performance of a Gaussian
process on a given task – as much as the choice of
architecture, activation functions, learning rate, etc.,
can affect the performance of a neural network.

Gaussian processes are sometimes used as expressive
statistical tools, where the pattern discovery is per-
formed by a human, and then hard coded into para-
metric kernels. Often, however, the squared exponen-
tial (Gaussian) kernel is used by default. In either
case, GPs are used as smoothing interpolators with
a fixed (albeit infinite) set of basis functions. Such
simple smoothing devices are not a realistic replace-
ment for neural networks, which were envisaged as in-
telligent agents that could discover hidden features in
data2 via adaptive basis functions (MacKay, 1998).

1The terms covariance kernel, covariance function, ker-
nel function, and kernel are used interchangeably.

2We refer to representations, features and patterns in-
terchangeably. Features sometimes means low dimensional
representations of data, like neurons in a neural network.
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However, Bayesian nonparametrics can help build au-
tomated intelligent systems that reason and make de-
cisions. It has been suggested that the human ability
for inductive reasoning – concept generalization with
remarkably few examples – could derive from a prior
combined with Bayesian inference (Yuille & Kersten,
2006; Tenenbaum et al., 2011; Steyvers et al., 2006).
Bayesian nonparametric models, and Gaussian pro-
cesses in particular, are an expressive way to encode
prior knowledge, and also reflect the belief that the
real world is infinitely complex (Neal, 1996).

With more expressive kernels, one could use Gaus-
sian processes to learn hidden representations in data.
Expressive kernels have been developed by combining
Gaussian processes in a type of Bayesian neural net-
work structure (Salakhutdinov & Hinton, 2008; Wilson
et al., 2012; Damianou & Lawrence, 2012). However,
these approaches, while promising, typically 1) are
designed to model specific types of structure (e.g.,
input-dependent correlations between different tasks);
2) make use of component GPs with simple interpo-
lating kernels; 3) indirectly induce complicated ker-
nels that do not have a closed form and are difficult
to interpret; and 4) require sophisticated approximate
inference techniques that are much more demanding
than that required by simple analytic kernels.

Sophisticated kernels are most often achieved by com-
posing together a few standard kernel functions (Ar-
chambeau & Bach, 2011; Durrande et al., 2011; Gönen
& Alpaydın, 2011; Rasmussen & Williams, 2006).
Tight restrictions are typically enforced on these com-
positions and they are hand-crafted for specialized
applications. Without such restrictions, complicated
compositions of kernels can lead to overfitting and
unmanageable hyperparameter inference. Moreover,
while some compositions (e.g., addition) have an in-
terpretable effect, many other operations change the
distribution over functions in ways that are difficult to
identify. It is difficult, therefore, to construct an effec-
tive inductive bias for kernel composition that leads
to automatic discovery of the appropriate statistical
structure, without human intervention.

This difficulty is exacerbated by the fact that it is chal-
lenging to say anything about the covariance function
of a stochastic process from a single draw if no as-
sumptions are made. If we allow the covariance be-
tween any two points in the input space to arise from
any positive definite function, with equal probability,
then we gain essentially no information from a single
realization. Most commonly one assumes a restriction
to stationary kernels, meaning that covariances are in-
variant to translations in the input space.

In this paper, we explore flexible classes of kernels that

go beyond composition of simple analytic forms, while
maintaining the useful inductive bias of stationarity.
We propose new kernels which can be used to automat-
ically discover patterns and extrapolate far beyond the
available data. This class of kernels contains many sta-
tionary kernels, but has a simple closed form that leads
to straightforward analytic inference. The simplicity
of these kernels is one of their strongest qualities. In
many cases, these kernels can be used as a drop in re-
placement for the popular squared exponential kernel,
with benefits in performance and expressiveness. By
learning features in data, we not only improve predic-
tive performance, but we can more deeply understand
the structure of the problem at hand – greenhouse
gases, air travel, heart physiology, brain activity, etc.

After a brief review of Gaussian processes in Section
2, we derive the new kernels in Section 3 by modelling
a spectral density with a mixture of Gaussians. We
focus our experiments in Section 4 on elucidating the
fundamental differences between the proposed kernels
and the popular alternatives in Rasmussen & Williams
(2006). In particular, we show how the proposed ker-
nels can automatically discover patterns and extrap-
olate on the CO2 dataset in Rasmussen & Williams
(2006), on a synthetic dataset with strong negative
covariances, on a difficult synthetic sinc pattern, and
on airline passenger data. We also use our framework
to reconstruct several popular standard kernels.

