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Abstract

Patients with epilepsy can manifest short,
sub-clinical epileptic “bursts” in addition
to full-blown clinical seizures. We believe
the relationship between these two classes
of events—something not previously stud-
ied quantitatively—could yield important in-
sights into the nature and intrinsic dynamics
of seizures. A goal of our work is to parse
these complex epileptic events into distinct
dynamic regimes. A challenge posed by the
intracranial EEG (IEEG) data we study is
the fact that the number and placement of
electrodes can vary between patients. We
develop a Bayesian nonparametric Markov
switching process that allows for (i) shared
dynamic regimes between a variable num-
bers of channels, (ii) asynchronous regime-
switching, and (iii) an unknown dictionary
of dynamic regimes. We encode a sparse
and changing set of dependencies between the
channels using a Markov-switching Gaussian
graphical model for the innovations process
driving the channel dynamics. We demon-
strate the importance of this model in pars-
ing and out-of-sample predictions of iEEG
data. We show that our model produces in-
tuitive state assignments that can help auto-
mate clinical analysis of seizures and enable
the comparison of sub-clinical bursts and full
clinical seizures.
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1. Introduction

Despite over three decades of research, we still have
very little idea of what defines a seizure. This ig-
norance stems both from the complexity of epilepsy
as a disease and a paucity of quantitative tools that
are flexible enough to describe epileptic events but re-
strictive enough to distill intelligible information from
them. Much of the recent machine learning work in
EEG analysis has focused on seizure prediction, (cf.,
D’Alessandro et al., 2005; Mirowski et al., 2009), an
important area of study but one that generally has
not focused on parsing the EEG directly, as a human
EEG reader would. Such parsings are central for di-
agnosis and relating various types of abnormal activ-
ity. Recent evidence shows that the range of epilep-
tic events extends beyond clinical seizures to include
shorter, sub-clinical “bursts” lasting fewer than 10 sec-
onds (Litt et al., 2001). What is the relationship be-
tween these shorter bursts and the longer seizures? In
this work, we demonstrate that machine learning tech-
niques can have substantial impact in this domain by
unpacking how seizures begin, progress, and end.

In particular, we build a Bayesian nonparametric time
series model to analyze intracranial electroencephalo-
gram (iIEEG) data. We take a modeling approach sim-
ilar to a physician’s in analyzing EEG events: look di-
rectly at the evolution of the raw EEG voltage traces.
EEG signals exhibit nonstationary behavior during a
variety of neurological events, and time-varying au-
toregressive (AR) processes have been proposed to
model single channel data (Krystal et al., 1999). Here
we aim to parse the recordings into interpretable re-
gions of activity and thus propose to use autoregressive
hidden Markov models (AR-HMMs) to define locally
stationary processes. In the presence of multiple chan-
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nels of simultaneous recordings, as is almost always
the case in EEG, we wish to share AR states between
the channels while allowing for asynchronous switches.
The recent beta process (BP) AR-HMM of (Fox et al.,
2009) provides a flexible model of such dynamics: a
shared library of infinitely many possible AR states is
defined and each time series uses a finite subset of the
states. The process encourages sharing of AR states,
while allowing for time-series-specific variability.

The BP-AR-HMM assumes independence between
time series. In the case of iEEG, this assumption is al-
most assuredly false. Fig. 1 shows an example of a 4x8
intracranial electrode grid and the residual EEG traces
of 16 channels after subtracting the predicted value
in each channel using a conventional BP-AR-HMM.
While the error term in some channels remains low
throughout the recording, other channels—especially
those spatially adjacent in the electrode grid—have
very correlated error traces. We propose to capture
correlations between channels by modeling a multi-
variate innovations process that drives independently
evolving channel dynamics. We demonstrate the im-
portance of accounting for this error trace in predicting
heldout seizure recordings, making this a crucial mod-
eling step before undertaking large-scale EEG analysis.

To aid in scaling to large electrode grids, we exploit a
sparse dependency structure for the multivariate inno-
vations process. In particular, we assume a graph with
known vertex structure that encodes conditional in-
dependencies in the multivariate innovations process.
The graph structure is based on the spatial adjacencies
of the iEEG channels, with a few exceptions to make
the graphical model fully decomposable. Fig. 1 (bot-
tom left) shows an example of such a graphical model
over the channels. Although the relative position of
channels in the electrode grid is clear, determining the
precise 3D location of each channel is extremely diffi-
cult. Unlike in scalp EEG or magentoencephalogram
(MEG), which have generally consistent channel posi-
tions from patient to patient, iEEG channels vary in
number and position for each patient, impeding the
use of alternative spatial and multivariate time series
modeling techniques.

