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A Conditional likelihoods

A.1 Channel i conditional likelihood at time t

Let i′ ⊆ {1, . . . , N} index the neighboring channels upon which channel i is conditioned. The conditional

likelihood of observation y
(i)
t under AR model k given the other observations y

(i′)
t at time t is

p
(
y
(i)
t | ỹ

(i)
t ,y

(i′)
t , z

(i)
t = k, z

(i′)
t , Zt, {ak}, {∆l}

)
= N

(
y
(i)
t ; µ̃t, σ̃

2
t

)
(1)

for

µ̃t = aTk ỹ
(i)
t + ∆

(i,i′)
Zt

∆
−1(i′,i′)
Zt

(
y
(i′)
t −Az(i′)Ỹ

(i′)

t

)
σ̃2
t = ∆

(i,i)
Zt
−∆

(i,i′)
Zt

∆
−1(i′,i′)
Zt

∆
(i′,i)
Zt

. (2)

A.2 Channel i conditional marginal likelihood over t = 1, . . . , T

The sum-product algorithm can be used to produce the conditional likelihood of channel i’s observations

over all t = 1, . . . , T , marginalizing over the exponentially many state sequences z
(i)
1:T . Let ξt ∈ RK(i)

be
a vector defining the forward messages for this channel at time t. Element k in this vector gives the joint

probability of the observations from the first t time points and the state z
(i)
t = k,

ξkt = p
(
y
(i)
1:t, z

(i)
t = k |y(i′)

1:t , z
(i′)
1:t , Z1:t, {ak}, {∆l}

)
ξkt = p

(
y
(i)
t |y

(i′)
t , z

(i)
t = k, z

(i′)
t , Z1:t, {ak}, {∆l}

)
·∑

k′

p
(
y
(i)
1:t−1 |y

(i′)
1:t−1, z

(i)
t−1 = k′, z

(i′)
1:t−1, Z1:t−1, {ak}, {∆l}

)
p
(
z
(i)
t = k | z(i)t−1 = k′

)
p
(
z
(i)
t−1 = k′

)
ξkt = p

(
y
(i)
t |y

(i′)
t , z

(i)
t = k, Zt, z

(i′)
t , {ak}, {∆l}

)∑
k′

ξk′,t−1 · p
(
z
(i)
t = k | z(i)t−1 = k′

)
.

In the above, we omit the dependence on ỹ
(i)
t for notational simplicity.

If ut ∈ RK(i)

defines the (conditional) likelihood vector of y
(i)
t under each of the K(i) possible states

(following from Eq. (1)), these forward messages can be written compactly in vector notation as

ξt = ut ◦ (π̃(i)Tξt−1)

with
ξ1 = u1 ◦ π̃(i)

0

where we let π̃(i) ∈ RK(i)×K(i)

be a matrix of the positive channel state transition probabilities in π(i), which
is a function of f (i) and η(i). The total conditional likelihood of the sequence of channel i observations given
the states of the other channels i′ and the event states is thus

p
(
y
(i)
1:T |y

(i′)
1:T , z

(i′)
1:T , Z1:T , f

(i),η(i), {ak}, {∆l}
)

=
∑
k

ξkT

`(y
(i)
1:T ) = 1T ξT . (3)

A.3 Conditional event likelihood

Let zt denote the vector of N states at time t. Since the space of zt is exponentially large, we cannot
integrate it out to compute the marginal conditional likelihood of the data given the event state sequence
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Z1:T (and model parameters). Instead, we consider the conditional likelihood of an observation at time t
given channel states zt and event state Zt:

p(yt | Ỹt, zt, Zt, {ak}, {∆l}) = N (yt; Azt
Ỹt,∆Zt

). (4)

We integrate over the event states Z1:T via the sum-product algorithm to yield the conditional event likeli-
hood, given only the channel states. Let ζt = [ζ1t, . . . , ζLt]

T describe the vector of forward messages at time
t for L possible event states with elements

ζlt = p (y1:t, Zt = l | z1:t, {ak}, {∆l})
= p (yt | zt, Zt = l, {ak}, {∆l}) ·∑

l′

p
(
y1:t−1 | z1:t−1, Zt−1 = l′, {ak}, {∆l}

)
p (Zt = l |Zt−1 = l′) p (Zt−1 = l′)

ζlt = p (yt | zt, Zt = l, {ak}, {∆l})
∑
l′

ζlt−1 · p (Zt = l |Zt−1 = l′) . (5)

Again, we omit Ỹt above for notational simplicity.
If vt ∈ RL denotes the conditional likelihood vector of yt under each of the L possible event states

(following from Eq. (4)), these forward messages can be written compactly in vector notation as

ζt = vt ◦ (φTζt−1) (6)

with ζ1 = v1 ◦ φ0. The matrix φ ∈ RL×L gives the event state transition probabilities. The conditional
likelihood of the entire event given the channel states is thus

p (y1:T | z1:T ,φ, {ak}, {∆l}) =
∑
l

ζlT

`(y1:T ) = 1T ζT . (7)

B Details of posterior computation

B.1 Sampling individual channel variables

We sample the active features, state sequences, and transition parameters for each channel i.