2. Gaussian Processes

A Gaussian process is a collection of random variables,
any finite number of which have a joint Gaussian dis-
tribution. Using a Gaussian process, we can define a
distribution over functions f(x),

f(x) ∼ GP(m(x), k(x, x′)) , (1)

where x ∈ RP is an arbitrary input variable, and the
mean function m(x) and covariance kernel k(x, x′) are
defined as

m(x) = E[f(x)] , (2)

k(x, x′) = cov(f(x), f(x′)) . (3)

Any collection of function values has a joint Gaussian
distribution

[f(x1), f(x2), . . . , f(xN )]> ∼ N (µ,K) , (4)

where the N ×N covariance matrix K has en-
tries Kij = k(xi, xj), and the mean µ has en-
tries µi = m(xi). The properties of the functions –
smoothness, periodicity, etc. – are determined by the
kernel function.



Gaussian Process Kernels for Pattern Discovery and Extrapolation

The popular squared exponential (SE) kernel has the
form

kSE(x, x′) = exp(−0.5||x− x′||2/`2) . (5)

Functions drawn from a Gaussian process with this
kernel function are infinitely differentiable, and can
display long range trends. GPs with a squared expo-
nential kernel are simply smoothing devices: the only
covariance structure that can be learned from data
is the length-scale `, which determines how quickly
a Gaussian process function varies with x.

Assuming Gaussian noise, one can analytically infer
a posterior predictive distribution over Gaussian pro-
cess functions, and analytically derive a marginal like-
lihood of the observed function values y given only
hyperparameters θ, and the input locations {xn}Nn=1,
p(y|θ, {xn}Nn=1). This marginal likelihood can be op-
timised to estimate hyperparameters such as `, or
used to integrate out the hyperparameters via Markov
chain Monte Carlo (Murray & Adams, 2010). De-
tailed Gaussian process references include Rasmussen
& Williams (2006), Stein (1999), and Cressie (1993).

3. Kernels for Pattern Discovery

In this section we introduce a class of kernels that can
discover patterns, extrapolate, and model negative co-
variances. This class contains a large set of stationary
kernels. Roughly, a kernel measures the similarity be-
tween data points. As in Equation (3), the covariance
kernel of a GP determines how the associated random
functions will tend to vary with inputs (predictors)
x ∈ RP . A stationary kernel is a function of τ = x−x′,
i.e., it is invariant to translation of the inputs.

Any stationary kernel (aka covariance function) can
be expressed as an integral using Bochner’s theorem
(Bochner, 1959; Stein, 1999):

Theorem 3.1 (Bochner) A complex-valued function
k on RP is the covariance function of a weakly sta-
tionary mean square continuous complex-valued ran-
dom process on RP if and only if it can be represented
as

k(τ) =

∫
RP

e2πis
>τψ(ds) , (6)

where ψ is a positive finite measure.

If ψ has a density S(s), then S is called the spec-
tral density or power spectrum of k, and k and S are
Fourier duals (Chatfield, 1989):

k(τ) =

∫
S(s)e2πis

>τds , (7)

S(s) =

∫
k(τ)e−2πis

>τdτ . (8)

In other words, a spectral density entirely determines
the properties of a stationary kernel. Substituting the
squared exponential kernel of (5) into (8), we find its
spectral density is SSE(s) = (2π`2)P/2 exp(−2π2`2s2).
Therefore SE kernels, and mixtures of SE kernels, are
a very small corner of the set of possible stationary
kernels, as they correspond only to Gaussian spectral
densities centered on the origin.

However, by using a mixture of Gaussians that have
non-zero means, one can achieve a much wider range of
spectral densities. Indeed, mixtures of Gaussians are
dense in the set of all distribution functions (Kostanti-
nos, 2000). Therefore, the dual of this set is also dense
in stationary covariances. That is, we can approximate
any stationary covariance kernel to arbitrary precision,
given enough mixture components in the spectral rep-
resentation. This observation motivates our approach,
which is to model GP covariance functions via spectral
densities that are scale-location mixtures of Gaussians.