It is well-known that the correlations between EEG
channels usually vary during the beginning, middle,
and end of a seizure (Schiff et al., 2005; Schindler
et al., 2007). Prado et al. (2006) employ a mixture-of-
expert vector autoregressive (VAR) model to describe
the different dynamics present in seven channels of
scalp EEG. We take a similar approach by allowing
for a Markov evolution to an underlying innovations
covariance state.

An alternative modeling approach is to treat the chan-
nel recordings as a single multivariate time series, per-
haps using a switching VAR process as in (Prado et al.,
2006). However, such an approach (i) assumes syn-
chronous switches in dynamics between channels, (ii)
scales poorly with the number of channels, and (iii) re-
quires identical numbers of channels between patients
to share dynamics between event recordings.

We show that our model for correlated time series
has better out-of-sample predictions of iEEG data
than standard AR- and BP-AR-HMMs and demon-
strate the utility of our model in comparing short, sub-
clinical epileptic bursts with longer, clinical seizures.
Our inferred parsings of iEEG data concur with key
features hand-annotated by clinicians but provide ad-
ditional insight beyond what can be extracted from
a visual read of the data. The importance of our
methodology is multifold: (i) the output is inter-
pretable to a practitioner and (ii) the parsings can be
used to relate seizure types both within and between
patients even with different electrode setups. Enabling
such broad-scale automatic analysis, and identifying
dynamics unique to sub-clinical seizures, can lead to
new insights in epilepsy treatments.

Although we are motivated by the study of seizures
from iEEG data, our work is much more broadly appli-
cable in time series analysis. For example, perhaps one
has a collection of stocks and wants to model shared
dynamics between them while capturing changing cor-
relations. The BP-AR-HMM was applied to the anal-
ysis of a collection of motion capture data assuming
independence between individuals; our modeling ex-
tension could account for coordinated motion with a
sparse dependency structure between individuals. Re-
gardless, we find the impact in the neuroscience do-
main to be quite significant.

2. A Structured Bayesian
Nonparametric Factorial AR-HMM

Observation model Consider an event, a seizure
for example, comprised of N univariate time series,
which in our case are the voltage measurements of
N different EEG electrode channels. We assume that
each time series in an event contains 7' scalar observa-
tions, yt(l). ‘We model y,gz) as an order r AR-HMM:

dl~mo oy = aftu&f) +e, (1)

where zéi) denotes the dynamical state of channel ¢

at time t, ™ () the transition distribution given the
t—1

previous state zt(l_)l, ay the r AR coefficients associated

with channel state k, and ?gl) = gi_)l, . ,yt(l,) ]T.
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Figure 1. (top left) An iEEG grid electrode and (bottom left) corresponding graphical model. (middle) Residual
EEG values after subtracting predictions from a BP-AR-HMM assuming independent channels. All EEG scale bars

indicate 1 mV vertically and 1 second horizontally. (right) Graphical model of the HIW-spatial BP-AR-HMM. Channel

states zt(i> evolve independently for each channel according to feature-constrained transition distributions (omitted for

simplicity), and index the AR dynamic parameters a, used in generating observation yt(i). The Markov-evolving event
state Z; indexes the graph-structured covariance A; of the correlated AR innovations resulting in multivariate observations

Y, = [ygl), ceey yt(M]T sharing the same conditional independencies.

Importantly, our channels do not evolve independently.
We capture the channel correlations via the driving in-
; —_ . (Nt :
novations process €; = [¢;’,...,¢ ’]*. In particular,

we assume event-state-specific correlations via

Zt ~ QSZt—l? Et ~ N(())Azt)? (2)

where Z; denotes a Markov-evolving event state, which
is distinct from the individual channel states 2\, and
¢; denotes the event state transition distribution. The
flexibility introduced by the event state is particularly
important in applications like seizure modeling, where
the channels may display one innovation covariance
before a seizure (e.g., relatively independent and low-
magnitude) but quite a different covariance during a
seizure (e.g., correlated, higher magnitude).

