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A. NP-Hardness Proofs

For the sake of concreteness, we focus on the case
where D = {0, 1}. The proofs readily generalize to
arbitrarily domain D.

A.1. NP-hardness of K = L = 2

We construct a reduction from MaxCut. A cut in a
graph G = (V,E) is a partition of the vertex set into
V1 and V2. The size of the cut is the number of edges
in E that connect vertices from V1 to vertices from V2.
The decision version of MaxCut is defined as follows:

Input A graph G = (V,E), an integer r.

Question Is there a cut of G of size at least r?

The size of a cut can also be defined as the total num-
ber of edges, |E| minus the edges within V1 and the
edges within V2. For a subset U ⊆ V of vertices and a
vertex v ∈ V let v[U ] denote the number of neighbors
of v in U . We can re-write the size of the cut as

s(V1, V2) :=
1

2

(∑

v∈V
v[V ]−

∑

v∈V1

v[V1]−
∑

v∈V2

v[V2]

)

(3)
Thus maximizing the size of a cut is equivalent to min-
imizing the cost of the cut c(V1, V2) defined as

c(V1, V2) =
1

2

(∑

v∈V1

v[V1] +
∑

v∈V2

v[V2]

)
(4)

The MaxCut question can be reformulated as: Is
there a cut of G of cost at most r?

Given an instance G = (V,E), as well as a cost r,
we construct an instance M , with a 2, 2-MCBC cost
2r
|M | . The construction is shown in figure 3. We start

by defining the “left half” of the matrix M . For ev-
ery vertex v ∈ V we introduce n = |V | rows rv1 . . . r

v
n

and n columns cv1 . . . c
v
n. We set the entries of M cor-

responding to rows and columns of the same vertex
(the “diagonal blocks”), to 1, i.e. ∀v, 1 ≤ i, j ≤ n :
M [rvi , c

v
j ] = 1. Let V = {v1 . . . vn} be an ordering of

the vertices of G, if vertices vi and vj of G are con-
nected by an edge, we set the entry M [rvij , c

vj
i ] and

M [r
vj
i , c

vi
j ] to 0. All other entries of the left half are

set to ?.

The “right side” of M is an n2 × n2 matrix as well,
where the diagonal n × n blocks are set to 0 and the
rest to ?. More formally, we introduce another set of
n columns 0v1, . . . 0

v
n for each vertex v ∈ V . We set

∀v, 1 ≤ i, j ≤ n : M [rvi , 0
v
j ] = 0. The remaining

right half of M is set to ?. We refer to these columns
as the 0-columns of a vertex v, and use Ov for the set
{0v1, . . . 0vn}. Similarly we refer to the set of columns
{cv1 . . . cvn} as the 1-columns of v, and denote it as Cv

(note that while the 0 columns contain only 0 and ?
entries, the 1-columns consist mostly of 1 and ?, but
also contain a few 0 entries, corresponding to edges of
the graph). Finally we use Rv to refer to the set of
rows {rv1 . . . rvn} associated with vertex v.

The NP-hardness of 2, 2-MCBC now follows directly
from the NP-hardness of MaxCut and the following
lemma.

Lemma A.1. G has a cut of cost at most r if and only
if M has a 2, 2-bi-clustering of monochromatic cost at
most 2r

|M | .

Proof. We first show that a cut of cost at most r in-
duces a solution of the 2, 2-bi-clustering of cost 2r

|M | .
Let V1, V2 be a cut of G of cost at most r. We
define a partition PR = {R1, R2} of the rows and
PC = {C1, C2} of the columns as follows: For all
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Figure 3. Construction of the reduction from MaxCut to
2, 2-MCBC. Bottom: The graph instance (only 3 out of n
vertices are displayed)

v ∈ V1 we put Rv in R1, Cv in C1 and Ov in C2. For all
v ∈ V2 we do the opposite, put Rv in R2, Cv in C2 and
Ov in C1. The partition is depicted in figure 4. This
results in a 2× 2 bi-clustering with a majority of 1 in
the diagonal blocks (upper left and lower right) and a
majority of 0 is the off-diagonal ones (upper right and
lower left). The off-diagonal blocks consist of only 0
and ? entries, such that the monochromatic cost due to
these blocks is 0. The diagonal blocks consist of: n2|Vt|
1-entries, and

∑
v∈Vt

v[Vt] 0-entries, for t ∈ {1, 2}. The
remaining entries are ?. Clearly there is a majority of
1 in these blocks, such that their total monochromatic
cost amounts to exactly 2c(V1, V2) = 2r (see (4)). Nor-
malizing by the size of the matrix yields the required
cost.