We first consider a simple case, where

φ(s ;µ, σ2) =
1√

2πσ2
exp{− 1

2σ2
(s− µ)2}, and (9)

S(s) = [φ(s) + φ(−s)]/2 , (10)

noting that spectral densities are symmetric (Ras-
mussen & Williams, 2006). Substituting S(s) into
equation (7), we find

k(τ) = exp{−2π2τ2σ2} cos(2πτµ) . (11)

If φ(s) is instead a mixture of Q Gaussians
on RP , where the qth component has mean

vector µq = (µ
(1)
q , . . . , µ

(P )
q ) and covariance ma-

trix Mq = diag(v
(1)
q , . . . , v

(P )
q ), and τp is the pth com-

ponent of the P dimensional vector τ = x− x′, then

k(τ) =

Q∑
q=1

wq

P∏
p=1

exp{−2π2τ2p v
(p)
q } cos(2πτpµ

(p)
q ).

(12)

The integral in (7) is tractable even when the spec-
tral density is an arbitrary Gaussian mixture, allow-
ing us to derive3 the exact closed form expressions in
Eqs. (11) and (12), and to perform analytic inference
with Gaussian processes. Moreover, this class of ker-
nels is expressive – containing many stationary kernels
– but nevertheless has a simple form.

These kernels are easy to interpret, and provide drop-
in replacements for kernels in Rasmussen & Williams
(2006). The weights wq specify the relative con-
tribution of each mixture component. The inverse

3Detailed derivations of Eqs. (11) and (12), and code,
are in the supplement (Wilson & Adams, 2013).
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means 1/µq are the component periods, and the in-
verse standard deviations 1/

√
vq are length-scales, de-

termining how quickly a component varies with the in-
puts x. The kernel in Eq. (12) can also be interpreted
through its associated spectral density. In Section 4,
we use the learned spectral density to interpret the
number of discovered patterns in the data and how
these patterns generalize. Henceforth, we refer to the
kernel in Eq. (12) as a spectral mixture (SM) kernel.

4. Experiments

We show how the SM kernel in Eq. (12) can be used
to discover patterns, extrapolate, and model negative
covariances. We contrast the SM kernel with pop-
ular kernels in, e.g., Rasmussen & Williams (2006)
and Abrahamsen (1997), which typically only provide
smooth interpolation. Although the SM kernel gen-
erally improves predictive likelihood over popular al-
ternatives, we focus on clearly visualizing the learned
kernels and spectral densities, examining patterns and
predictions, and discovering structure in the data. Our
objective is to elucidate the fundamental differences
between the proposed SM kernel and the alternatives.

In all experiments, Gaussian noise is assumed, so that
marginalization over the unknown function can be per-
formed in closed form. Kernel hyperparameters are
trained using nonlinear conjugate gradients to opti-
mize the marginal likelihood p(y|θ, {xn}Nn=1) of the
data y given hyperparameters θ, as described in Sec-
tion 2, assuming a zero mean GP. A type of “auto-
matic relevance determination” (MacKay et al., 1994;
Tipping, 2004) takes place during training, minimizing
the effect of extraneous components in the proposed
model, through the complexity penalty in the marginal
likelihood (Rasmussen & Williams, 2006). Moreover,
the exponential terms in the SM kernel of Eq. (12)
have an annealing effect on the marginal likelihood,
reducing multimodality in the frequency parameters,
making it easier to naively optimize the marginal likeli-
hood without converging to undesirable local optima.
For a fully Bayesian treatment, the spectral density
could alternatively be integrated out using Markov
chain Monte Carlo (Murray & Adams, 2010), rather
than choosing a point estimate. However, we wish to
emphasize that the SM kernel can be successfully used
in the same way as other popular kernels, without ad-
ditional inference efforts.

We compare with the popular squared exponential
(SE), Matérn (MA), rational quadratic (RQ), and pe-
riodic (PE) kernels. In each comparison, we attempt
to give these alternative kernels fair treatment: we
initialise hyperparameters at values that give high
marginal likelihoods and which are well suited to the

datasets, based on features we can already see in the
data. Conversely, we randomly initialise the param-
eters for the SM kernel. Training runtimes are on
the order of minutes for all tested kernels. In these
examples, comparing with multiple kernel learning
(MKL) (Gönen & Alpaydın, 2011) has limited addi-
tional value. MKL is not typically intended for pat-
tern discovery, and often uses mixtures of SE kernels.
Mixtures of SE kernels correspond to scale-mixtures of
Gaussian spectral densities, and do not perform well
on these data, which are described by highly multi-
modal non-Gaussian spectral densities.