Emission parameters To scale to large numbers
of electrodes, and to incorporate the physical relation-
ships of the channels, we define a sparse channel de-
pendency structure by introducing a graphical model
G and specifying a hyper-inverse Wishart (HIW) prior
on A;. The HIW prior (Dawid & Lauritzen, 1993)
enforces the hyper-Markov conditions specified by G,
leading to conditional independencies in €; (and thus
iny,). The AR coefficients a;, are given a multivariate
normal prior. Together, we have

Al ~ HIWG(bo, Do), ag ~ N(m, 20) (3)

Here, by denotes the degrees of freedom and Dy the
scale matrix. We consider m = 0 throughout.

For compactness, we sometimes alternately write
Vi =AY +e(Zy), (4)

where y, is the concatenation of N channel observa-
tions at time ¢ and z; is the vector of channel states.
One can think of this process as a factorial HMM

(Ghahramani & Jordan, 1997) since we have N +1 in-
dependently evolving Markov chains that jointly gen-
erate our observation vector y,. However, here we
have a sparse dependency structure in how the Markov
chains influence a given observation y,, as induced by
the conditional independencies in €;. See Fig. 1 (right).

Feature constrained channel transition distri-
butions A key goal in modeling the event is to cap-
ture shared dynamics across the N related time series
(channels). Each channel exhibits some subset of a
shared library of AR coefficients {a;}. Let £ be a
binary feature vector associated with channel ¢ with
f,gl) = 1 indicating that channel i uses the dynamic
ai. The BP-AR-HMM of Fox et al. (2009) provides
our sought after framework for defining such a fea-
ture model in order to constrain a set of AR-HMM
transitions. In particular, through employing a beta
process prior (Thibaux & Jordan, 2007), the BP-AR-
HMM allows for an infinite library of AR parameters
and encourages each time series to use a sparse subset
of these parameters with a flexible sharing pattern.

More formally, in our scenario the feature assignments

sz‘) and their corresponding parameters a; are gener-
ated by an underlying beta process random measure:

B ~BP(1,By), B=Y wila,, fi ~Ber(wy). (5)
k=1

B defines an infinite collection of feature inclusion
probabilities wy and AR coefficients a; € 2, with By a
base measure on our parameter space 2. The resulting
feature vectors f () constrain the set of available states
zt(z) can take by constraining the transition distribu-
tions, 7r§-l), to be 0 when fkl) = 0. In particular, we

use £ along with a set of gamma random variables,
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to produce the desired transition distribution ﬂ‘y) from
state j to state k,

» , @ o §)
0} ~ Gamma(ye + 0y me), w) = —d

j )
Zk | f,ii):l Mk
(6)

where o denotes the Hadamard (element-wise) product
and 6; , the Kronecker delta. The positive elements of

71'5»1) can also be thought of as a sample from a Dirichlet

distribution with only K dimensions, where K®) =
>k f,gl) represents the number of states channel ¢ uses.

The parameter k. encourages self-transitions, as in the
sticky HDP-HMM (Fox et al., 2011a).

Unconstrained event transition distributions
We assume a Bayesian nonparametric formulation for
the Markov event state process {Z;}, as well, by tak-
ing ¢ to be as in the HDP-HMM (Fox et al., 2011a;
Teh et al., 2006). For simplicity, we consider the weak
limit approximation (Ishwaran & Zarepour, 2002):

6 ~ Dir(’ye/L, e 77@/L)7
¢y ~ Dir(ae + eke),

where e; is the [th column of identity and L is as-
sumed much greater than the expected number of
states. Again, the sticky parameter k., promotes self-
transitions, reducing state redundancy.

(7)

Our resulting structured Bayesian nonparametric fac-
torial HMM is depicted in the graphical model of
Fig. 1. We refer to this model as the HIW-spatial
BP-AR-HMM to denote the dependencies introduced
via the innovations process. We note that the infi-
nite factorial HMM of Van Gael et al. (2008) consid-
ers a very different structure, allowing for an infinite
collection of chains each with a binary state space.
The infinite hierarchical HMM (Heller et al., 2009)
also considers infinitely many chains with finite state
spaces, but with constrained transitions between the
chains in a top down fashion. The infinite DBN of
Doshi-Velez et al. (2011) considers more general con-
nection structures and arbitrary state spaces. Alterna-
tively, the graph-coupled HMM of Dong et al. (2012)
allows graph-structured dependencies in the underly-
ing states of some N Markov chains. Here, we con-
sider a finite set of chains with infinite state spaces
that evolve independently and instead capture sparse
dependencies in the observations via the innovations
driving the AR dynamics.