Next we show that, if there is a bi-clustering of M
with cost at most r, then there is cut of G of size
|M |r

2 . Note that if there is any bi-clustering solution
of cost at most r, then the optimal one has cost at
most r, thus we consider a bi-clustering of optimal
cost. For the sake of the proof we start by considering
an optimal n2, 2-bi-clustering, namely a bi-clustering
where every row is a set of the row partition (thus,
we are only interested in the resulting 2-partition of
the columns). We will then argue, that this optimal
n2, 2-bi-clustering is actually a 2, 2-bi-clustering and
therefore also the optimal 2, 2-bi-clustering.

We can assume that in an optimal solution identical
columns are in the same cluster. Similarly, we can
assume that two columns that are “inverse” of each
other (one can be obtained from the other by replacing
each 0 with a 1 and each 1 with a 0) are in different
clusters. Thus, for any v, all columns in Ov are in one
cluster. Consider a vertex v and its corresponding set

of rows Rv. Without loss of generality let us assume
that the 0-columns of v are in C2. Each of the rows
rv2 , . . . , r

v
n contains n entries 1 and at most one entry

0 in the left half. The row rv1 contains no 0. Equally
the column cv1 contains no 0 entries. Therefore, we can
assume that cv1 is in C1 (it is the inverse of the columns
in Ov). By way of contradiction, assume that not all
columns of Cv are in C1, say cvi is in C2 for some i ≥ 2.
As at least cv1 is in C1, all columns in Ov are in C2 and
the rows rv1 , . . . , r

v
n contain at most one 0 entry in the

left half, we can assume that all these rows have a 1-
block for C1 and a 0-block for C2. Having a column
cvi in C2 incurs a cost of at least n by its 1 entries,
however moving it into C1 can incur a cost of at most
1 as the column has at most one 0 entry and all its 1
entries do not contribute to the cost anymore. Thus,
all columns in Cv are in C1.

We showed that for every vertex, all its 0 columns are
in one cluster and all its 1-columns are in the other
cluster (which group is in which cluster may vary).
Every row therefore has a block pattern 1, 0 or 0, 1,
and the only cost that it incurs per row is that of a 0
entry of the left half, which ended up in the 1-block of
the row. Now, grouping all the rows with pattern 1, 0
into R1 and all the rows with pattern 0, 1 in R2, leads
to a 2, 2-bi-clustering of the same cost. As this cost is
optimal for an n, 2-bi-clustering, it is also optimal for
2, 2-bi-clustering (if there was a 2, 2-solution of lower
cost, separating the rows into singleton sets for an n, 2-
bi-clustering would lead to a lower cost solution for this
as well).

If we set V1 to be the vertices whose 1-columns are in
C1 and V2 the vertices whose 1-columns are in C2 we
obtain a cut. The only matrix entries that contribute
to the cost of the bi-clustering are the 0 coming from
edges within one of these sets.

A.2. NP-hardness for larger K,L-MCBC

Proof outline: We prove the claim by reducing the 2, 2-
MCBC problem to the K,L-MCBC problem. Given K
and L as in the theorem (without loss of generality, we
assume K ≤ 2L−1 here), and an input matrix M to
the 2, 2-MCBC problem, we construct another matrix
N such that an optimal K,L-MCBC partitioning of
N will induce an optimal 2, 2-MCBC partitioning of
M .