4.1. Extrapolating Atmospheric CO2

Keeling & Whorf (2004) recorded monthly average at-
mospheric CO2 concentrations at the Mauna Loa Ob-
servatory, Hawaii. The data are shown in Figure 1.
The first 200 months are used for training (in blue),
and the remaining 301 months (≈ 25 years) are used
for testing (in green).

This dataset was used in Rasmussen & Williams
(2006), and is frequently used in Gaussian process tu-
torials, to show how GPs are flexible statistical tools:
a human can look at the data, recognize patterns, and
then hard code those patterns into covariance kernels.
Rasmussen & Williams (2006) identify, by looking at
the blue and green curves in Figure 1a, a long term
rising trend, seasonal variation with possible decay
away from periodicity, medium term irregularities, and
noise, and hard code a stationary covariance kernel to
represent each of these features.

However, in this view of GP modelling, all of the in-
teresting pattern discovery is done by the human user,
and the GP is used simply as a smoothing device, with
the flexibility to incorporate human inferences in the
prior. Our contention is that such pattern recognition
can also be performed algorithmically. To discover
these patterns without encoding them a priori into
the GP, we use the spectral mixture kernel in Eq. (12),
with Q = 10. The results are shown in Figure 1a.

In the training region, predictions using each kernel
are essentially equivalent, and entirely overlap with
the training data. However, unlike the other kernels,
the SM kernel (in black) is able to discover patterns
in the training data and accurately extrapolate over a
long range. The 95% high predictive density (HPD)
region contains the true CO2 measurements for the
duration of the measurements.

We can see the structure discovered by the SM kernel
in the learned log spectral density in Figure 1b. Of
the Q = 10 components, only seven were used. There
is a peak at a frequency near 0.07, which corresponds
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Figure 1. Mauna Loa CO2 Concentrations. a) Forecasting
CO2. The training data are in blue, the testing data in
green. Mean forecasts made using the SM kernel are in
black, with 2 stdev about the mean (95% of the predictive
mass) in gray shade. Predictions using the Matérn (MA),
squared exponential (SE), rational quadratic (RQ), and pe-
riodic kernels (PE) are in cyan, dashed red, magenta, and
orange, respectively. b) The log spectral densities of the
learned SM and squared exponential kernels are in black
and red, respectively.

to a period of about 14 months, roughly a year, which
is in line with seasonal variations. However, there
are departures away from periodicity, and accordingly,
there is a large variance about this peak, reflecting
the uncertainty in this learned feature. We see other,
sharper peaks corresponding to periods of 6 months, 4
months, 3 months and 1 month.

In red, we show the spectral density for the learned SE
kernel, which misses many of the frequencies identified
as important using the SM kernel. The peak at a fre-
quency of 1 is an artifact caused by aliasing. While ar-
tifacts caused by aliasing (noise, mean function, etc.)
into the kernel do not affect the performance of the
model, for interpretability it can be useful to restrict
the model from learning frequencies greater than the
sampling rate of the data.

All SE kernels have a Gaussian spectral density cen-
tred on zero. Since a mixture of Gaussians centred
on the origin is a poor approximation to many density
functions, combinations of SE kernels have limited ex-
pressive power. Indeed the spectral density learned by
the SM kernel in Figure 1b is highly non-Gaussian.
The test predictive performance using the SM, SE,
MA, RQ, and PE kernels is given in Table 1, under
the heading CO2.

4.2. Recovering Popular Kernels

The SM class of kernels contains many stationary ker-
nels, since mixtures of Gaussians can be used to con-
struct a wide range of spectral densities. Even with
a small number of mixture components, e.g., Q ≤ 10,
the SM kernel can closely recover popular stationary
kernels catalogued in Rasmussen & Williams (2006).

Figure 2. Recovering popular correlation functions (nor-
malised kernels), with τ = x− x′. The true correlation
function underlying the data is in green, and SM, SE, and
empirical correlation functions are in dashed black, red,
and magenta, respectively. Data are generated from a) a
Matérn kernel, and b) a sum of RQ and periodic kernels.

As an example, we start by sampling 100 points from a
one-dimensional GP with a Matérn kernel with degrees
of freedom ν = 3/2:

kMA(τ) = a(1 +

√
3τ

`
) exp(−

√
3τ

`
) , (13)

where ` = 5 and a = 4. Sample functions from a
Gaussian process with this Matérn kernel are far less
smooth (only once-differentiable) than Gaussian pro-
cess functions with a squared exponential kernel.