3. Posterior Computations

Although the components of our model related to the
individual channel dynamics are similar to those in the

Algorithm 1 Outline of one MCMC iteration
for channels i =1,..., N do
sample active features,
f(l) | Yir, Zgl;j)‘v Zl:Tv f(_l)v Tl(i)» {ak}a {Al}
sample state sequences,
0 Y1 20 Zu, 9,00, {ag}, {4}
sample transitjon parameters,
URIEIN o
end for '
for active features k € {k| )", f,il) >0} do
sample AR coefficients,
ay |y 2urs Zirs {aw b gk, { A0}
end for
sample event state sequence,
AT | Yi.7:21:T, P, {ak}> {Al}
sample event transition parameters,
¢|ZI:T7ﬁ B‘Zl:T
for event statesl=1,...,L do
sample innovation covariance,
Ay 21, Zir, {ak)
end for

BP-AR-HMM, our posterior computations are signif-
icantly different due to the coupling of the Markov
chains via the observations y,. In the BP-AR-HMM,
conditioned on the feature assignments, each time se-
ries is independent. Here, however, we are faced with
a factorial HMM structure and the associated chal-
lenges. For example, consider the observation model
of Eq. (4). Even conditioned on the event sequence
Z1.7 and model parameters, we cannot analytically
marginalize the state vector sequence z1.1 (e.g., via a
forward-backward algorithm) since the state space of
z; is exponentially large. Luckily, the scale of these
challenges is mitigated by our underlying graph struc-
ture. Conditioned on channel sequences {z%J)T} jeir, We

can marginalize z%q, because of the graph structure,
we need only condition on a sparse set of other chan-
nels (i.e., neighbors in the graph denoted here by i’).
Of course, the dependencies also have to be accounted
for in sampling the dynamic parameters ay.

Algorithm 1 provides a high level overview of the steps
involved in one iteration of MCMC sampling, with
more details below and complete derivations provided
in Supplement B. For brevity, we omit the hyperpa-
rameters from the conditioning set throughout.

Individual channel variables We harness the fact
that we can compute the marginal conditional likeli-
hood given f @ and the neighborhood set of other chan-
nels zgl,T) in order to block sample {f(i),zg)T}. That
is, we first sample £ marginalizing ziZ)T and then
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sample zgl)T given the sampled f @), Sampling the ac-

tive features f) for channel i follows as in Fox et al.
(2009), using the Indian buffet process (IBP) (Griffiths
& Ghahramani, 2005) predictive representation associ-
ated with the beta process, but using a likelihood term

that conditions on neighboring channel state sequences

zg T) and observations y . We additionally condition

on the event state sequence Z1.7 to define the sequence
of distributions on the innovations. Generically, this
yields (omitting the dependency on ¥, {a;}, {A;})

p(f]gl) ‘ Fiikayg’)j‘aygl%vzl T3Z1'T)
p(f | F - )py | y 52, 2, £0). (8)

Here, the first term is given by the IBP prior and the
second term is the marginal conditional likelihood as
derived in Supplement A. The quantity F~** defines
the indicators for features other than k for time series
other than i. Supplement B contains details on the
feature sampling of Fox et al. (2009).

Conditioned on f(i), we block sample the state se-
quence zygp by first calculating backward messages v,
for t = 1,...,T and then forward sampling (again
omitting dependency on V), {a}, {A}),

2 iy i 2 2 Zur 80~ 7)) owe,
t—1

(9)

where u; denotes the likelihoods under each of the
available K (i)_ channel states. Recall that 7 is a
function of £*) and 7. Details are in Supplement B.

For sampling the transition parameters (), we fol-
low the correction described by Hughes et al. (2012,
Supplement) and sample from the posterior given by

( (@ ))njk-‘r%-&-% khe—1 7I( Y

(njk |Zl T?fk ) Z (4) ) (10)
k| £ =1 "k’

denotes the number of times channel ¢ tran-

sitions from state j to state k. We sample n(-i) =

J
Cj( 95 from its posterior via two auxiliary variables,

where n§2

"7/(“) ~ Dir(vc + ejkc + ngl)) (11)
C’j ~ Gamma(K~. + ke, 1),

where n; gives the transition counts from state j.