B.1.1 Channel active features, f (i)

We briefly describe the active feature sampling scheme given in detail by Fox et al. (2009). Recall that for

our HIW-spatial BP-AR-HMM, we need to condition on neighboring channel state sequences z
(i′)
1:T and event

state sequences Z1:T . Sampling the feature indicators f (i) for channel i via the Indian buffet process (IBP)
involves considering those features shared by other channels and those unique to channel i. We denote the
set of shared features across channels not including those specific to channel i as S−i ⊆ {1, . . . ,K} and the
set of unique features for channel i as U i ⊆ {1, . . . ,K}/S−i.

Shared features The posterior for each shared feature k ∈ S−i for channel i is given by

p
(
f
(i)
k | y

(i)
1:T ,y

(i′)
1:T , z

(i′)
1:T , Z1:T ,F

i′k,η(i), {ak}, {∆l}, α
)
∝

p
(
f
(i)
k |F

i′k, α
)
p
(
y
(i)
1:T |y

(i′)
1:T , z

(i′)
1:T , Z1:T , f

(i),η(i), {ak}, {∆l}
)
. (8)

The IBP implies that that p
(
f
(i)
k |F

−ik, α
)

= m−ik /N , where m−ik denotes the number of other channels

that use feature k. The likelihood term in Eq. (8) follows from Eq. (3). We use this posterior to formulate a
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Metropolis-Hastings proposal that flips the current indicator value f
(i)
k to its complement f̄

(i)
k with probability

ρ(f̄
(i)
k | f

(i)
k ),

f
(i)
k =

{
f̄
(i)
k , w.p. ρ(f̄

(i)
k | f

(i)
k )

f
(i)
k , w.p. 1− ρ(f̄

(i)
k | f

(i)
k )

(9)

where

ρ(f̄
(i)
k | f

(i)
k ) = min

p
(
f̄
(i)
k | y

(i)
1:T ,y

(i′)
1:T , z

(i′)
1:T , Z1:T ,F

i′k,η(i), {ak}, {∆l}, α
)

p
(
f
(i)
k | y

(i)
1:T ,y

(i′)
1:T , z

(i′)
1:T , Z1:T ,F

i′k,η(i), {ak}, {∆l}, α
) , 1

 .

Unique features We either propose a new feature or remove a unique feature for channel i using a birth
and death reversible jump MCMC sampler (see Fox et al. (2009) for details). We denote the number of unique

features for channel i as ni = |U i|. We define the vector of shared feature indicators as f
(i)
− = f

(i)

k′ | k′∈Si′ and

that for unique feature indicators as f
(i)
+ = f

(i)
k′ | k′∈Ui , which together [f

(i)
− f

(i)
+ ] define the full feature indicator

vector f (i) for channel i. Similarly, a
(i)
+ and η

(i)
+ describe the model dynamics and transition parameters

associated with these unique features. We propose a new unique feature vector f ′+ and corresponding model
dynamics a′+ and transition parameters η′+ (sampled from their priors in the case of feature birth) with a
proposal distribution of

p
(
f ′+,a

′
+,η

′
+ | f

(i)
+ ,a

(i)
+ ,η

(i)
+

)
= p

(
f ′+ | f

(i)
+

)
p
(
a′+ | f ′+, f

(i)
+ ,a

(i)
+

)
p
(
η′+ | f

′
+, f

(i)
+ ,η

(i)
+

)
. (10)

A new unique feature is proposed with probability 0.5 and each existing unique feature is removed with
probability 0.5/ni. This proposal is accepted with probability

ρ
(
f ′+,a

′
+,η

′
+ | f

(i)
+ ,a

(i)
+ ,η

(i)
+

)
=

min

p
(
y
(i)
1:T |y

(i′)
1:T , z

(i′)
1:T , [f

(i)
− f ′+],η(i),η′+, {ak}, {∆l}

)
Poisson (n′i |α/N) p

(
f
(i)
+ | f

′
+

)
p
(
y
(i)
1:T |y

(i′)
1:T , z

(i′)
1:T , [f

(i)
− f

(i)
+ ],η(i), {ak}, {∆l}

)
Poisson (ni |α/N) p

(
f ′+ | f

(i)
+

) , 1

 . (11)

The likelihood terms again follow from Eq. (3).