We attempt to reconstruct the kernel underlying the
data by training an SM kernel with Q = 10. After
training, only Q = 4 components are used. The log
marginal likelihood of the data – having integrated
away the Gaussian process – using the trained SM ker-
nel is −133, compared to −138 for the Matérn kernel
that generated the data. Training the SE kernel in (5)
gives a log marginal likelihood of −140.

Figure 2a shows the learned SM correlation func-
tion4, compared to the generating Matérn correlation
function, the empirical autocorrelation function, and
learned squared exponential correlation function. Al-
though often used in geostatistics to guide choices
of GP kernels (and parameters) (Cressie, 1993), the
empirical autocorrelation function tends to be un-
reliable, particularly with a small amount of data
(e.g., N < 1000), and at high lags (for τ > 10). In Fig-
ure 2a, the empirical autocorrelation function is erratic
and does not resemble the Matérn kernel for τ > 10.
Moreover, the squared exponential kernel cannot cap-
ture the heavy tails of the Matérn kernel, no matter
what length-scale it has. Even though the SM ker-
nel is infinitely differentiable, it can closely approx-
imate processes which are finitely differentiable, be-

4A correlation function c(x, x′) is a nor-
malised covariance kernel k(x, x′), such

that c(x, x′) = k(x, x′)/
√
k(x, x)k(x′, x′) and c(x, x) = 1.
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cause mixtures of Gaussians can closely approximate
the spectral densities of these processes, even with a
small number of components, as in Figure 2a.

Next, we reconstruct a mixture of the rational
quadratic (RQ) and periodic kernels (PE) in Ras-
mussen & Williams (2006):

kRQ(τ) = (1 +
τ2

2α `2RQ
)−α , (14)

kPE(τ) = exp(−2 sin2(π τ ω)/`2PE) . (15)

The rational quadratic kernel in (14) is derived
as a scale mixture of squared exponential kernels
with different length-scales. The standard peri-
odic kernel in (15) is derived by mapping the two
dimensional variable u(x) = (cos(x), sin(x)) through
the squared exponential kernel in (5). Deriva-
tions for both the RQ and PE kernels in (14) and
(15) are in Rasmussen & Williams (2006). Ra-
tional quadratic and Matérn kernels are also dis-
cussed in Abrahamsen (1997). We sample 100 points
from a Gaussian process with kernel 10kRQ + 4kPE,
with α = 2, ω = 1/20, `RQ = 40, `PE = 1.

We reconstruct the kernel function of the sampled pro-
cess using an SM kernel with Q = 4, with the results
shown in Figure 2b. The heavy tails of the RQ kernel
are modelled by two components with large periods
(essentially aperiodic), and one short length-scale and
one large length-scale. The third component has a rel-
atively short length-scale, and a period of 20. There
is not enough information in the 100 sample points
to justify using more than Q = 3 components, and so
the fourth component in the SM kernel has no effect,
through the complexity penalty in the marginal like-
lihood. The empirical autocorrelation function some-
what captures the periodicity in the data, but signif-
icantly underestimates the correlations. The squared
exponential kernel learns a long length-scale: since the
SE kernel is highly misspecified with the true generat-
ing kernel, the data are explained as noise.

4.3. Negative Covariances

All of the stationary covariance functions in the
standard machine learning Gaussian process ref-
erence Rasmussen & Williams (2006) are ev-
erywhere positive, including the periodic ker-
nel, k(τ) = exp(−2 sin2(π τ ω)/`2). While positive co-
variances are often suitable for interpolation, captur-
ing negative covariances can be essential for extrapo-
lating patterns: for example, linear trends have long-
range negative covariances. We test the ability of the
SM kernel to learn negative covariances, by sampling

Figure 3. Negative Covariances. a) Observations of a dis-
crete time autoregressive (AR) series with negative covari-
ances. b) The SM learned kernel is shown in black, while
the true kernel of the AR series is in green, with τ = x−x′.
c) The spectral density of the learned SM kernel is in black.

400 points from a simple AR(1) discrete time GP:

y(x+ 1) = −e−0.01y(x) + σε(x) , (16)

ε(x) ∼ N (0, 1) , (17)

which has kernel

k(x, x′) = σ2(−e−.01)|x−x
′|/(1− e−.02) . (18)

The process in Eq. (16) is shown in Figure 3a. This
process follows an oscillatory pattern, systematically
switching states every x = 1 unit, but is not periodic
and has long range covariances: if we were to only view
every second data point, the resulting process would
vary rather slowly and smoothly.