Let m and n be the number of rows and columns
of M , respectively. The matrix N will consist of
(K − 1) × (L − 1) blocks, each of size m × n. The
top left corner block of N will be the input matrix
M . All other blocks will be either all-zero matrices
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Figure 4. Optimal 2, 2-MCBC solution for the reduction
matrix corresponding to the graph at the bottom. The
zero entries highlighted in red correspond to edges that do
not cross the cut, and incur a monochromatic cost respec-
tively.

or all-one matrices. All the blocks in the top row of
blocks, except the left-most block, will be all-zero ma-
trices. The blocks indexed (i, 1), for 2 ≤ i ≤ 2L−2 − 1
(and i ≤ K − 1) (blocks that reside below the top left
corner block) will also be all-zero matrices. And the
blocks indexed (i, 1), for 2L−2 ≤ i ≤ K − 1 (also re-
siding below the top left corner block) will be all-one
matrices. Finally, for every 2 ≤ i ≤ 2L−2 let vi be
vectors in {0, 1}L−2 such that for all i 6= j, vi 6= vj
and none is the all-zero vector (i.e. let the set of the vi
be all vectors in {0, 1}L−2 except the all-zero). Now
let the (i, j) block, for 2 ≤ i ≤ 2L−2 (and i ≤ K − 1)
and 2 ≤ j ≤ L − 1, be a homogeneous matrix all of
whose entries equal the j − 1 entry of the vector vi.
Finally, set the entries of the (2L−2 + i, j) block equal
to those of the (i, j) block for all 1 ≤ i ≤ 2L−2 − 1
(and i ≤ K − 1) and 2 ≤ j ≤ L− 1.

It is easy to see that the optimal K,L-MCBC partition
of N induces an optimal 2, 2-MCBC partition over M .

A.3. NP-hardness for matrices with arbitrary
fraction of ? entries

Given an ε > 0, and K and L satisfying the condition
of theorem 4.1. We show that K + 1, L + 1-MCBC
is NP-hard restricted to input matrices containing at
most an ε fraction of ?-entries by a reduction from
general K,L-MCBC. Given a matrix M , we construct
matrix N as follows: We add |M | 1ε rows and columns

to M such that the upper left block of N is identical
to M . We set the entries of the upper right and lower
left blocks to 1 and the entries to the lower right block
to 0. Now N has at most an ε-fraction of ? entries.
Further, it is easy to see that the optimal K+1, L+1-
MCBC partition of N induces an optimal K,L-MCBC
solution to M .

B. Approximation Algorithm Proofs

B.1. Proof of theorem 5.2

To prove theorem 5.2 we first prove the following

Theorem B.1. On input M , A, K,L, ε, δ, with prob-
ability at least 1 - δ the monochromatic approximation
algorithm (given in Algorithm 1), lines (4)− (11) out-
puts a partition P of M such that MonA(M , P ) ≤
OPTA + 4ε where OPTA is the minimal monochro-
matic cost with respect to A.

Proof. We start by analyzing the partition of the
columns by algorithm 1. Let P ?R = {R?1, . . . R?K} de-
note the optimal partition of the rows of M (with
respect to pattern A). We say that a sample RS ⊂ R
is good, if there exists a partition PSR = {RS1 , . . . RSK}
of RS such that, for all columns j ∈ C, except for at
most ε|C| columns, the following holds:

∀ 1 ≤ l ≤ L :
‖ Err(j, l|A, P ?R)− Err(j, l|A, PSR) ‖ ≤ ε (5)

Namely, that in every column block l, the difference
in the number of errors between the placement of the
column j in the l’th block under the optimal partition
of the rows, and the partition PSR of the sample of
rows, is bounded by ε.

Let RS be a good sample of the rows, and let PSR =
{RS1 , . . . RSK} be the partition of the sample for which
all but a fraction of ε of the columns in C satisfy 5.
Consider a column j ∈ C,

1. If j satisfies 5, then placing j in a greedy man-
ner with respect to PSR and the pattern A, yields
a cost increase compared to the optimal parti-
tion which is bounded by tε ≤ mε. The number
of columns is n, and therefore the cost increase
in this case compared to the optimal solution is
bounded by mnε.