B.1.2 Channel state sequence, z
(i)
1:T

We sample the state sequence z
(i)
1:T for all the time points of channel i, given that channel’s feature-constrained

transition distributions π(i), the state parameters {ak}, the observations y
(i)
1:T , and the event’s other obser-

vations y
(i′)
1:T and current states z

(i′)
1:T . The joint probability of the state sequence z

(i)
1:T is given by

p
(
z
(i)
1:T | y

(i)
1:T ,y

(i′)
1:T , z

(i′)
1:T , f

(i),η(i), {ak}, {∆l}
)

=

p
(
z
(i)
1 | y

(i)
1 ,y

(i′)
1 , z

(i′)
1 , f (i),η(i), {ak}, {∆l}

) T∏
t=2

p
(
z
(i)
t | y

(i)
t:T ,y

(i′)
t:T , z

(i)
t−1, z

(i′)
t:T , f

(i),η(i), {ak}, {∆l}
)
. (12)

Again following the sum-product algorithm, we compute a vector ψt ∈ RK(i)

of backward messages from

time point t+ 1 to t, where each element ψk,t is proportional to the likelihood of future observations y
(i)
t+1:T

given z
(i)
t = k at time t,

ψk,t ∝ p
(
y
(i)
t+1:T |y

(i′)
t+1:T , z

(i)
t = k, z

(i′)
t+1:T , Z1:T , f

(i),η(i), {ak}, {∆l}
)
.
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As before, ut ∈ RK(i)

defines the likelihood vector of y
(i)
t under each of the K(i) possible states (following

from Eq. (1)), so the backward message recursion can be written efficiently as

ψt ∝ π̃
(i)(ut+1 ◦ψt+1).

The conditional probability of z
(i)
t is given by

p
(
z
(i)
t | y

(i)
t:T ,y

(i′)
t:T , z

(i)
t−1, Z1:T , z

(i′)
t:T , f

(i),η(i), {ak}, {∆l}
)

= Multi

((
π̃

(i)

z
(i)
t−1

)T

◦ ut ◦ψt

)
. (13)

B.1.3 Channel transition parameters, η(i)

Following the correction described by Hughes et al. (2012), the posterior for the transition variable η
(i)
jk is

given by

p(η
(i)
jk | z

(i)
1:T , f

(i)
k ) ∝

(η
(i)
jk )n

(i)
jk +γc+δj,kκc−1eη

(i)
jk∑

k′ | f(i)
k =1

η
(i)
jk′

, (14)

where n
(i)
jk denotes the number of times channel i transitions from state j to state k. We can sample from

this posterior via two auxiliary variables,

η̄
(i)
j ∼ Dir(γc + κcej + nj)

C
(i)
j ∼ Gamma(Kγc + κc, 1)

η
(i)
j = C

(i)
j η̄

(i)
j . (15)

B.2 Channel state dynamic parameters

Recall that our prior on the autoregressive coefficients ak is a multivariate normal with zero mean and
covariance Σ0,

p(ak|Σ0) = N (ak; 0,Σ0)

log p(ak|Σ0) ∝ −1

2
aTk Σ−10 ak. (16)

From Eq. (4) the conditional event likelihood given the channel states z1:T and the event states Z1:T is

p(y1:T | z1:T , Z1:T , {ak}, {∆l}) =

T∏
t=1

N (yt; AztỸ,∆Zt)

log p(y1:T | z1:T , Z1:T , {ak}, {∆l}) ∝ −
1

2

T∑
t=1

(yt −Azt
Ỹt)

T∆−1Zt
(yt −Azt

Ỹt). (17)

The product of these prior and likelihood terms is the joint distribution over ak and y1:T ,

log p(ak,y1:T | z1:T , Z1:T , {ak′}k′ 6=k, {∆l}) ∝ −
1

2
aTk Σ−10 ak −

1

2

T∑
t=1

(yt −Azt
Ỹt)

T∆−1Zt
(yt −Azt

Ỹt). (18)