We see in Figure 3b that the learned SM covariance
function accurately reconstructs the true covariance
function. The spectral density in Figure 3c) shows a
sharp peak at a frequency of 0.5, or a period of 2. This
feature represents the tendency for the process to os-
cillate from positive to negative every x = 1 unit. In
this case Q = 4, but after automatic relevance deter-
mination in training, only 3 components were used.
Using the SM kernel, we forecast 20 units ahead and
compare to other kernels in Table 1 (NEG COV).

4.4. Discovering the Sinc Pattern

The sinc function is defined as sinc(x) = sin(πx)/(πx).
We created a pattern combining three sinc functions:

y(x) = sinc(x+ 10) + sinc(x) + sinc(x− 10) . (19)
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Figure 4. Discovering a sinc pattern. a) The training data
are shown in blue. The goal is to fill in the missing region
x ∈ [−4.5, 4.5]. b) The training data are in blue, the testing
data in green. The mean of the predictive distribution
using the SM kernel is shown in dashed black. The mean of
the predictive distributions using the squared exponential,
Matérn, rational quadratic, and periodic kernels, are in red,
cyan, magenta, and orange. c) The learned SM correlation
function (normalised kernel) is shown in black, and the
learned Matérn correlation function is in red, with τ =
x − x′. d) The log spectral densities of the SM and SE
kernels are in black and red, respectively.

This is a complex oscillatory pattern. Given only the
points shown in Figure 4a, we wish to complete the
pattern for x ∈ [−4.5, 4.5]. Unlike the CO2 example
in Section 4.1, it is perhaps even difficult for a human
to extrapolate the missing pattern from the training
data. It is an interesting exercise to focus on this fig-
ure, identify features, and fill in the missing part.

Notice that there is complete symmetry about the ori-
gin x = 0, peaks at x = −10 and x = 10, and destruc-
tive interference on each side of the peaks facing the
origin. We therefore might expect a peak at x = 0 and
a symmetric pattern around x = 0.

As shown in Figure 4b, the SM kernel with Q = 10
reconstructs the pattern in the region x ∈ [−4.5, 4.5]
almost perfectly from the 700 training points in blue.
Moreover, using the SM kernel, 95% of the poste-
rior predictive mass entirely contains the true pat-
tern in x ∈ [−4.5, 4.5]. GPs using Matérn, SE, RQ,
and periodic kernels are able to predict reasonably
within x = 0.5 units of the training data, but entirely
miss the pattern in x ∈ [−4.5, 4.5].

Figure 4c shows the learned SM correlation function
(normalised kernel). For τ ∈ [0, 10] there is a local

pattern, roughly representing the behaviour of a sin-
gle sinc function. For τ > 10 there is a repetitive pat-
tern representing a new sinc function every 10 units –
an extrapolation a human might make. With a sinc
functions centred at x = −10, 0, 10, we might expect
more sinc patterns every 10 units. The learned Matérn
correlation function is shown in red in Figure 4c – un-
able to discover complex patterns in the data, it simply
assigns high correlation to nearby points.

Figure 4d shows the (highly non-Gaussian) spec-
tral density of the SM kernel, with peaks at
0.003, 0.1, 0.2, 0.3, 0.415, 0.424, 0.492. In this case,
only 7 of the Q = 10 components are used. The peak
at 0.1 represents a period of 10: every 10 units, a
sinc function is repeated. The variance of this peak is
small, meaning the method will extrapolate this struc-
ture over long distances. By contrast, the squared ex-
ponential spectral density simply has a broad peak,
centred at the origin. The predictive performance for
recovering the missing 300 test points (in green) is
given in Table 1 (SINC).

4.5. Airline Passenger Data

Figure 5a shows airline passenger numbers, recorded
monthly, from 1949 to 1961 (Hyndman, 2005). Based
on only the first 96 monthly measurements, in blue,
we wish to forecast airline passenger numbers for the
next 48 months (4 years); the corresponding 48 test
measurements are in green. Companies wish to make
such long range forecasts to decide upon expensive
long term investments, such as large passenger jets,
which can cost hundreds of millions of dollars.

There are several features apparent in these data:
short seasonal variations, a long term rising trend, and
an absence of white noise artifacts. Many popular ker-
nels are forced to make one of two choices: 1) Model
the short term variations and ignore the long term
trend, at the expense of extrapolation. 2) Model the
long term trend and treat the shorter variations as
noise, at the expense of interpolation.