AR coefficients Each observation y, is generated
based on a vector of AR parameters [a ), ,a (N)]

Thus, sampling a;, involves condltlomng on {ak/}k,ik

and disentangling the contribution of a; on each y,.
As derived in Supplement B,

ag |y 211, Zrrs {aw ek, {1} ~ N (ag; py, Bk),
(12)

where .
_ _ (kM) \ — (kT kN ST(kh)
St =0t 4+ Yo Ay
t=1
-1 o () —(kF k) (k) (k" k7) _(k7)
X, ”k:ZYt (Azt Tye AL T e )

t=1

The vectors k™ and k™ denote the indices of chan-
nels assigned and not assigned to state k at time ¢,
respectively. We use these to index into the rows and
columns of the vectors €, y,, and matrix Az,. Each

_ +
column of matrix ng ) is the previous r observations
for one of the channels assigned to state k at time t.

Event variables Conditioned on the channel state
sequences z.7 and AR coefficients {a;}, we can com-
pute an innovations sequence as € = y; — Azt?t.
These innovations are the observations of the HMM
of Eq. (2). Conditioned on the truncated HDP-HMM
event transition distributions ¢ and emission param-
eters {A;}, we can use a standard backward filtering
forward sampling scheme to block sample Z;.7.

In sampling the event transition distributions ¢, we
recall the L weak limit approximation of Eq. (7) and
first sample the parent transition distribution 3 as de-
scribed in Supplement B and then sample each ¢; from
its Dirichlet posterior,

¢l ~ Dir(acﬁ + €ejke + nl)v (13)

where n; is a vector of transition counts of Zq.7 from
state [ to the L different states.

Event state parameters Finally, we sample the in-
novation covariance A; for each event state [ from its
HIW posterior: A; ~ HIW (b, D;), with

bi=bo+|{t| Zi =1}, Di=Do+ > eel.
t| Zy=l
Hyperparameters The prior and conditional pos-

teriors of the hyperparameters 7., k¢, e, Ke, Ve, and
a. = Bo(Q) are provided in Supplement B.

4. Experiments

Simulated data We first simulated six channels of
toy data from five different first-order AR processes
and three different event innovation covariances to con-
firm that our model was able to accurately estimate
the true channel and event state sequences, the true
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Figure 2. The graph used for a 16 channel iEEG electrode and corresponding traces over 25 seconds of a seizure onset
with colors indicating the inferred channel states. The event states are shown below along with the associated innovation
covariances. Vertical dashed lines indicate the EEG transition times marked independently by an epileptologist.

channel state AR coefficients, and the true event state
innovation covariances. We found our model! able to
estimate all of these parameters remarkably well and
describe the simulation parameters, experimental de-
tails, and results in Supplement C.

Analyzing seizures We tested the HIW-spatial
BP-AR-HMM on two similar seizures (events) from
a patient of the Children’s Hospital of Pennsylvania.
These seizures were chosen because qualitatively they
displayed a variety of dynamics throughout the be-
ginning, middle, and end of the seizure and thus are
ideal for exploring the extent to which our HIW-spatial
BP-AR-HMM can parse a set of rich neurophysio-
logic signals. We used the 90 seconds of data after
the clinically-determined starts of each seizure from
16 channels, whose spatial layout in the electrode grid
is shown in Fig. 2 along with the graph encoding our
conditional independence assumptions. The data were
low-pass filtered and downsampled from 200 to 50 Hz,
preserving the clinically important signals but reduc-
ing the computational burden of the analysis. The
data was also scaled to have 99% of values within [-10,
10] for numerical reasons. We examined an order 5
HIW-spatial BP-AR-HMM and ran 10 MCMC chains
for 6000 iterations, discarding 1000 samples as burn-in.
Details are in Supplement D.

The HIW-spatial BP-AR-HMM inferred state se-
quences for the sample corresponding to a minimum
expected Hamming distance criterion are shown in
Fig. 2. The results were analyzed by a board-
certified epileptologist (B.L.). He agreed with the
model’s judgement in identifying the subtle changes

Matlab code for this and other models in this paper is
available at www.seas.upenn.edu/~wulsin

from the background dynamic (cyan) initially present
in all channels. Furthermore, the model’s grouping of
spatially-proximate channels into similar state transi-
tion patterns (e.g., channels 03, 07, 11, 15) was clini-
cally intuitive and consistent with his own reading of
the raw EEG. Using only the raw EEG and prior to
disclosing our results, he identified roughly six points
in the duration of the seizure where the dynamic fun-
damentally changes. The three main event state tran-
sitions shown in Fig. 2 occurred almost exactly at
the same time as three of his own marked transitions.
These event states allow for a more global summary of
the dynamics of the seizure and provide an important
addition to the channel state sequences of the standard
(non-spatial) and our HIW-spatial BP-AR-HMMs.