We take a brief tangent to prove a useful identity,

5



Lemma B.1. Let the column vector x ∈ Rm and the symmetric matrix A ∈ Sm×m be defined as

x =

[
y
z

]
and A =

[
B C
CT D

]
,

where y ∈ Rp, z ∈ Rq, B ∈ Sp×p, D ∈ Sq×q, C ∈ Rp×q, and m = p+ q. Then

xTAx = yTBy + zTDz + 2yTCz. (19)

Proof.

xTAx =
[

yT zT
] [ B C

CT D

] [
y
z

]
=
[

yT zT
] [ By + Cz

CTy +Dz

]
= yTBy + yTCz + zTCTy + zTDz

= yTBy + zTDz + 2yTCz

Note that this identity also holds for any permutation p applied to the rows of x and the rows and
columns of A. We now can manipulate the likelihood term of Eq. (18) into a form that separates ak from

ak′ 6=k. Suppose that k+ denotes the indices of the N channels where z
(i)
t = k and k− = {1, . . . , N}/k+

denotes those for whom z
(i)
t 6= k. Furthermore, we use the superscript indexing on these two sets of indices

to select the corresponding portions of the yt vector and the Azt
, ỸT , and ∆−1Zt

matrices. We start by
decomposing the likelihood term into three parts,

(yt −Azt
Ỹt)

T∆−1Zt
(yt −Azt

Ỹt) =(
y
(k+)
t −A(k+,k+)

zt
Ỹ

(k+,k+)

t

)T
∆
−1(k+,k+)
Zt

(
y
(k+)
t −A(k+,k+)

zt
Ỹ

(k+,k+)

t

)
+

2

(
y
(k+)
t −A(k+,k+)

zt
Ỹ

(k+,k+)

t

)T
∆
−1(k+,k−)
Zt

(
y
(k−)
t −A(k−,k−)

zt
Ỹ

(k−,k−)

t

)
+(

y
(k−)
t −A(k−,k−)

zt
Ỹ

(k−,k−)

t

)T
∆
−1(k−,k−)
Zt

(
y
(k−)
t −A(k−,k−)

zt
Ỹ

(k−,k−)

t

)
, (20)

which we then insert into our previous expression (Eq. (18)) for the joint distribution of ak and y1:T ,

log p(ak,y1:T | z1:T , Z1:T , {ak′}k′ 6=k, {∆l}) ∝ −
1

2
aTk Σ−10 ak−

1

2

T∑
t=1

{(
y
(k+)
t −A(k+,k+)

zt
Ỹ

(k+,k+)

t

)T
∆
−1(k+,k+)
Zt

(
y
(k+)
t −A(k+,k+)

zt
Ỹ

(k+,k+)

t

)
+

2

(
y
(k+)
t −A(k+,k+)

zt
Ỹ

(k+,k+)

t

)T
∆
−1(k+,k−)
Zt

(
y
(k−)
t −A(k−,k−)

zt
Ỹ

(k−,k−)

t

)
+(

y
(k−)
t −A(k−,k−)

zt
Ỹ

(k−,k−)

t

)T
∆
−1(k−,k−)
Zt

(
y
(k−)
t −A(k−,k−)

zt
Ỹ

(k−,k−)

t

)}
.

(21)
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Conditioning on y1:T allows us to absorb the third term of the sum into the proportionality, and after

replacing A(k+,k+)
zt

Ỹ
(k+,k+)

with a more explicit expression, we have

log p(ak |y1:T , z1:T , Z1:T , {ak′}k′ 6=k, {∆l}) ∝ −
1

2
aTk Σ−10 ak−

1

2

T∑
t=1


(

y
(k+)
t −

[
ỹ
(k+1 )
t | · · · |ỹ

(k+
|k+|

)

t

]T
ak

)T
∆
−1(k+,k+)
Zt

(
y
(k+)
t −

[
ỹ
(k+1 )
t | · · · |ỹ

(k+
|k+|

)

t

]T
ak

)
+

2

(
y
(k+)
t −

[
ỹ
(k+1 )
t | · · · |ỹ

(k+
|k+|

)

t

]T
ak

)T
∆
−1(k+,k−)
Zt

(
y
(k−)
t −A(k−,k−)

zt
Ỹ

(k−,k−)

t

) , (22)

which we can further expand to yield

log p(ak |y1:T,z1:T , Z1:T , {ak′}k′ 6=k, {∆l}) ∝ −
1

2
aTk Σ−10 ak−

1

2

T∑
t=1

{(
y
(k+)
t

)T
∆
−1(k+,k+)
Zt

(
y
(k+)
t

)
+

(
aTk

[
ỹ
(k+1 )
t | · · · |ỹ

(k+
|k+|

)