As seen in Figure 5a, the Matérn kernel is more
inclined to model the short term trends than the
smoother SE or RQ kernels, resulting in sensible in-
terpolation (predicting almost identical values to the
training data in the training region), but poor extrap-
olation – moving quickly to the prior mean, having
learned no structure to generalise beyond the data.
The SE kernel interpolates somewhat sensibly, but ap-
pears to underestimate the magnitudes of peaks and
troughs, and treats repetitive patterns in the data as
noise. Extrapolation using the SE kernel is poor. The
RQ kernel, which is a scale mixture of SE kernels,
is more able to manage different length-scales in the
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Figure 5. Predicting airline passenger numbers. a) The
training and testing data are in blue and green, respec-
tively. The mean of the predictive distribution using the
SM kernel is shown in black, with 95% of the predictive
probability mass shown in gray shade. The mean of the
predictive distribution using the SM kernel is shown in
black. The mean of the predictive distributions using the
SE, Matérn, RQ, and periodic kernels, are in red, cyan,
magenta, and orange, respectively. In the training region,
the SM and Matérn kernels are not shown, since their pre-
dictions essentially overlap with the training data. b) The
log spectral densities of the SM and squared exponential
kernels are in black and red, respectively.

data, and generalizes the long term trend better than
the SE kernel, but interpolates poorly.

By contrast, the SM kernel interpolates nicely (over-
lapping with the data in the training region), and is
able to extrapolate complex patterns far beyond the
data, capturing the true airline passenger numbers for
years after the data ends, within a small band contain-
ing 95% of the predictive probability mass.

Of the Q = 10 initial components specified for the SM
kernel, 7 were used after training. The learned spectral
density in Figure 5b shows a large sharp low frequency
peak (at about 0.00148). This peak corresponds to
the rising trend, which generalises well beyond the
data (small variance peak), is smooth (low frequency),
and is important for describing the data (large relative
weighting). The next largest peak corresponds to the
yearly trend of 12 months, which again generalises, but
not to the extent of the smooth rising trend, since the
variance of this peak is larger than for the peak near
the origin. The higher frequency peak at x = 0.34 (pe-
riod of 3 months) corresponds to the beginnings of new
seasons, which can explain the effect of seasonal hol-
idays on air traffic. A more detailed study of these
features and their properties – frequencies, variances,
etc. – could isolate less obvious factors affecting airline
passenger numbers. Table 1 (AIRLINE) shows predic-
tive performance for forecasting 48 months of airline
passenger numbers.

Table 1. We compare the test performance of the proposed
spectral mixture (SM) kernel with squared exponential
(SE), Matérn (MA), rational quadratic (RQ), and periodic
(PE) kernels. The SM kernel consistently has the lowest
mean squared error (MSE) and highest log likelihood (L).

SM SE MA RQ PE

CO2

MSE 9.5 1200 1200 980 1200
L 170 −320 −240 −100 −1800

NEG COV

MSE 62 210 210 210 210
L −25 −70 −70 −70 −70

SINC

MSE 0.000045 0.16 0.10 0.11 0.05
L 3900 2000 1600 2000 600

AIRLINE

MSE 460 43000 37000 4200 46000
L −190 −260 −240 −280 −370

5. Discussion

We have derived expressive closed form kernels and we
have shown that these kernels, when used with Gaus-
sian processes, can discover patterns in data and ex-
trapolate over long ranges. The simplicity of these ker-
nels is one of their strongest properties: they can be
used as drop-in replacements for popular kernels such
as the squared exponential kernel, with major bene-
fits in expressiveness and performance, while retaining
simple training and inference procedures.

Gaussian processes have proven themselves as smooth-
ing interpolators. Pattern discovery and extrapolation
is an exciting new direction for Bayesian nonparamet-
ric approaches, which can capture rich variations in
data. We have shown how Bayesian nonparametric
models can naturally be used to generalise a pattern
from a small number of examples.

We have only begun to explore what could be done
with such pattern discovery methods. In future work,
one could integrate away a spectral density, using re-
cently developed efficient MCMC for GP hyperpa-
rameters (Murray & Adams, 2010). Moreover, recent
Toeplitz methods (Saatchi, 2011) could be applied to
the SM kernel to significantly speed up inference.
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