In Supplement E, we show how the event state pars-
ing of the same seizure’s offset is similarly clinically
intuitive and distinguishes subtle transitions in the dy-
namics: strong correlations in the spikings of a few
channels to a more widespread correlation structure
and synchronized discharge pattern. The automatic
identification of brief intervals of synchronized spiking
makes it easy for a clinician to calculate changes in
the inter-spike interval, a quantity of clinical impor-
tance. While interpreting these state sequences and
covariances from the model, it is important to keep in
mind that they are ultimately estimates of a system
whose parsing even highly-trained physicians disagree
upon. Nevertheless, the prospect of a reproducible, ob-
jective, and automated method for parsing such com-
plex, multichannel events that closely mirrors those of
practicing clinicians opens the possibility of large-scale
analysis of hundreds or even thousands of such events.

We compared our HIW-spatial BP-AR-HMM to a full-
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Figure 3. (left) An example 16-channel clip of iEEG with the middle section of one channel zoomed in and innovations
from a non-spatial MNIW prior and a spatial N-HIW prior BP-AR-HMM shown below. (right) Boxplots of the heldout
event log-likelihoods from the two non-spatial and two spatial models with mean and median posterior likelihood given
in green and red lines. Boxes denote the middle 50% prediction interval.

covariance model with an IW prior on A; (IW-spatial).
We additionally compared it to non-spatial alterna-
tives where channels evolve independently: the BP-
AR-HMM of Fox et al. (2009) and an AR-HMM with-
out the feature-based modeling provided by the beta
process (Fox et al., 2011b). Both of these models use
inverse gamma priors on the individual channel inno-
vation variances. Fig. 3 (left) shows how condition-
ing on the innovations of neighboring channels in the
HIW-spatial model improves the prediction of an indi-
vidual channel, as seen by its reduced innovation trace
relative to the IG-non-spatial model. The quantitative
benefits of accounting for these correlations are seen in
our predictions of heldout events, as depicted in Fig. 3
(right). We infer a set of AR coefficients {a;} and
event covariances {A;} on one seizure, and then com-
pute the heldout log-likelihood on a separate seizure,
constraining it to only select among the inferred AR
and event states. We can analytically marginalize the
heldout event state sequence Z1.7 but perform a Monte
Carlo integration over the feature vectors f @) and
channel states z;.7 using our MCMC sampler?. Fig. 3
(right) compares the heldout log-likelihoods for the
IG-non-spatial and (H)IW-spatial models listed above,
collected over 5000 samples across 10 chains, each with
a 1000-sample burn in and 10-sample thinning. As ex-
pected, the HIW-spatial model has significantly larger
predictive power than the non-spatial models. Though
hard to see due to the large spatial/non-spatial differ-
ence, the BP-based model also improves on the stan-
dard non-feature-based AR-HMM. Performance is also
at least as competitive as a full-covariance model (TW-

2For each original MCMC sample, a secondary chain is
run fixing all but zél), Zy, fO, ,,](i)’ ¢. We approximate
p(y1.r| ¢, {ar}, {A}) by averaging the secondary chain’s
closed-form p(y .7 | z1:7, @, {ar }, {Ai}). See Eq. (7) of the
Supplementary Materials.

spatial) but most importantly has significant computa-
tional gains based on the graph structure. The model
scales linearly with the number of events, and the con-
ditional independencies introduced by using a hyper-
inverse Wishart prior allow the matrix operations to
grow linearly with the number of channels rather than
quadratically, as they do in the IW-spatial model. In
Supplement F, we give results from a similar compar-
ison on a much larger dataset of 50 events.

Comparing epileptic bursts and seizures We
applied the HIW-spatial BP-AR-HMM to six chan-
nels of iIEEG over 15 events from one patient. These
events comprise 14 short sub-clinical epileptic bursts
of roughly five to eight seconds and a final, 2-3 minute
clinical seizure. Owur hypothesis was that the sub-
clinical bursts display initiation dynamics similar to
those of a full, clinical seizure and thus contain infor-
mation about the seizure-generation process.