t

])
∆
−1(k+,k+)
Zt

([
ỹ
(k+1 )
t | · · · |ỹ

(k+
|k+|

)

t

]T
ak

)
−

2
(
y
(k+)
t

)T
∆
−1(k+,k+)
Zt

([
ỹ
(k+1 )
t | · · · |ỹ

(k+
|k+|

)

t

]T
ak

)}
−

T∑
t=1

{
y
(k+)
t ∆

−1(k+,k−)
Zt

(
y
(k−)
t −A(k−,k−)

zt
Ỹ

(k−,k−)

t

)
−(

aTk

[
ỹ
(k+1 )
t | · · · |ỹ

(k+
|k+|

)

t

])
∆
−1(k+,k−)
Zt

(
y
(k−)
t −A(k−,k−)

zt
Ỹ

(k−,k−)

t

)}
. (23)

Absorbing more terms unrelated to ak into the proportionality, we have

log p(ak |y1:T,z1:T , Z1:T , {ak′}k′ 6=k, {∆l}) ∝ −
1

2
aTk Σ−10 ak−

1

2

T∑
t=1

{(
aTk

[
ỹ
(k+1 )
t | · · · |ỹ

(k+
|k+|

)

t

])
∆
−1(k+,k+)
Zt

([
ỹ
(k+1 )
t | · · · |ỹ

(k+
|k+|

)

t

]T
ak

)
−

2
(
y
(k+)
t

)T
∆
−1(k+,k+)
Zt

([
ỹ
(k+1 )
t | · · · |ỹ

(k+
|k+|

)

t

]T
ak

)}
−

T∑
t=1

{
−
(

aTk

[
ỹ
(k+1 )
t | · · · |ỹ

(k+
|k+|

)

t

])
∆
−1(k+,k−)
Zt

(
y
(k−)
t −A(k−,k−)

zt
Ỹ

(k−,k−)

t

)}
, (24)

which after some rearranging gives

log p(ak |y1:T,z1:T , Z1:T , {ak′}k′ 6=k, {∆l}) ∝

− 1

2
aTk

{
Σ−10 +

T∑
t=1

[
ỹ
(k+1 )
t | · · · |ỹ

(k+
|k+|

)

t

]
∆
−1(k+,k+)
Zt

[
ỹ
(k+1 )
t | · · · |ỹ

(k+
|k+|

)

t

]T}
ak+

aTk

{
T∑
t=1

[
ỹ
(k+1 )
t | · · · |ỹ

(k+
|k+|

)

t

]
∆
−1(k+,k+)
Zt

(
y
(k+)
t

)
+

[
ỹ
(k+1 )
t | · · · |ỹ

(k+
|k+|

)

t

]
∆
−1(k+,k−)
Zt

(
y
(k−)
t −A(k−,k−)

zt
Ỹ

(k−,k−)

t

)}
.

(25)
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Before completing the square, we will find it useful to introduce a bit more notation to simplify the expression,

Ȳ
(k+)
t =

[
ỹ
(k+1 )
t | · · · |ỹ

(k+
|k+|

)

t

]
and ε

(k−)
t = y

(k−)
t −A(k−,k−)

zt
Ỹ

(k−,k−)

t , (26)

yielding

log p(ak |y1:T,z1:T , Z1:T , {ak′}k′ 6=k, {∆l}) ∝

− 1

2
aTk

{
Σ−10 +

T∑
t=1

Ȳ
(k+)
t ∆

−1(k+,k+)
Zt

Ȳ
T (k+)
t

}
ak+

aTk

{
T∑
t=1

Ȳ
(k+)
t

(
∆
−1(k+,k+)
Zt

y
(k+)
t + ∆

−1(k+,k−)
Zt

ε
(k−)
t

)}
. (27)

We desire an expression in the form − 1
2 (ak−µk)TΣ−1k (ak−µk) for unknown µk and Σ−1k so that it conforms

to the multivariate normal density with mean µk and precision Σ−1k . We already have our Σ−1k value from
the quadratic term above,

Σ−1k = Σ−10 +

T∑
t=1

Ȳ
(k+)
t ∆

−1(k+,k+)
Zt

Ȳ
T (k+)
t , (28)

which allows us to solve the cross-term for µk:

−1

2
(−2µTk Σ−1k ak) = aTk

(
T∑
t=1

Ȳ
(k+)
t

(
∆
−1(k+,k+)
Zt

y
(k+)
t + ∆

−1(k+,k−)
Zt

ε
(k−)
t +

))

Σ−1k µk =

T∑
t=1

Ȳ
(k+)
t

(
∆
−1(k+,k+)
Zt

y
(k+)
t + ∆

−1(k+,k−)
Zt

ε
(k−)
t +

)
(29)

(30)

We can pull the final required − 1
2µ

T
k Σ−1k µk term from the proportionality and thus complete the square.