2. If j does not satisfy 5, we can still bound the
number of entries of j disagreeing with the pat-
tern, by m, the overall number of entries. Since
we assumed that RS is a good sample, the number
of such columns is bounded by nε. This implies
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a cost increase compared to the optimal solution,
of mnε.

Altogether the number of errors incurred by the parti-
tion of the columns is bounded by 2mnε. We can carry
out the same analysis only for the partition of the rows,
assuming we have a good sample of the columns. The
overall increase compared to the optimal solution is
then bounded by 4mnε.

We defined the monochromatic pattern cost (2) as a
fraction of the number of mistakes made by the par-
tition divided by the size of the matrix (mn), we can
therefore conclude that the algorithm yields a solution
which is at most OPT+4ε.

Now it suffices to show the following.

Lemma B.2. With probability at least 1 - δ over
the random sampling, the rows and columns samples
picked by the algorithm are good w.r.t the the optimal
solution.

Proof. As before we use RS to denote a sample of the
rows of size t, let P ?SR denote the restriction of the
optimal partition P ?R to the sample RS , that is

∀ 1 ≤ k ≤ K R?Sk = R?k
⋂
RS

We can focus our analysis on this specific partition of
the sample of rows since the approximation algorithm
is going over all possible partitions, and is therefore
guaranteed to consider this one.

Let j ∈ C be a column, we define an indicator random
variable ξli for each row index i ∈ RS and column block
index l ∈ [L] in the following way

ξli =

{
1 if M [i, j] 6= ? and M [i, j] 6= A[P ?SR (i), l]
0 otherwise

(6)
Where for a row index i, P ?SR (i) denotes its row block
assignment in the partition P ?SR . The variable ξli is
simply the error associated with the i entry in the
column j, if we place it in the column block l, given
that the partition of the rows is given by P ?SR and the
target pattern is A.

It is easy to see that the random variable correspond-
ing to the sum over ξli, for all i in the sample RS , is
simply the error function defined in (5.1).

1

t

∑

i∈RS

ξli = Err(j, l|A, P ?SR ) (7)

Using Chernoff additive bound we can guarantee that
with a sample size of t = 1

2ε2 log L
δε equation (5) holds

for a certain column j and column block l with prob-
ability at least 1− εδ

L :

Pr(‖ Err(j, l|A, P ?R)− Err(j, l|A, PSR) ‖ > ε)
≤ exp(−2ε2t)

(8)

We apply markov inequality to get that for all columns
j ∈ C except for not more than ε|C|, for a specific
column block j equation (5) holds with probability at
least 1 − δ

L . Finally we get a guarantee of (5) for all
blocks l with probability at least 1− δ.
The same analysis applies for the approximated par-
tition of the rows determined by a sufficiently large
sample of the columns.

Proof of theorem 5.2

Proof. According to theorem B.1, the monochro-
matic approximation algorithm for a given pattern A,
computes a partition P such that MonA(M , P ) ≤
OPTA+4ε. This in turn translates into a bound on the
agreement of 1 −MonA(M , P ) ≥ OPTA − 4ε. Since
the algorithm goes over all possible patterns, and fi-
nally picks the pattern and partition with the lowest
overall cost, the optimal pattern will be considered as
well and thus the returned partition is guaranteed to
have a cost ≤ OPT + 4ε or agreement ≥ OPT − 4ε.
The run time increase due to the iteration over the pat-
terns is exponential in K,L but is constant in |M |.

B.2. Proof Of Corollary 5.3

Proof. There is always a trivial solution to the
monochromatic bi-clustering problem with an agree-
ment score of at least 1

2 . This is simply assigning
all of the rows and all of the columns to the same
cluster. Note that the presence of missing entires im-
plies that the agreement score of this trivial solution is
even strictly larger than 1

2 (see definition 1). Therefore
an additive 4ε approximation translates into a relative
(1 − ε)OPT bound on the agreement of the solution,
with a fixed increase of the sample size and therefore
the running time.

1−Mon(M , P ) ≥ OPT − 4ε = OPT (1− 4ε
OPT )

use OPT ≥ 1
2

≥ OPT (1− 8ε)
substitute ε′ = 8ε

The corollary now follows from Theorem 5.2