The events were automatically extracted from the pa-
tient’s continuous iEEG record by taking sections of
iEEG whose median line-length feature (Esteller et al.,
2001) crossed a preset threshold, also including 10 sec-
onds before and after each event. The iEEG was pre-
processed in the same way as in the previous section.
The six channels studied came from a depth electrode
implanted in the left temporal lobe of the patient’s
brain. We ran our MCMC sampler on the 15 events
(N =15-6 with disconnected channel graphs between
events) and selected a representative sample as in (Fox
et al., 2011a). The hyperparameter settings, number
of MCMC iterations, chains, and thinning was as in
the previous experiment.

Fig. 4 compares two of the 14 sub-clinical bursts and
the onset of the single seizure. We have aligned the
three events relative to the beginnings of the red event
state common to all three, which we take roughly as
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sub-clinical burst 3

I overt sites
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Figure 4. 6 iEEG traces from two sub-clinical bursts and
onset of the single seizure with colors indicating inferred
channel and event states. The dashed lines indicates the
start of the red state in the three events.

the unequivocal start of the epileptic activity. The in-
dividual states of the four middle channels are also all
green throughout most of the red event state. It is
interesting to note that at this time the fifth channel’s
activity in all three events is much lower than those of
the three channels above it, yet it is still assigned to
the green state and continues in that state along with
the other three channels as the event state switches
from the red to the lime green state in all three events.
While clinical opinions can vary widely in EEG read-
ing, a physician would most likely not consider this
segment of the fifth channel similar to the other three,
as our model consistently does. But on a relative volt-
age axis, the segments actually look quite similar. In
a sense, the fifth channel has the same dynamics as
the other three but just with smaller magnitude. This
kind of relationship is difficult for the human EEG
readers to identify and shows how models such as ours
are capable of providing new perspectives not readily
apparent to a human reader. Additionally, we note the
commonalities in event state transitions.

The similarities mentioned above, among others, sug-
gest some relationship between these two different
classes of epileptic events. However, all bursts make
a notable departure: a large one-second depolariza-
tion in the middle three channels, highlighted at the
end by the magenta event state and followed shortly
thereafter by the end of the event. Neither the states
assigned by our model nor the iEEG itself indicates
that dynamic present in the clinical seizure. This dif-
ference leads us to posit that perhaps these sub-clinical

bursts are a kind of false-start seizure, with similar on-
set patterns but a disrupting discharge that prevents
the event from escalating to a full-blown seizure. Val-
idation of such a hypothesis through a more compre-
hensive study would greatly improve our basic-science
understanding of seizures and epileptogenesis.

5. Discussion

We presented a modeling framework for automating
the parsing of EEG data, especially in the challeng-
ing scenario of multiple recordings taken from patients
with variable numbers of channels, as is common in
iEEG data. Our framework builds on the BP-AR-
HMM, enabling learning a shared dictionary of AR
dynamics that are asynchronously switched between
by the individual channels. In contrast to the BP-AR-
HMM, our model captures correlations between the
time series, which we demonstrated is crucial in fitting
heldout seizure data. We harness the spatial structure
of the channels to define a set of conditional indepen-
dencies that both improve out-of-sample predictions
and reduce the computational burden, allowing scala-
bility to large electrode grids. We additionally intro-
duce a Markov event state to capture the time-varying
correlations. We showed how this event state further
improved the clinical interpretability of our model.

In addition to providing clinically intuitive parsings of
the onset and offset of a seizure, we demonstrated how
our event and channel state estimates facilitate com-
parisons between sub-clinical epileptic bursts and clin-
ical seizures, suggesting new clinical hypotheses about
their relationship. Clearly, validating such specula-
tions necessitates testing on more epileptic events from
a large class of patients. We have delved into a clin-
ical analysis of the iEEG to illustrate how our model
brings a quantitative structure to these highly complex
multi-channel events. We see the model and its parsing
capabilities as a data exploration tool that will help
clinicians make sense of the vast quantities of iIEEG
data collected from epilepsy patients.

While we focus on modeling epileptic EEG events in
this work, our model is more generally applicable to
multiple correlated time series, especially in scenar-
ios where there are multiple recordings with variable
numbers of time series (e.g., motion capture sensors,
financial data streams, etc.).
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