Thus, we have the form of the posterior for ak,

p(ak |y1:T,z1:T , Z1:T , {ak′}k′ 6=k, {∆l}) ∝ exp

(
−1

2
(ak − µk)TΣ−1k (ak − µk)

)
= N (ak;µk,Σk), (31)

where

Σ−1k = Σ−10 +

T∑
t=1

Ȳ
(k+)
t ∆

−1(k+,k+)
Zt

Ȳ
T (k+)
t

Σ−1k µk =

T∑
t=1

Ȳ
(k+)
t

(
∆
−1(k+,k+)
Zt

y
(k+)
t + ∆

−1(k+,k−)
Zt

ε
(k−)
t

)
. (32)

B.3 Event variables

We first sample the event state sequence Z1:T and then its state transition parameters φ.
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B.3.1 Event state sequence, Z1:T

The mechanics of sampling the event state sequence Z1:T directly parallel those of sampling the individual

channel state sequences z
(i)
1:T . The joint probability of the event state sequence is given by

p(Z1:T |y1:T , z1:T ,φ, {ak}, {∆l}) =

p(Z1 |y1, z1,φ, {ak}, {∆l})
T∑
t=2

p(Zt |yt:T , zt:T , Zt−1,φ, {ak}, {∆l}). (33)

We again follow the sum-product algorithm, using a vector ψt ∈ RL of backward messages from time point
t+ 1 to t with each element proportional to the likelihood of future observations yt+1:T given Zt = l,

ψl,t ∝ p(yt+1:T | zt+1:T , Zt = l,φ, {ak}, {∆l}), (34)

which we compactly represent in vector notation,

ψt ∝ φ(vt+1 ◦ψt+1), (35)

with vt ∈ RL now representing the conditional event likelihoods under the L possible event states (following
from Eq. (4)).

B.3.2 Event transition parameters, φ

The event state transition parameters φ = [φ1| · · · |φL]T parallel π for individual channels. The main
difference, however, is that we assume all possible event states are available to each event, whereas individual
channels are constrained by the beta process to only use particular states. The Dirichlet posterior for φl
simply involves transition counts nl ∈ RL from event state l to all L states,

φl ∼ Dir(αeβ + elκe + nl)

β ∼ Dir(γe/L+ m̄·1, . . . , γe/L+ m̄·L). (36)

The auxiliary variable m̄ll′ is defined by

m̄ll′ =

{
mll′ , l 6= l′

mll − wl, l = l′

mll′ =
∑
r

θr

θr ∼ Ber

(
αeβl + κe1(l = l′)

αeβl + 1(l = l′) + r

)
, r = 1, . . . , nll′

wl ∼ Binomial

(
mll′ ,

ρe
ρe + βl(1− ρe)

)
. (37)

B.4 Event state covariance parameters

B.4.1 Event state covariances, ∆l

In the most straightforward formulation of the Gaussian graphical model (Dawid & Lauritzen, 1993), a set
of variables and their conditional independencies—described by the vertices V and edges E, respectively—is
decomposed into an ordered series of prime components (P1, P2, . . . , PQ) of the graph G = (V,E). Each
prime component Pi is connected by a set of separating variables Si, where Si = Pi ∪ Pj for some j < i.
While interesting techniques for inferring the vertices to produce both decomposable and nondecomposible
graph structures exist (Jones et al., 2005; Wang et al., 2011), in this work we assume that the vertex structure
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is known. Specifically, we define the conditional independencies based on the spatial adjacencies of the iEEG
channels, with a few exceptions to make the graphical model fully decomposable.

The sufficient statistics associated with the event states stem from the event innovations at time t,

εt = yt −AztỸt. (38)

For each event state l, we have

bl = b0 + |{t|Zt = l}| and Dl = D0 +
∑

t |Zt=l

εtε
T
t , (39)

which we then use to sample from the hyper-inverse Wishart posterior for that state,

∆l ∼ HIWG(bl, Dl). (40)

Details on how to efficiently sample from a HIW distribution are provided in (Carvalho et al., 2007).

B.5 Hyperparameters

We sample the various hyperparameters of the model as well. For completeness, we include the posteriors
for each below, which follow those described in more detail in Fox et al. (2011, Supplementary Materials)
and Fox et al. (2009).

B.5.1 Sticky HDP-HMM hyperparameters, γe, αe, κe, ρe

Instead of sampling αe and κe independently, we instead introduce an additional parameter ρe = κe/(αe+κe)
and sample (αe + κe) and ρe instead, which is simpler than sampling αe and κe independently. Recall that
we are working with a truncated approximation to the DP that involves L discrete atoms.

(αe + κe) We place a Gamma(a, b) prior on (αe + κe) and use the auxiliary variables {rl}Ll=1 and {sl}Ll=1

to sample from the posterior,

p(αe + κe | {rl}Ll=1, {sl}Ll=1,m1·, . . . ,m1L) ∝ Gamma

(
a+m·· −

L∑
l=1

sl, b−
L∑
l=1

log(rl)

)
, (41)

where m·· =
∑L
l,l′=1mll′ is the sum over auxiliary variables mll′ defined in Eq. (37), and the auxiliary

variables {rl}Ll=1 and {sl}Ll=1 are sampled as

rl ∼ Beta(α+ κ+ 1, nl·)

sl ∼ Ber(nl·/(nl· + α+ κ)).

ρe We place a Beta(c, d) prior on ρe and use the auxiliary variables {wl·}Ll=1 to sample from the posterior,

p(ρe | {wl·}) ∝ Beta

(∑
l

wl· + c,m·· −
∑
l

wl· + d

)
, (42)

where for wls ∼ Ber(ρ) over s = 1, . . . ,mll, the posterior for wl· is

p(wl· |mll, βl, ρe) ∝ Bin(mll, ρe + βl(1− ρe)) (43)
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γe We place a Gamma(a, b) prior γe and again use auxiliary variables v and q to sample from the posterior,

γe ∼ Gamma
(
a+ L̄− q, b− log v

)
, (44)

where, recalling again Eq. (37), the auxiliary variables are sampled as

v ∼ Beta(γ + 1, m̄··)

q ∼ Ber(m̄··/(γ + m̄··))

L̄ =

L∑
l=1

1(m̄·l > 0)

and m̄·· =
∑L
l,l′=1 m̄ll′ .

B.5.2 BP-AR-HMM hyperparameters, γc, κc

We use Metropolis-Hastings steps to propose a new value γ′c from gamma distributions with fixed variance
σ2
γc and accept with probability min(r(γ′c | γc), 1),

r(γ′c | γc) =
p({π(i)} | γ′c, κ,F)p(γ′c | γ2c/σ2

γc , γc/σ
2
γc)p(γc | γ′c, σ2

γc)

p({π(i)} | γc, κ,F)p(γc | γ2c/σ2
γc , γc/σ

2
γc)p(γ′c | γc, σ2

γc)

=
p({π(i)} | γ′c, κ,F)

p({π(i)} | γc, κ,F)

Γ(ν)γν
′−ν−a
c

Γ(ν′)γν−ν
′−a

c

exp
(
−b(γ′c − γc)σ2(ν−ν′)

γc

)
, (45)

where ν = γ2c/σ
2
γc , ν′ = γ′c

2
/σ2

γc , and we have a Gamma(a, b) prior on γc. Recall that the transition

parameters π(i) are independent over i, and thus their Dirichlet likelihoods multiply. The proposal and
acceptance ratio for κc is similar.

B.5.3 BP hyperparameter, αc

We place a Gamma(a, b) prior on αc, which implies a gamma posterior of the form

p(αc |F, a, b) ∝ Gamma(a+K+, b+

N∑
i=1

(1/i)), (46)

where K+ denotes the number of unique channel states that are activated in at least one of the channels.

C Simulation experiment

Data We simulated data from six time series in a 2x3 arrangement, with vertices connecting all adjacent
nodes (i.e., two cliques of 4 nodes each). We generated 2000 scalar observations using an first-order AR
process with five channel states—AR coefficients linearly spaced between −0.9 and 0.9—and three event
states with covariances shown in the bottom left of Fig. 1. Channel and event state transition matrices were
set to 0.99 and 0.9, respectively, for a self-transition and uniform between the other states. We generated
channel feature indicators using a αc = 10.

Results We ran the MCMC sampler for 6000 iterations, taking 500 samples after 1000-iteration burn-in
and 10-sample thinning. Fig. 1 shows the generated data and its true states along with the inferred states
and event state covariances for one of the posterior samples. The event state matching is almost perfect, and
the channel state matching is quite good, though we see that the sampler added an additional (yellow) state
in the middle of the first time series when it should have assigned that section to the cyan state. The scale
and structure of the estimated event state covariances match the true covariances quite well. Furthermore,
Table 1 shows how the posterior estimates of the channel state AR coefficients also center well around the
true values.
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Figure 1: (top left) The six simulated channel time series overlaid on the five true channel states, denoted
by different colors; the three true event states are shown in grayscale in the bar below. (top right) The true
and estimated channel (color) and event (grayscale) states shown below for comparison after 6000 MCMC
iterations. The true (bottom left) and estimated (bottom right) event state innovation covariances.

channel state true ak post. ak mean post. ak 95% interval
1 -0.900 -0.906 [-0.917, -0.896]
2 -0.450 -0.456 [-0.474, -0.436]
3 0 -0.009 [-0.038, 0.020]
4 0.450 0.445 [0.425, 0.466]
5 0.900 0.902 [0.890, 0.913]

Table 1: The true and estimated values for the channel state coefficients in the simulated dataset.

D Model parameters used

The model parameters used in the simulation experiment and the EEG experiments are given in Tables 2
and 3.

E Seizure offset parsing

Fig. 2 shows the event state parsing at the offset of the same seizure whose onset is shown in Fig. 3 of the
main paper. Though the channel states are intuitive for this offset, we have shown only the event states to
illustrate how well the model is capable of distinguishing subtle transitions in the event dynamics like that
from the first half to the second half of the offset. In this parsing of the transition, we see how the seizure
moves from strong correlations in the spikings of a few channels to a more widespread correlation structure
and synchronized discharge pattern. The automatic identification of brief intervals of synchronized spiking
makes it easy for a clinician to calculate changes in the inter-spike interval, a quantity of clinical importance.
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parameter description value
N number of time series per event 6
r AR model order 1
m0 ak N prior mean 0
Σ0 ak N prior covariance 0.1 · I1×1
L truncated number of event states 20
b0 ∆l HIW prior degrees of freedom N + 3
D0 ∆l HIW prior scale (b0 −N − 1) · (0.05 · IN×N + 0.05)
(αe + κe)0 αe + κe Gamma prior (1, 1)
γe0 γe Gamma prior (1, 1)
ρe0 ρe Gamma prior (1, 1)
γc0 γc Gamma prior (1, 1)
κc0 κc Gamma prior (1000, 1)
γp γc Metropolis-Hastings proposal variance 1
κp κc Metropolis-Hastings proposal variance 100
αc0 αc Gamma prior (1, 1)

Table 2: Parameters used in simulation experiment

F Assessing the utility of the beta process

We explored the benefit of the BP-AR-HMM (both spatial and non-spatial) relative to variants of these
models that are finite Bayesian AR-HMMs without the feature-based modeling provided by the beta process.
(Note: the finite AR-HMM examined here can be equated with a truncated sticky hierarchical Dirichlet
process HMM, as in Fox et al. (2011). In Fig. 3, we see the improved heldout predictive log-likelihood of
the BP-based models, though the incorporation of the associated feature sampling comes at a significant
computational cost.
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parameter description value
N number of time series per event 16 and 6
r AR model order 5
m0 ak N prior mean 0

Σ0 ak N prior covariance Cov({y(i)t }∀t,i)
L truncated number of event states 30
b0 ∆l (H)IW prior degrees of freedom N + 3
D0 ∆l (H)IW prior scale (b0 −N − 1) · Cov({yt+1 − yt}∀t)
(αe + κe)0 αe + κe Gamma prior (1, 1)
γe0 γe Gamma prior (1, 1)
ρe0 ρe Gamma prior (1, 1)
γc0 γc Gamma prior (1, 1)
κc0 κc Gamma prior (1000, 1)
γp γc Metropolis-Hastings proposal variance 1
κp κc Metropolis-Hastings proposal variance 100
αc0 αc Gamma prior (1, 1)

Table 3: Parameters used in epileptic seizures and bursts experiments. When applicable, the same parameters
were used for the standard BP-AR-HMM as in the correlated BP-AR-HMMs. The analysis of two two seizures
involved 16 iEEG channels, and the analysis of the 15 bursts and single seizure involved 6 iEEG channels.
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Figure 2: A representative sample showing the event state parsing (copied across all EEG channels) of a
seizure by the HIW-spatial BP-AR-HMM model.
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Figure 3: The heldout event log-likelihood of a single MCMC chain over the first 2000 iterations for four
models with two HIW-spatial models and two invovling beta process feature sampling (BP-).
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